ON A CLASS OF GLOBAL CENTERS OF LINEAR
SYSTEMS WITH QUINTIC HOMOGENEOUS
NONLINEARITIES
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ABSTRACT. One of the classical and difficult problems in the qualita-
tive theory of differential systems in the plane is the characterization
of their centers. In this paper we characterize the linear and nilpotent
global centers of polynomial differential systems with quintic homoge-
neous terms, with the symmetry (z,y,t) — (—=z,y,—t) and without
infinite singular points.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

When all the orbits of a planar differential system in a punctured neigh-
borhood of a singular point p are periodic we say that p is a center. If the
orbits of a planar differential system in a punctured neighborhood of p spiral
to p when ¢t — £oo then p is a focus. If the origin is either a focus or a
center we say that it is a monodromic singular point. The clasical center-
focus problem started with Poincaré [8] and Dulac [3] and in the present
day many questions remain open about this problem.

It is known that if a real planar analytic system has a center, then after
an affine change of variables and a change of scale of the time variable, it
can be written in one of the following three ways:

called linear type center, which has a pair of purely imaginary eigenvalues,

i=y+P(x,y), v=0Q(xy)

called nilpotent center

j":P(xay)v y:Q(may)
called degenerated center, where P(x,y) and Q(z,y) are real analytic func-
tions without constant and linear terms defined in a neighborhood of the
origin.
We recall that a global center for a vector field on the plane is a singular
point p having R? filled of periodic orbits with the exception of the singular
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point. The easiest global center is the linear center £ = —y, y = z. It is
known (see [10, 1]) that quadratic polynomial differential systems have no
global centers. The global degenerated centers of homogeneous or quasi-
homogeneous polynomial differential systems were characterized in [2] and
[7], respectively. However, the characterization of the global centers in the
cases that the center is nilpotent or of linear-type has been done only when
P(z,y) and Q(x,y) are cubic homogeneous polynomials (see [6, 5]).

In this paper we give a classification of linear and nilpotent type global
centers for systems that have a linear part at the origin with purely imag-
inary eigenvalues and homogeneous quintic nonlinearities that satisfy the
symmetry (z,y,t) — (—z,y, —t) and without singular points at infinity. We
note that due to the symmetries the origin is a center.

We characterize the global centers of the two families of systems.

i = —y + agxty + agz?y® + agy’®, 1)
U= x+b1a’ + bgz3y? + bsayt,
(with a linear type center at the origin), and

i =y + aoxty + asx®y3 + agy®, (2)
§ = bia® + bszdy? + bswy?,
(with a nilpotent center). Let

A= a—lé bi(4ai — 27a2by) — 2a6(az — bs) (2(az — b3)? + 9by (as — bs))
—|—a4((a2 —b3)? — 12b1b5) - 2a4b5((a2 —b3)? — 661b5)
+b2((ag — b3)? — 4b1b5)).
(3)
The first main theorem of the paper is the following.
Proposition 1. Let A be as in (3) and consider system

T = a2x4y + a4x2y3 + a6y5, (4)
9§ = bra® + byx3y? + bsay®.

(A) Ifag < 0 and by > 0 then system (4) has no singular points at infinity
if and only if one of the following five sets of conditions holds:
A1) b3 > ag, and by > (a2=bs)as+ach, .

as—bs
.2) by > a9, by < a4, A <0;
.3) bs < as, W+JM<55<G4,A<O;

A
A
A.4) by < as, bs > aq, A <0;
A

—b +agb
5) bg>a2,a4<b5<%,A<0.

(

(

(

(

(

(B) Ifag > 0 and by < 0 then system (4) has no singular points at infinity
if and only if one of the following five sets of conditions holds:

(B.l) bs < as, bs > ay;
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b3 < as, andb5<(az_b3)w,A<O;

as—bs
bs > as, a4<b5<(a2_l;32)+gm,A<0;

2)
3)
.4) bs > as, bs < aq, A <0;
5) b3 < ao, (az_bg)w<b5<a4,A<0.

az—bs

The proof of Proposition 1 is given in section 3.

In order to state the following results we introduce the notation

L = (a4+b3)2 —4(a2+bl)(a6+b5)7

M = 2(ag + bs)(agbs — agby) + (ag + b3) N

N = agbz — asbs,
R = 2b5(a6b1 — a2b5) — b3N,
S = b2 — dbybs.

(5)

Proposition 2. System (1) has a linear type center at the origin and no
more finite singular points if and only if either ag < 0, by > 0 and L < 0,
orag <0, by >0, L >0, and one of the following sets of conditions hold:

(1) M + NVL < 0;

(2) M+ NVL <0, M—NvL>0,as+b3—+L>0,
(3) M+ NVL<0, M—NvVL>0, ag+ b3 —+L <0,
(4) M+ NvVL >0, M — NVL <0, ag+ b3 + VL > 0,
(5) M+ NVL >0, M —NVL <0, ag+ bs + VL <0,
(6) M+ NvVL >0, as+b3++VL <0, ag + bs < 0;
(7) M+ NVL >0, ag+ b3 =L >0, ag + bs > 0.

The proof of Proposition 2 is given in section 4.

A polynomial differential system can be extended in a

ag + by > 0;
ag + by < 0;
ag + bs > 0;
ag + by < 0;

unique analytic

way to infinity using the Poincaré compactification, for more details on the

Poincaré compactification see Chapter 5 of [4].

Theorem 3. Consider A given in (3) and L, M, N given in (5). Sys-

tems (1) have a global center at the origin and do not have

infinite singular

points if and only if ag < 0, by > 0 and one of the following sets of conditions

hold:

(I) L<O0, and
(L1) by > ay, by > (2=belaatach,
(1.2) b3 > ao, by < a4, A <0;
(1.3) bs < ag, Wfai:m <bs <ay, A<O;
(1.4)
(L5)

bz < ag, bs > as, A <0;

az—bs)as+agb
b3>a2,a4<b5<%,A<o.

(II) L >0, M £ NVL <0, and
(IL.1) b3 > ag, bs > W?*l’@w;

ag—bs
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(H 2) bs > ag, bs < aq, A <0;
(I )b3<a2(az_?2)+gm<b5<a4,A<0;
(H 4) b3 < ao, by > a4, A <0;
(H5) b3 > ao, a4<b5<(a27232)+£m7A<0.
(III) L >0, M+NvVL <0, M—NvL >0, ag+b3—+L >0, ag+bs > 0,

and
IIL.1) by > ag, by > (w2=belaatach .

az—bs
II1.2) b3 > ag, bs < aq, A <0;

(
(IIL.2)
(IIL.3) by < ap, 22=08labashl < o gy A < 0;
(114) b3 < ao, b > a4, A <0;

(IIL.5)

az—bs)as+agb
b3>a2,a4<b5<%,A<0.

1115
(IV) L>0, M+NvVL <0, M—N+L >0, ag+b3—+L <0, ag+bs < 0,

and

(IV.1) by > ay, by > (2=teleatoch,

(IV.Q) b3 > ao, by < a4, A <0;

(IV.3) by < ap, (2=bilaatash 30 A < 0;
)
)

a2—b,
(IV.4 by < as, by > (214,3A < 0;

(IV.5 b3 > ao, ag < b5 < Wfai:m, A <O.

(V) L>0, M+NvVL >0, M—NVL <0, ag+bs++L >0, ag+bs > 0,
and

az—bz)as+agby |
) b3>a2, b5>(a2)—bgl’

(V.
( )b3>a’27b5<a47A<0
(V.3) by < ap, (12=tlastash gy A < 0;
( )b3<a2,b5>a4,A<0

(V.

)bg>a2,a4<b5<mg+gm,A<0.

(VI) L >0, M+NVL >0, M—NvVL <0, ag+b3++VL <0, ag+bs <0,

and
(VI.1) b3 > ag, bs > Ww;

ags—bs
(VI 2) b3 > ag, by < aq, A <O0;
(VIB) <a2,@2j‘"’+§:“6b1<b5<a4,A<0;
( bs < ag, bs > a4, A <0;
(VI

) >a2,a4<b5<(a2_l;32)+gm,A<0.
>

(VII) L >0, M+ NVL >0, ay+ b3 VL <0, ag + b5 <0, and
(VIL.1) b3 > ag, bs > —(az_Zi)fi:aﬁbl ;
(VH.Q) by > a9, by < a4, A <0;
(VIL3) b3 < ap, (2=tslestash «po gy A < 0;
(VH.4) by < as, bs > aq, A <0;
(VIL5) b3 > as, ag < b < 2=0)utash (A <,
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(VIIT) L >0, M + NVL >0, ag + b3 =L >0, ag + bs > 0, and

(VIIL1) bs > ag, bs >

b3 > a9, bs < aq, A < 0;
(az—b3)as+asb1

(VIIIL.2)
(VIIL3)
(VIIL4)
(VIIL5)

b3 < as,
b3 < az, bs > a4, A <O0;
b3 > ag, aq4 < by <

as—bs

(a2

—b3)as+aeb:

az—b3)as+aeb: |
as—bs

7

<bs <ay, A<O;

az—bs

The proof of Theorem 3 is given in section 5.

Remark 1. All the conditions given in Theorem 3 are not empty except

, A <O0.

perhaps for the conditions (V.2)-(V.5) and (VI.2)-(VI.5) for which we can-

not find examples. The following values of the parameters satisfy the set of

the remaining conditions.

(I1) ag = —1, as = —1, ap = =22, by —% b3 =—2, b5 =0;
(L2) ag = —1, ay = —68, ag = 151”27, by = —15, by =2, b5 = —22;
(1.3) a6:—1, a4:1, CL2:—1 bl b3—0, b5:0;
(1.4) a6:—1, a4:—1/2, az = 1 b1 32, b3:—1, b5=0,’
_ 346709 _ 3 _ 173311
(1.5) a686—79—1, a4 = —68, a 4096 b = 512 bg = T 72048 ’ b
128
(H.l) aﬁ——l, a4:—16, CLQZO, b1 4, b3—1 b5 64’
(I1.2) ag = -1, ag = =123, a3 = 0, by = 4096, b3 = —2, b5 = —16;
(I1.3) ag = —1, ag = 8, ag = —131072 61 = 10923, b3 = —512 bs = 3;
(I14) ag = -1, ag =1, ag = 16, b1 = 1024, b3 =—1, bs = 32,
(IL5) ag = —1, ag = —3%, ag = —512, by = {22 b3 = —1, by =
(IIL1) ag = —1, ag = =395, ap =0, by = 1553, bs =1, by = 15%;
_ _ _ 427 _ 165 105 _
(IIIQ) ag = —1, a4 —% = 12817 b1 = 128’ bg 32 b5 2;3388613
(IIL3) ag = —1, as = ? a2 = 1591, b1 81927 bs =1, b5 8388608 7
(IH.4) ag —1, ay = 37 as = 1, b1 b3 = 1 b5 256’
(111.5) ag = —1, aq = 4 %, b1 = bg = 13025, b5 = 2.
(IV.l) ag = —1, ay = —32, as = 8 b1 512, b3 = —1, b5 = —
(IV2) ag = —1, a4 =4, az = 369477 by = 11065’ by = %7 bs = %}
(IV?)) ag = —1, ag = —16, ag = 1, b1 = 7013, bg = 1, b5 = —43,’
(IV4) ag=—1, ag = —16, ag = 1, by = gztz5, by =1, by = =3
(IV.5) ag = —1, ag = —13988, ay = —32768, by = 536870912, by = 1,
bs = —4.
(Vl) CLGZ—]_, a4:—37, CL2:—2, b1 256’ b3—1 b5—2
(VL1) ag = —1, ag = =16, ag = =21 by = &5 b3 =1, b5 = &
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(VH.l) ag = —1, a4 = —22, ag = 8 b1 2 b = —1, b5 = —
_ _ 163833 _ _ 65 _ .

(VIIQ) ag——l, ag = — 32768 1 bl— 2248’ bg— 64’ b5——5,
(VH.?)) ag = —1, ag = 4093, ag = 512, bl 8395 b3 = 0 b5
(VIL4) ag = — 107308641, _ _ 288142404537758509 _ 41943039

: 6 = 1 7217016% 5g513282§1g96093022208 > %2 = 74194304 >

by = 83031673497365572422085269487941267526105036671;’331 —10, bs = —16384;

(VIL5) as = — 9543, 04 = — 575, 02 = —ogeqzsa50 01 = 1, b3 =0, bs = —5.

( )ag=—1, a1 =—%, ag = — g, b1 = 50, by =1, by = 3
( )0/6:_%78,a4:%,a2:%,b1:1,b3:4,6522;
(VIIL3) ag = — 1k, as = 8, ap =4, by = 213, by =4, b5 = 2;

( )CLGZ—%OS, CL4:2, ag = 11325857b1:1’ 632%, b5:5,‘
(VIIL5) ag = — 3%, as =%, ag =2, by = 245, by = 313 b5 = 1.

2567

Proposition 4. System (2) has a nilpotent center at the origin and no
more finite singular points if and only if either ag > 0, by <0 and S < 0 or
ag >0, by <0, S >0, and one of the following sets of conditions hold:

(1) R+ NVS <0;

(2) R+ NvVS <0, R—NVS>0,bs+S <0, bs <0;
(3) R+ NVS <0, R—NVS>0,b3++S >0, bs > 0;
(4) R+ NVS >0, R—NVS§ <0, bs—+/S <0, by <0;
(5) R+ NVS >0, R—NVS>0,b3+/S <0, bs <0.

The proof of Proposition 4 is given in section 6.

Theorem 5. Consider A given in (3) and N, S, R given in (5). Sys-
tems (2) have a global center at the origin and do not have infinite singular

points if and only if ag > 0, b1 < 0 and one of the following sets of conditions
hold:

(i) S<0, and

( 1) b3 < ag, bs > ay;

(i.2) b3 < a9, andb5<w+gm, A <0;
(i.3) b3 > az, a4<b5<(“2’(’j’2)—“;§:“61”,A<0;
( 4) bs > as, bs < aq, A <0;

(1.5) by < an, L2=llekash < po < gy A <0,

(ii) S >0, R£ NS <0, and

(ii.l) b3 < ag, b5 > aq4,

(ii.2) by < ag, and by < Wfai:m, A< 0,
(ii.3) bs > as, a4 < by < Wfai:m, A <0;
(ii.4) by > ao, by < a4, A <0;

(ii.5) b3 < ag, Wf“‘g:m < bs <ayq, A<O.

(iii) S >0, R+ NvVS <0, R— NS>0, b3++S5 <0, b5 <0, and
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b3 < az, bs > ay;

b3 < ao, andb5<(a2_b3)w, A < 0;
b

b

as—bs

3>a2,a4<b5<(a“2_l;32)+gm,A<0;

3> ag, bs <ag, A <O
iii.5) b3 < ag, (az=b3)astach < by < ag, A<O.

(
(
(
(
( a5—b3
(iv) S >0, R+ NvVS <0, R— NS >0,b3++S>0,b;s >0, and
(IV 1) b3 < a9, bs > ay;
(
(
(i
(i
)

1V2) bs < as, andb5<@24f2)+b:m,A<0;

iv.3) b3>a2,a4<b5<((12_b3)w,A<0;

az—bs
iv.d) bg > ag, bs < aq, A <0;
(az—b3)as+aeb:

1v. 5) by < as, a3 —b3

<bs <ayg, A<O.

(V.l) bs < as, bs > ay4.
(vi) § >0, R+NvVS >0, R—NVS>0,b3+/5<0, b5 <0, and

(vi.1) b3 < ag, b5 > ay;

(vi.2) bz < a2, and bs <(azl;32)—ai:asb1 A <0
(Vi.3) by > as, a4 < by < ngfai:m, A <0;
(Vi'4) b3 > ao, by < a4, A <0;

(vi5) by < ay, (2Bl < by < ay, A <0,

The proof of Theorem 5 is given in section 7.

Remark 2. The conditions given in Theorem 5 are not empty. For instance,
the following values of the parameters satisfy the set of conditions for each
item

CL6:1,CL4:1,a2:1,b1:—1,b3:0,b5:—
2 a4:—3,a2:—1,b1:—1,6320,b5:—

S
[=)
I

47
—1,a4:—2,a2:0,b1:—1,b3:0,b5:—
ag =%, a1 =—33, a=1,by=—1,b3=0, b5 = —

8
CLGZI,a4:0,azzo,blz—l,bgzo,b5:—

NN N N N
i e e i
U W N =
N N N e
Q
=)

(li.l) ag = 1, a4 = —%, as = —1, bl = —1, b3 = —4 b5

(i.2) ag =64, ag = —1, ag = —1, by = =%, by = — 223, b5 %;

(ii.3) ag =1, ag = —1, ap = —1, by = —7200, by = —128, b5 =

(ii.4) ag = 2048, ay = —1, ag = —1, by = 3220?,?85, b3 = —128, bs = —256;
(ii.5) ag = 4096, as = —1, ag = —1, by = —53<, by = — 3L, by = —8.
(ili1) ag =1, a4 = -4, ag = =1, by = —1, bg = —4 b5

(iii2) ag =18, ag = —1, ag = —1, by = =%, by = — 332, b5 %;

(iii.3) ag =1, as = —1, as = —1, by = —16, by = —32, by =



8 J.D. GARCIA-SALDANA, J. LLIBRE, C. VALLS

(iii.4) ag = 194561, ay = —1, az = —1, by = —%, b3 = 128 by = —256;

(iii.5) a6:1873, a4:—1, a2:—1, blz—%, b3— 32, b5

(iv.l) ag = %, as =2, a9 =—1,by=—1,b3=—-4, by =1;

(iV.2) ag — g, a4 = —1, ag = —1, b1 = —%, b3 = —%gg, b5 1024,
(iV.3) ag = 1, a4 = —1, ag = —1, bl = —64, b3 = —128, b5 =7

(iv.d) ag = jo, ag =1, ag = —1, by = —2048, by = —64, b5 = ﬁ;
(iV.5) CLGZI, a4:1, a2:—1, b1 —1 b3 35, b5:614'

(V.l) aﬁzﬁ, a4:%, CL2:1, b1 —1 b3——1 b5 %

(Vi.l) ag = 1, a4 = 0, az = —1, b1 = —1, bg = —4 b5

(V12) ae = %17 a4 = _1; az = _1y bl = _%}62337 256; b5 g%gg: ey
(V13) a6 = 515, A4 = -1, a2 = _1; bl = _@7)47[)3 = 64 ;251715 256’
(V1.4) ag — 4054, a4 = —1, as = —1, b1 1048576’ b3 1287 b5
(Vi.5) ag = 57, a4 = —1, ag = —1, b1 256’ bg 32, b5

2. PRELIMINARY RESULTS

Routh-Hurwitz criterion (see [9] pg. 167). For the algebraic equation
A3.CC3 + AQCE2 + All‘ + Ao = 0, (6)

with real coefficients and A3z > 0, the number of roots with positive real
part is equal to the number of sign alterations in the sequence As, Ao,
A9 (A1 Ay — ApAs), Ag. Moreover, all the roots of (6) have negative real part
if and Ol’lly if all the expressions Ag, AQ, A1A2 — AOA3, AO(A1A2 — A(]Ag)

are positive.

Lemma 6. Consider the polynomial

—b —b b
POY) =Y® 4 SOy 2Oy g
6 ae ae

where ag # 0, and let A be its discriminant. Then P(Y') has

i) three roots with negative real part if and only if one of the following
two sets of conditions holds

1) ag >0, by <0, bz < az, and bs < %,‘

2) ag <0, by >0, bg > ao, andb5>%

ii) two complex roots with positive real part and one negative real root
if and only if A < 0 and one of the following eight sets of conditions
holds

1) ag >0, by <0, bz < ag, by > ay;
2) ag <0, by >0, b3 > ag, by < ay;
az—bz)as—b1 .

3)a6>0,b1<0,b3>a2,a4<65<( ao—b3 )
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(a2—b3)as—b1

4) ag <0, by >0, b3<a2, a3 —bs < bs < ay;
5) ag >0, by <0, b3 > az, by < as;
6) ag <0, by >0, b3 < az, b5 > ay;
7) a6>0,b1<0,b3<a2,%<b5<a4;
8) a6<0,b1>0,b3>a2,a4<b5<%.

The proof of the previous lemma is follows by using the Routh-Hurwitz
criterion.

3. PROOF OF PROPOSITION 1

The infinite singular points of system (4) in the Poincaré disc are the real
solutions of the expression

—b125 + (az — b3)xty? + (a4 — bs)z*y? + agy® = 0.

Doing the change of variables z = v/ X, y = VY in the previous expression
we have

—01 X3+ (az — b3) X2Y + (ag — b5) XY 4 agY? = 0.

Since this expression is homogeneous, we can consider X = 1 and solve it in
the variable Y. Doing so, we obtain the equation

a6Y3 + (a4 — b5)Y2 —+ (a2 — b3)Y — b =0.

Note that ag = 0 must be different from zero, otherwise system (4) would
have singular points at infinity, so we can consider the polynomial

Y2+ y- b

ae ae ae
Note that P(Y') has degree three in the variable Y and so it always has
a real solution. In order to guarantee that system (4) does not have any
singular points at infinity and due to the change of variables, we require
that solutions Y of P(Y') are either complex or negative. Thus, Lemma 6
give us the conditions on the parameters so that the polynomial P(Y') has
either complex roots or negative roots.

as — bs az — b3

PY)=Y"+

4. PROOF OF PROPOSITION 2
o . ~1/4 ~1/4
The finite singular points of system (1) are (0,0), (0,as "), (—=b; ', 0),
and the eight solutions of the algebraic system
—1+ asx* + a4x2y2 + a6y4 =0 and 1+bzt+ b3x2y2 + bg,y4 =0,

that is, (£z4, tyy), (£z_, £y_), where

FVUwAb) o [Eaat b+ VD)

) y - )
VM + NVL . VM + NVL
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and (£Zy,+y4), (£, +y_), where

Fv2(ag +bs) _ +(as + b3 — VL)
VM — NVL

with L, M and N introduced in (5)

Note that if ag < 0 and b; > 0 then the points (0, ag 1/4) (—bl_l/4,()) do
not exist. On the other hand, if L < 0 then the other singular points do
not exist either. If L > 0 then in order that all the singular points different
from the origin do not exist, we must have (besides the conditions ag < 0
and b; > 0) the sets of conditions (1) to (7) given in the statement of the
theorem.

5. PROOF OF THEOREM 3

The proof of this theorem follows from Proposition 2 which gives us the
conditions for system (1) to have the origin as the unique finite singular
point and from Proposition 1 item (A) which gives us the conditions for the
non-existence of singular points at infinity.

6. PROOF OF PROPOSITION 4

The origin is a nilpotent singular point of system (2) so we can apply
Theorem 3.5 of [4]. Doing so, we obtain that y = f(z) = 0 and then
B(z, f(z)) = b12® + ... and G(z) = 0. Taking into account the symmetry
of system (2) we conclude that the origin of system (2) is a center if b; < 0.

Other finite singular points of system (2) are (0, —(—ag) ~/4), (0, (—ag)~*/4),
and the eight solutions of the algebraic system

1+ agz* + asx®y? +agy* =0 and bzt + byz?y® + bsy* = 0,
that is, (£z4,+y+), (£z_,+y_), where

¥\fb5 (b3—\/§) (8)
\/ R+ NVS V2V R+ NVS

and (+Z4,+y4), (£Z—,£y_), where

:F\[ bs :I:(b3 + \/g) (9)
VN VrR-NVS V2VR - NS
with R, S and N introduced in (

Note that if ag > 0 then the points (0, —(—ag)~ %), (0, (—ag)~/4), do
not exist. On the other hand, if S < 0 then the other eight singular points
do not exist either. So, the first set of conditions in order that system (2)
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has a nilpotent center and no more finite singular points is ag > 0, by < 0
and S < 0.

If ag > 0, by < 0 and S > 0 then in order that the singular points given
by (8) and (9) do not exist we must have that either R + N+v/S < 0 and
R—N+/S < 0 (this give us condition (1) of the theorem), or all other possible
combinations so that the points do not exist. The first one is R+ NS < 0
(with this condition the points (£zy,+y4), (£x—,+y_) do not exist the
points), and either R — Nv/S > 0, b3 + /S < 0, bs < 0 (this give us the
set of conditions (2) of the theorem), or R — Nv/S > 0, b3 + /S > 0 and
bs > 0 (this give us the set of conditions (3) of the theorem). Also, we have
two set of conditions corresponding to R — Nv/S < 0 (with this condition
the points (+Z 4,7, ), (£Z_,+7_) do not exist), and either R+ N+/S > 0,
by —+/S < 0, b5 < 0 (this give us the set of conditions (4) of the theorem), or
R+ NVS > 0, bg— VS > 0 and bs > 0. However, these last two inequalities
cannot hold simultaneously, and so we do not need to consider this set of
conditions. Finally, we have the cases R + NVS > 0, R — NVS > 0,
b3 + VS <0, b3 — /S <0, bs < 0 (this give us the set of conditions (5) of
the theorem), or R+NVS>0,R—NVS>0,b34++V5>0,b3—+S >0,
bs > 0. Again these last two inequalities cannot be satisfied simultaneously,
and so we do not consider this set of conditions.

7. PROOF OF THEOREM 5

The proof of this theorem follows from Proposition 4 which gives us the
conditions for system (2) to have the origin as the unique finite singular
point and from Proposition 1 item (B) which gives us the conditions for the
non-existence of singular points at infinity.
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