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Abstract

We consider the family of complex maps given by fλ,a(z) = zn + λ/(z − a)d where
n, d ≥ 1 are integers, and a and λ are complex parameters such that |a| = 1 and |λ| is
sufficiently small. We focus on the topological characteristics of the Julia and Fatou
sets of fλ,a.
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1 Introduction

This paper is dedicated to Professor Robert L. Devaney on his 60th birthday.
In the last few years a number of papers have appeared that deal with the dynamics of

functions obtained by a perturbation of the complex function z 7→ zn by adding a pole at the
origin [5, 6, 3, 7]. These rational functions are of the form fλ(z) = zn+λ/zd. When |λ| << 1
we consider this function as a singular perturbation of zn. The reason for this terminology
is that when λ = 0 the map is zn and the dynamical behavior is well understood. When
λ 6= 0, however, the degree jumps to n+d and the dynamical behavior changes significantly.
The interest in this type of perturbation arises from the application of Newton’s method
to find the roots of a family of polynomials that, at one particular parameter value, has a
multiple root. At this parameter value, the Newton iteration function undergoes a similar
type of singular perturbation.

In [8] we investigated a more general class of functions for which the pole is not located
at the origin but rather is located at some other point in the complex plane that does not
lie on the unit circle. In particular, we considered the family of functions given by

(1.1) fλ,a(z) = zn +
λ

(z − a)d

where n ≥ 2 and d ≥ 1 are integers, and a and λ are complex parameters where |a| 6= 0, 1
and |λ| is sufficiently small.

In this paper we continue the study of the family fλ,a. In the first part we study the
dynamics of Eq. (1.1) when the pole a is on the unit circle and |λ| is sufficiently small. In
the second part we focus on the dynamics of Eq. (1.1) when n = 1, d ≥ 1 and a, λ ∈ C.
Our goal is to describe the topology and dynamics of the Julia set of fλ,a, i.e., the set of
points where the family of iterates of fλ,a is not a normal family in the sense of Montel.
Equivalently, the Julia set is the closure of the set of repelling periodic points of fλ,a. We
denote the Julia set by J = J(fλ,a). The complement of the Julia set is called the Fatou set.

We first consider the case when n ≥ 2. When λ = 0, infinity and the origin are superat-
tracting fixed points and the Julia set is the unit circle. When we add the perturbation by
setting λ 6= 0 but very small, several aspects of the dynamics remain the same, but others
change dramatically. For example, when λ 6= 0, the point at ∞ is still a superattracting
fixed point and there is an immediate basin of attraction of ∞ that we call B = Bλ. On
the other hand, there is a neighborhood of the pole a that is now mapped d-to-1 onto B.
When this neighborhood is disjoint from B we call it the trap door and denote it by T = Tλ.
Every point that escapes to infinity and does not lie in B has to do so by passing through
T . Since the degree of fλ,a changes from n to n+d, 2d additional critical points are created.
The set of critical points includes ∞ and a whose orbits are completely determined, so there
are n + d additional “free” critical points. The orbits of these points are of fundamental
importance in characterizing the Julia set of fλ,a.

When λ is sufficiently small and a 6= 0 we may find δ1 > 0 such that, if |λ| < δ1, fλ,a

still has an attracting fixed point q = qλ near the origin. Throughout this paper, we asume
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(a) n = d = 3, a = 0 and λ = −0.001. (b) n = d = 2, a = 0 and λ = −0.001.

Figure 1: Dynamical plane of fλ,a for different values of n, d, a and λ. Points in the basin of
attraction of infinity are in different shades of red. Left hand side corresponds to 1/n + 1/d < 1
and right hand side corresponds to 1/n + 1/d = 1. In the first case the Julia set is a Cantor set of
circles while in the second one the Julia set is a Sierpinski Curve.

that |λ| < δ1. Let Q = Qλ denote the immediate basin of attraction of q. The set of n + d
“free” critical points may be divided into two groups: the first group consists of n−1 critical
points that are attracted to q. These are the critical points that bifurcate away from the
origin when λ becomes nonzero. The remaining d + 1 critical points surround the pole a
and, for |λ| << 1, they are mapped close to an. It follows that the dynamics of this family
of functions is determined by the behavior of this set of d+1 critical points and the position
of a when |λ| is small.

We first review the case when |a| 6= 1. When |λ| << 1 and 0 < |a| < 1 the orbits of
the d + 1 critical points that lie around a converge to the fixed point q near the origin, and
when |a| > 1 they converge to ∞. The following theorem summarizes some of the known
results studied in [5, 8, 11].

Theorem 1.1. (Structure of the Julia and Fatou sets for |a| 6= 1) Let n ≥ 2, d ≥ 1 and
|a| 6= 1. Then, for |λ| sufficiently small, we have:

(a) If a = 0 and 1/n + 1/d < 1 the Julia set of fλ,a is a Cantor set of simple closed curves
that surrounds the origin. The Fatou set consists of two disks (T and B) and infinitely
many annuli. In this case Q is empty.

(b) If |a| 6= 0 the Julia set of fλ,a consists of a countable union of disjoint simple closed
curves and an uncountable number of point components that accumulate on those curves.
Only one of these curves surrounds the origin. The Fatou set consists of countably many
disks and one infinitely connected component (namely, Q if |a| < 1 and B if |a| > 1).
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(a) n = d = 4, a = .5eiπ/4 and λ = 0.00007. (b) n = d = 4, a = 1.2eiπ/4 and λ = 0.00007.

Figure 2: Dynamical plane of fλ,a for different values of n, d, a and λ. Points attracted to q are
shown in white and points attracted to ∞ are shown in red. Left hand side corresponds to the
case where |a| < 1 and right hand side corresponds to |a| > 1. When |a| < 1 (resp. |a| > 1) then
Q (resp. B) is completely invariant and infinitely connected and B (resp. Q) has infinitely many
simply connected preimages.

Notice that in the cases described in the above theorem the Fatou set of fλ,a is the union
of the basin of attraction of ∞ and the basin of attraction of q. Also, the dynamics of fλ,a

on J are completely determined by a specific quotient of a subshift of finite type. There
is always a neighborhood of the origin in the parameter λ-plane where all these maps have
conjugate dynamics on their Julia sets (see [8, 11]).

The case a = 0 with n = d = 2 is very different. In this case there are infinitely many
open sets in any neighborhood of λ = 0 in which the Julia sets corresponding to these
parameters are all Sierpinski curves, but any two such maps whose parameters are drawn
from different open sets have non-conjugate dynamics (see [6]). Moreover, in this case when
λ → 0 the Julia sets of fλ,a converge to the unit disk (see [9]). The cases when a = 0, d = 1
and n ≥ 2 are also very different and are still under study.

Figures 1 and 2 show examples of each of the cases discussed above.

The differences between the cases |a| 6= 1 and |a| = 1 can be explained as follows. For
sufficiently small λ 6= 0 and outside a small neighborhood of the pole a the map fλ,a(z)
behaves approximately like zn, since the distance between them is small. Then, the set of
d + 1 critical points that surround a is mapped close to an. This implies that when |a| 6= 1
the orbits of these critical points behave as ‘one’ critical orbit. Instead, when |a| = 1 the
critical points that surround the pole a behave independently. Some of them can converge to
q, some of them can converge to ∞ and some of them may be related to a Fatou component
different from B and Q, or even belong to the Julia set of fλ,a. Hence a complete description
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(a) n = 2, d = 5, a = eiπ/4 and λ = 0.00007. (b) Same parameters as Figure (a). Magnification

around the pole a = eiπ/4.

Figure 3: Dynamical plane of fλ,a for different values of n, d, a and λ. Color codes as in Figure 2.
These plots represent the typical case when |a| = 1 and d ≥ 5. In this case B is completely
invariant and infinitely connected and the basin of attraction of q has infinitely many simply
connected components.

of the Julia set can be challenging. However, when these critical points belong to B and Q
we can give a detailed description of the Julia and Fatou sets of these maps. Let Sa denote
the set of d + 1 critical points that surround the pole a when |λ| is small.

In Theorem 1.2 we describe some important components of the Fatou set, namely the
basins of attraction of q and ∞. These results need no assumptions on the behavior of the
critical points in Sa since the order d of the pole a is enough to assure that some of these
critical points belong to B.

Theorem 1.2. (No trap door) Let |a| = 1 and n ≥ 2. Then for |λ| sufficiently small we
have:

(a) If d > 1 then B is completely invariant and Q is simply connected.

(b) If d > 4 (or if n > 2 and d > 3) then B is infinitely connected and the basin of attraction
of q has infinitely many simply connected components.

An important consequence of Theorem 1.2 is the following. When d > 1 the pole a lies in
B, that is, for |λ| sufficiently small these maps have no trap door as in the case when |a| > 1
(see [8]). Figure 3 displays the dynamical plane of fλ,a corresponding to Theorem 1.2.

If the critical points in Sa are distributed between B and Q and, for |λ| sufficiently small
the number of critical points in B and Q remains constant then we can understand the
structure and dynamics on the Julia set of fλ,a. Let |Sa∩B| and |Sa∩Q| denote the number
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of critical points from Sa that lie in B and Q, respectively. There are two possibilities shown
in the next theorem.

Theorem 1.3. (Structure of the Julia and Fatou sets for |a| = 1) Let n ≥ 2, d ≥ 1, |a| = 1
and suppose that for λ sufficiently small Sa ⊂ B ∪Q and that |Sa ∩B| and |Sa ∩Q| remain
constant, then either:

(a) Exactly one critical point from Sa belongs to B and the Julia set J is a quasi-circle that
surrounds the origin where fλ,a : J 7→ J is conjugate to z 7→ zn+d on the unit circle.
The Fatou set consists of two completely invariant disks, namely B and Q; or else,

(b) The Julia set J consists of countably many simple close curves and uncountably many
point components that accumulate on each one of these curves. Only one of these curves
surrounds the origin. The Fatou set consists of one infinitely connected component and
infinitely many disks.

Notice that if Sa ⊂ B (resp. Sa ⊂ Q) then we are in part (b) of the above theorem. This
is exactly what happens in the case when |a| > 1 (resp. |a| < 1) described in Theorem 1.1.
For this reason, in the case |a| 6= 1 the situation described in Theorem 1.3 part (a) is not
observed. This new possibility when |a| = 1 is allowed by the fact the critical points in Sa

behave independently and in a very specific manner. We also have:

Theorem 1.4. (Dynamics on the Julia set) Suppose fλ1,a1 and fλ2,a2 are two functions such
that they both lie in one of the cases distinguished in Theorem 1.3. In other words, for |λ|
sufficiently small, the set Sa ⊂ B∪Q and the number of critical points in B and Q coincide
for both functions but the exact position of the pole a or of these critical points is arbitrary.
Then there exists ǫ > 0 such that, for |λ1|, |λ2| < ǫ, these maps are conjugate on their Julia
sets. Moreover, the dynamics are determined by a specific quotient of a subshift of finite
type.

We can actually prove the existence of the Julia sets described in Theorem 1.3. Some of
the results in the next theorem hold only for sectors of values of λ in the parameter λ−plane.

Let Arg(z) denote the argument of the complex number z. Then given two real numbers
α and β such that 0 ≤ α < β ≤ 2π, we define a sector Sα,β of values of the parameter λ in
the usual way, that is, Sα,β = {λ ; α < Arg(λ) < β}.

Theorem 1.5. (Existence) Let n ≥ 2 and |a| = 1. For |λ| sufficiently small we have:

(a) If d = 1, 2, then there exists a sector Sαd,βd
in parameter λ−plane such that, if λ ∈ Sαd,βd

then the Julia and Fatou sets of fλ,a are as in Theorem 1.3 part (a).

(b) If d = 2, 3, 4, then there exists a sector Sγd,δd
in parameter λ−plane such that, if λ ∈

Sγd,δd
then the Julia and Fatou sets of fλ,a are as in Theorem 1.3 part (b).

Moreover, inside each one of these sectors Theorem 1.4 holds.
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(a) n = 4, d = 2, a = 1 and λ = 0.007. (b) Same parameters as Figure 4(a). Magnification

around the pole a = 1.

Figure 4: Dynamical plane of fλ,a for different values of n, d, a and λ. Color codes as in Figure 2.
These plots represent the case d = 2 for some values of λ in Sα2,β2. In this case Q and B are
both completely invariant sets that are therefore, simply connected. Moreover, the Julia set is a
quasi-circle which is equal to the common boundary of Q and B.

The case when d = 2 is very interesting since for some values of λ sufficiently small we
can obtain very different topological and dynamical behavior.

The fact that for |λ| sufficiently small we have that q and ∞ are attracting fixed points
implies that the Julia set cannot be totally disconnected. In other words, the Fatou set
consists of at least two disjoint open sets. The minimum of two is attained by part (a) of
Theorem 1.5 and, in this case, the Julia set is the common boundary of Q and B.

Remark 1.6. As we mentioned, when d > 1 the basin of attraction of infinity is completely
invariant (that is, there is no trap door). By the above theorem we also know that when d = 1
there is a sector of parameters in the λ−plane for which this is also the case. Numerical
experiments suggest that when |a| = 1 and |λ| << 1 the basin of attraction of ∞ is always
completely invariant.

Figures 4 and 5 display the dynamical plane of fλ,a corresponding to the different cases
that appear in Theorem 1.5.

Notice that very interesting bifurcations happen when we fix n and d so that 1/n+1/d <
1 and we also fix λ sufficiently small and let the parameter a vary. The structure of the
Julia set changes dramatically when the pole a moves away from the origin. When a = 0
we have that the Julia set of fλ,a is a Cantor set of simple closed curves that surrounds the
origin (see Figure 1(a)). When 0 < |a| < 1 there is a neighborhood of the origin in the
λ-plane where the Julia set of fλ,a consists of countably many simple closed curves only one
of which surrounds the origin (namely, ∂B) and uncountably many point components that
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(a) n = 4, d = 2, a = 1 and λ = −0.007. (b) Same parameters as Figure (a). Magnification

around the pole a = 1.

Figure 5: Dynamical plane of fλ,a for different values of n, d, a and λ. Color codes as in Figure 2.
These plot represent the case d = 2 for some values of λ in Sγ2,δ2. In this case B is completely
invariant and the basin of attraction of q has infinitely many simply connected components.

accumulate on these curves. The preimages of ∂B lie inside ∂B (see Figure 2(a)). When
|a| = 1 we see that there is a sector of parameters in the λ-plane for which the Julia set of
fλ,a has the same topology as in the previous case but the only curve that surrounds the
origin is now ∂Q and the rest of the curves lie outside ∂Q (see Figure 3). When |a| = 1
and for some values of n and d (see Theorem 1.5) there is also a sector of parameters in
the λ-plane for which the Julia set becomes a simple closed curve that surrounds de origin
(see Figure 4). Finally, when |a| > 1 there is a neighborhood of the origin in the λ-plane
for which the structure of the Julia set again consists of countably many simple closed
curves only one of which surrounds the origin (namely, ∂Q) and uncountably many point
components that accumulate on these curves (see Figure 2(b)). In between each one of these
states the Julia set suffers great transformations due to the fact that the critical points in
Sa are now acting independently. A complete description of these transitions between states
goes beyond the scope of this paper.

In the second part of the paper we focus on the family given by Eq. (1.1) when n = 1.
In this case, the point at infinity is always in the Julia set and this causes major changes
in the dynamical behavior of fλ,a. Also, when n = 1 we can conjugate fλ,a via a Möbius
map to make it completely independent of the parameters a and λ. For these reasons the
behavior of the map fλ,a with n = 1 is completely different from the previous cases and the
characteristics of the Julia and Fatou sets of fλ,a reflect these changes. We have:

Theorem 1.7. Let n = 1 and d ≥ 1 then, for all parameters a, λ ∈ C the map fλ,a is
conformally conjugate to z + 1/zd. In particular, the Julia set of fλ,a is connected and the
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(a) n = 1 and d = 2. (b) n = 1 and d = 3.

Figure 6: Dynamical plane of z 7→ z + 1/zd for d = 2, 3 and n = 1. Points in the parabolic basins
of infinity are in different shades of blue or green. In each case we can observe d + 1 unbounded
petals. The complement is the Julia set.

Fatou set contains all the points attracted to the unique parabolic fixed point at infinity.
When d = 1 the Fatou set consists of two simply connected regions; otherwise, it consists of
infinitely many simply connected components.

Figure 6 shows examples of the Julia sets of fλ,a when n = 1 for d = 2 and d = 3.
The rest of the paper is organized as follows. In Section 2 we obtain some basic results

about the function fλ,a when n ≥ 2. In Section 3 we prove Theorems 1.2, 1.3, 1.4, and 1.5.
Finally, in Section 4 we study the dynamics of fλ,a when n = 1 and prove Theorem 1.7.

2 Preliminaries

Let n ≥ 2, d ≥ 1 and |a| = 1. A straightforward computation shows that, when λ 6= 0, fλ,a

has n + d critical points that satisfy the equation

(2.1) zn−1(z − a)d+1 = λ d/n.

When λ = 0 this equation has n + d roots, the origin with multiplicity n − 1 and a with
multiplicity d + 1. By continuity, for small enough |λ|, these roots become simple zeros of
f ′

λ,a that are approximately symmetrically distributed around the origin and the pole a. As
a consequence, when |λ| is small, n − 1 of the critical points of fλ,a are grouped around 0,
near the fixed point q, while d + 1 of the critical points are grouped around the pole a.

Let c = cλ be one of the n + d critical points of fλ,a given by Eq. (2.1). Replacing z by c
in Eq. (2.1) we find λ(c− a)−d = (n/d)cn−1(c− a) and so the critical value v corresponding
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to c is given by
v = fλ,a(c) = cn + (n/d) cn−1(c − a)

or, equivalently,

(2.2) v = cn−1(c (1 + n/d) − a n/d).

Note that as λ → 0, the fixed point qλ → 0 as well. From Eq. (2.2) it follows that, if c → 0,
then v → 0. Similarly, if c → a, then v → an. We use Sa to denote the set of d + 1 critical
points around a and we use Sq to denote the set of n− 1 critical points around q. We have:

Lemma 2.1. When |λ| tends to zero the critical values corresponding to the critical points
in Sq tend to q and the critical values corresponding to the critical points in Sa tend to an.

To describe the structure of the Julia set, we first need to give an approximate location
for this set. Roughly speaking, when |λ| is small, the Julia set of fλ,a lies in a small annulus
around the unit circle.

Proposition 2.2. Suppose n ≥ 2, d ≥ 1 and |a| = 1.

(a) Let 0 < s ≤ 1 and suppose that |z| = 1 − s then, for sufficiently small λ, z ∈ Q.

(b) Let s > 0 and suppose that |z| = 1 + s then, for sufficiently small λ, z ∈ B.

Proof. Fix n, d and a. For the first part, we have |z − a| ≥ |a| − |z| = s > 0 so that

|fλ,a(z)| ≤ |z|n +
|λ|

|z − a|d ≤ (1 − s)n +
|λ|
sd

.

Let |λ| < sd[(1 − s) − (1 − s)n]. Then

|fλ,a(z)| < (1 − s)n +
sd[(1 − s) − (1 − s)n]

sd
= 1 − s.

As a consequence, |fλ,a(z)| < |z| and so the orbit of z converges to the fixed point q near
the origin. Therefore z lies in Q.

For the second part, we have |z − a| ≥ |z| − |a| = s > 0 so that

|fλ,a(z)| ≥ |z|n − |λ|
|z − a|d ≥ (1 + s)n − |λ|

sd
.

Let |λ| < sd[(1 + s)n − (1 + s)]. Then

|fλ,a(z)| > (1 + s)n − sd[(1 + s)n − (1 + s)]

sd
= 1 + s.

Hence |fλ,a(z)| > |z| and the orbit of z converges to ∞ so that z ∈ B.
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The following result gives us a simple procedure to verify when a point belongs to Q or
B.

Corollary 2.3. Suppose n ≥ 2, d ≥ 1, |a| = 1 and let s∗ =
(

|λ|
n−1

)1/(d+1)

> 0. Then for all

s∗ < s < 1 we have that:

(a) If |z| ≤ 1 − s then, for λ sufficiently small, z ∈ Q; and,

(b) If |z| ≥ 1 + s then, for λ sufficiently small, z ∈ B.

Proof. For the first part, notice that for s > 0, (1−s)n < 1−ns. Then, simple computations
show that

(n − 1)sd+1 < sd[(1 − s) − (1 − s)n].

The condition s > s∗ is equivalent to |λ| < (n − 1)sd+1 and the result follows from Propo-
sition 2.2. The second part follows in a similar way by noticing that for s > 0 we have
1 + ns < (1 + s)n.

In order to prove our main theorems we need to obtain more precise results regarding
the location of the critical points in Sa and their corresponding critical values. To simplify

the notation we introduce two new variables δ =
(

λd
n an−1

)
1

d+1 and ǫ =
(

|λ|d
n

)
1

d+n
, the first one

is a multivalued complex function of λ and a and the second one is a real function of |λ|.
Both parameters play a major role in the rest of this paper.

Let c be a critical point of fλ,a in Sa and let v = fλ,a(c) be its corresponding critical
value. We need four lemmas all of which hold for |λ| sufficiently small. In Lemma 2.4 we
prove that the distance between the critical point c and the pole a is bounded by ǫ. In
Lemma 2.5 we find and approximation for c that we denote by c̃. In Lemma 2.6 we obtain
an approximation for v that we denote by ṽ; the distance between v and ṽ will be proved
to be smaller or equal to ǫ|δ|. Finally, in Lemma 2.7 we find a criterion to prove when the
critical value v belongs to B or Q.

Lemma 2.4. Let n ≥ 2, d ≥ 1, |a| = 1 and ǫ =
(

|λ|d
n

)
1

d+n
. For |λ| sufficiently small we

have that, if c is a critical point in Sa then |c − a| ≤ ǫ.

Proof. Fix n, d and a. Let R0 > 0 and Ra > 0 be two real numbers such that Rn−1
0 Rd+1

a =
|λ|d/n. Consider the closed disk of radius R0 centered at the origin, that is, D0 = {z :
|z| ≤ R0}, and the closed disk of radius Ra centered at a, that is, Da = {z : |z − a| ≤ Ra}.
The critical points of fλ,a belong to D0 ∪ Da since all points outside this union verify
|z|n−1|z − a|d+1 > |λ| d/n (see Eq. (2.1)). By hypothesis c ∈ Sa and since |a| = 1, for
|λ| sufficiently small, we have that |c| > R0, obtaining thus that |c − a| ≤ Ra. Now let
R0 = (|λ| d/n)1/(d+n) and Ra = (|λ| d/n)1/(d+n) and the lemma follows.
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Lemma 2.5. Let n ≥ 2, d ≥ 1, |a| = 1, δ =
(

λd
n an−1

)
1

d+1 and ǫ =
(

|λ|d
n

)
1

d+n

. For

|λ| sufficiently small we have that the d + 1 critical points in Sa can be approximated by
c̃ = a + δ. These points are the vertices of a regular polygon of d + 1 sides centered at a.
Moreover, if c and c̃ are a critical point and its approximation we have

|c − c̃| ≤ n − 1

d + 1
2

n+d
d+1 ǫ |δ|.

Proof. Fix n, d and a. To find approximations of the critical points in Sa we use the fact
that solving Eq. (2.1) is equivalent to computing fixed points of the multivalued function
T (z) defined by

(2.3) T (z) = a +

(

λd

n zn−1

)
1

d+1

.

We remark that there are d + 1 possible different choices for the function T that are the
(d + 1) branches of the map given by Eq. (2.3). Starting with the initial point a we find an
approximate value of c̃ given by

c̃ = T (a) = a + δ = a +

(

λd

n an−1

)
1

d+1

.

It is clear that the values of c̃ form the vertices of a regular polygon with d+1 sides centered
at a (see Figure 7). Since c is the fixed point of T we can obtain an upper bound for the
distance between the critical point c and the approximate value c̃. We have

|c − c̃| = |T (c) − T (a)| ≤ |T ′(ξ)||c− a|,

where ξ is a point in the segment joining c and a. From Lemma 2.4 we know that the critical
points in Sa tend to a when |λ| tends to 0. Then, let |λ| be small enough so that |ξ| ≥ 1/2.
We get

|T ′(ξ)| =
n − 1

d + 1

( |λ|d
n

)
1

d+1

|ξ|−n+d
d+1 ≤ n − 1

d + 1
2

n+d
d+1 |δ|.

Then, using Lemma 2.4 and the above inequality we obtain

|c − c̃| ≤ n − 1

d + 1
2

n+d
d+1 ǫ |δ|

as we wanted to show.

Lemma 2.6. Let n ≥ 2, d ≥ 1, |a| = 1, δ =
(

λd
n an−1

)
1

d+1 and ǫ =
(

|λ|d
n

)
1

d+n

. Assume that

v = fλ,a(c) is a critical value of fλ,a corresponding to a critical point c in Sa. Let ṽ = fλ,a(c̃)
where c̃ is as given in Lemma 2.5. Then, for |λ| sufficiently small, ṽ is an approximation
of v such that |v − ṽ| ≤ ǫ |δ|.
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a
1

c̃

ǫ ǫ2

(a) d = 1

a

1

c̃

ǫ ǫ2

(b) d = 2

a
c̃

ǫ ǫ2

1

(c) d = 3

Figure 7: Sketch of the position of c̃.

Proof. Fix n, d and a. In order to control the distance between v = fλ,a(c) and ṽ = fλ,a(c̃)
we use the Taylor expansion for f(c) in terms of c̃. We have

fλ,a(c) = fλ,a(c̃) + f ′
λ,a(c̃)(c − c̃) + O((c − c̃)2),

obtaining thus that
|v − ṽ| ≤ |f ′

λ,a(c̃)| |c − c̃| + O(|c − c̃|2).

Using the expression of c̃ = a+δ = a+( λd
nan−1 )

1
d+1 and the fact that fλ,a(z) = zn +λ/(z−a)d

we have

|f ′
λ,a(c̃)| =

∣

∣

∣
nc̃n−1 − λd

(c̃−a)d+1

∣

∣

∣
= |n(a + δ)n−1 − nan−1|

≤ n
∑n−1

k=1

(

n − 1
k

)

|δ|k = n(n − 1)|δ| + O(|δ|2).

Using Lemma 2.5 and the above inequality we obtain

|v − ṽ| ≤ n(n − 1)2

d + 1
2

n+d
d+1 ǫ |δ|2 + O(ǫ |δ|3).

Then, by taking λ sufficiently small we have

|v − ṽ| ≤ ǫ |δ|,

and the lemma follows.

Lemma 2.7. Let n, d ≥ 2, |a| = 1 and δ =
(

λd
n an−1

)
1

d+1 . Assume that v = fλ,a(c) is a critical
value of fλ,a corresponding to a critical point c in Sa, and let ṽ = fλ,a(c̃) be an approximation
of v as in Lemma 2.6. Let k > 1 be a constant. We have:

(a) If |ṽ| ≥ 1 + k|δ| ± O(|δ|2) then, for |λ| sufficiently small, the critical value v belongs to
B; and,

(b) If |ṽ| ≤ 1 − k|δ| ± O(|δ|2) then, for |λ| sufficiently small, the critical value v belongs to
Q.
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Proof. Fix n, d and a. For part (a) we first we prove that ṽ belongs to B and then we verify
that this implies that v also belongs to B. To prove that ṽ belongs to B we show that

for |λ| sufficiently small the condition |ṽ| > 1 + s∗ with s∗ =
(

|λ|
n−1

)
1

d+1
, is satisfied. Then

Corollary 2.3 implies the result.
From the definitions of |δ| and s∗ it follows that when n, d ≥ 2 we have |δ| ≥ s∗. Then

it is enough to show that |ṽ| > 1 + |δ|; from hypothesis, this reduces to show

|ṽ| ≥ 1 + k|δ| ± O(|δ|2) > 1 + |δ|.

For |λ| sufficiently small and k > 1 we have that (k− 1)|δ| ±O(|δ|2) > 0. Thus we conclude
that ṽ belongs to B.

Finally, we need to show that v = fλ,a(c) and ṽ = fλ,a(c̃) are close enough to assure
that v also belongs to B. It follows from Lemma 2.6 that the distance between v and ṽ is
bounded by ǫ |δ|. Hence we have that

|v| ≥ |ṽ| − |v − ṽ| ≥ 1 + k|δ| ± O(|δ|2) − ǫ |δ|.

Using the fact that k > 1 we conclude that, for |λ| sufficiently small, v also belongs to B
and the first part follows.

The second part follows in a similar way. The details are left to the reader.

In the next proposition we prove that controlling the behavior of some critical points we
can obtain information about the topology of the basin of attraction of ∞ and q. We have:

Proposition 2.8. Let n ≥ 2, d ≥ 1 and |a| = 1. Then, for |λ| sufficiently small:

(a) If one or more critical values corresponding to the critical points in Sa belong to B then
B is completely invariant.

(b) Q and B are completely invariant and simply connected if and only if one critical point
in Sa belongs to B and the remaining d critical points in Sa belong to Q.

(c) If two or more critical values corresponding to critical points in Sa belong to B then B is
infinitely connected and the basin of attraction of q has infinitely many simply connected
components.

Proof. (a) We prove the result by contradiction. Let c be a critical point in Sa such that
its corresponding critical value v = fλ,a(c) belongs to B. Assume that B is not completely
invariant. Then there exists a preimage of B disjoint from B; we call this preimage T . Since
the only preimage of ∞ different from itself is a we conclude that a ∈ T . Now B is mapped
to itself at least n-to-1 because ∞ ∈ B, and T is mapped to B at least d-to-1 because a ∈ T .
Since the map is of degree n + d we conclude that c /∈ T, B. This is a contradiction to the
fact that v ∈ B. Then B is completely invariant as we wanted to show.
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(b) First assume that B and Q are completely invariant and simply connected sets. This
implies that the pole a belongs to B. We have that fλ,a maps Q to itself, and B to itself
both in an (n+d)-to-1 fashion. On the one hand, the connectivity of Q is m = 1, the degree
of the map is σ = n + d and the number of critical points in Q is N = n − 1 + x; that is,
n − 1 close to 0 and x close to a. By the Riemann-Hurwitz formula, we get

m − 2 = σ(m − 2) + N, so that x = d.

On the other hand, the connectivity of B is m = 1, the degree of the map is σ = n + d
and the number of critical points in B is N = n− 1 + d− 1 + y; that is, n− 1 at ∞, d− 1
at the pole a and y close to a. By the Riemann-Hurwitz formula, we get

m − 2 = σ(m − 2) + N, so that y = 1,

and one direction of the implication follows.
For the other direction of the implication assume that one critical point in Sa belongs

to B and the other d critical points in Sa belong to Q. It follows from part (a) that B
is completely invariant. The fact that B is completely invariant implies that Q is simply
connected. To see this notice that when B is completely invariant then the Julia set is equal
to the boundary of B. Now consider any Jordan curve γ completely contained in Q. Let
U0 and U1 be the two components of C \ γ. Without loss of generality we can assume that
B is contained in U0. By construction, U1 cannot contain points in the Julia set, hence U1

is contained in Q proving thus that Q is simply connected.
Now consider fλ,a : Q → Q. The connectivity of Q is m = 1, the number of critical

points in the domain is N = n − 1 + d; that is, n − 1 close by 0 and d close to a, and the
degree of the map is σ. By the Riemann-Hurwitz formula, we get

m − 2 = σ(m − 2) + N, so that σ = n + d,

and then Q is completely invariant. Finally, since Q is completely invariant we have that B
is simply connected and the result follows.

(c) Since B contains at least two critical points from Sa, it follows from part (a) that B
is completely invariant. Then Q is simply connected. Since B is the immediate basin of
attraction of a superattracting fixed point then B is either simply connected or infinitely
connected. This follows from a well known result in complex dynamics (see Theorem 5.2.1 in
[1]). It follows from part (b) that B is infinitely connected and Q is not completely invariant.
Therefore, the basin of attraction of q has infinitely many simply connected components.

3 The case n ≥ 2.

In this section we prove the results concerning the topological characteristics of the Julia
and the Fatou sets as well as the dynamics of fλ,a on its Julia set when n ≥ 2. These results
are Theorems 1.2, 1.3, 1.4 and 1.5 stated in Section 1.
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3.1 Proof of Theorem 1.2

Theorem 1.2 shows that in most cases the basin of attraction of infinity is completely
invariant, that is, there is no trap door.

Proof. (a) The idea of the proof is to find a critical point c in Sa such that its corresponding
critical value v = fλ,a(c) belongs B. To do this, we prove that for |λ| sufficiently small,

|v| > 1 + s∗ with s∗ =
(

|λ|
n−1

)
1

d+1
, and then the result follows from Corollary 2.3. Finally, by

Proposition 2.8 part (a) we conclude that B is completely invariant. Since we do not know
the values of c and v, we use the approximations c̃ and ṽ = fλ,a(c̃) defined in Lemmas 2.5
and 2.6.

Fix n, d ≥ 2 and a. We denote by cm the critical point in Sa with the largest magnitude;
that is, |cm| ≥ |c| for all c ∈ Sa. Let vm = fλ,a(cm) be the critical value corresponding to
cm. Also, let c̃m and ṽm = fλ,a(c̃m) be approximations of cm and vm, respectively. As we
have shown in the proof of Lemma 2.5, the d + 1 values of c̃ are given by

c̃ = a + δ = a +

(

λd

n an−1

)
1

d+1

.

a
1 s∗

B ṽ
fλ,a

c̃

(a) d = 3

a
1 s∗

B ṽ
fλ,a

c̃

(b) d = 4

Figure 8: Sketch of the relevant objects in the proof of Theorem 1.2 part (a). In this case it is
enough to prove that one critical point belongs to B.

The fact that the values of c̃ are located at the vertices of a regular polygon centered at a
and the condition that cm is the value of c with the largest modulus imply that (see Figure 8)

(3.1) |c̃m| ≥ 1 + |δ| cos

(

π

d + 1

)

.

To compute ṽm = fλ,a(c̃m) = c̃n
m + λ/(c̃m − a)d we note that

c̃n
m = (a + δ)n = an + nan−1δ + O(|δ|2)

and
λ

(c̃m − a)d
=

λ

δd
=

n

d
an−1δ.
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Then ṽm can be written as

ṽm = fλ,a(c̃m) = an−1(a + n(1 +
1

d
)δ) + O(δ2).

By definition, c̃m is taken so that it has the largest modulus and from the above expression
the same happens with the corresponding value of ṽm. Then we have

|ṽm| ≥ 1 + n (1 +
1

d
) cos

(

π

d + 1

)

|δ| ± O(|δ|2).

When n, d ≥ 2 we have that n (1 + 1
d
) cos

(

π
d+1

)

> 1. Then, using Lemma 2.7 we conclude
that vm belongs to B as we wanted to show.

(b) Fix n ≥ 2, d ≥ 5 and a with |a| = 1. By Proposition 2.8 part (c) we only need to prove
that two critical values corresponding to critical points in Sa belong to B. We denote by cm

and cl the two critical points in Sa with the largest magnitudes; that is, |cm| ≥ |cl| ≥ |c| for
all c ∈ Sa. We also denote by vm = fλ,a(cm) and vl = fλ,a(cl) their corresponding critical
values. From Theorem 1.2 part (a) we conclude that, for |λ| sufficiently small, vm belongs
to B. Then, we only have to prove that vl also belongs to B. Let c̃l and ṽl = fλ,a(c̃l) denote
approximations of cl and vl, respectively. From Lemma 2.5 we know that c̃ = a + δ are the
vertices of a regular polygon of d+1 sides centered at a. The definition of cm and cl implies
that c̃l is adjacent to c̃m and then, they are separated by an angle of 2π/(d + 1) measured
from a. So, if c̃m and a have the same argument, then the modulus of c̃m is equal to 1 + |δ|
and

|c̃l| = 1 + |δ| cos

(

2π

d + 1

)

.

Instead, if c̃m and a have different arguments, then one of the vertices adjacent to c̃m has
modulus larger than the above value. Then, in general, the modulus of c̃l satisfies

(3.2) |c̃l| ≥ 1 + |δ| cos

(

2π

d + 1

)

.

Same computations as in the proof of part (a) show that

|ṽl| ≥ 1 + n (1 +
1

d
) cos

(

2π

d + 1

)

|δ| ± O(|δ|2).

It is easy to check that when n > 1 and d > 4 (or if n > 2 and d > 3) we have that
n (1 + 1

d
) cos

(

2π
d+1

)

> 1. Then, using Lemma 2.7 we conclude that vl also belongs to B as
we wanted to show.
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3.2 Proofs of Theorems 1.3 and 1.4

Theorems 1.3 and 1.4 deal with the topology of the Julia and Fatou sets when the critical
points in Sa are distributed between B and Q. They also describe the dynamics of fλ,a on
its Julia set.

First notice that part (a) of Theorem 1.3 follows easily from part (b) of Proposition 2.8
then we focus on part (b) of Theorem 1.3. The proof of Theorem 1.4 will become clear from
the proof of Theorem 1.3.

The hypothesis of Theorem 1.3 state that n ≥ 2, d ≥ 1, |a| = 1 and for λ sufficiently
small Sa ⊂ B ∪Q. Also, the number of critical points in Q and B is fixed for |λ| sufficiently
small. Moreover, we know that either Sa ∩ B = ∅ or there are at least two critical points
from Sa in B and the rest lie in Q. From Theorem 1.2 we conclude that the first situation
can only happen in the very special case when d = 1. Numerical experiments suggest that
this rarely happens (if it happens at all). See Remark 1.6. In this particular case we would
have the existence of a disjoint preimage of B, that is, a trap door T , and all the critical
points in Sa would lie in Q. The proof that the structure of the Julia set is as stated in
Theorem 1.3 follows the same lines as in [8] in the case when |a| < 1. In this section we
focus on the second case, that is, when more than one critical point from Sa belongs to B
and the rest belong to Q.

We shall prove that for any a with |a| = 1, there exists ǫa > 0 such that if |λ| < ǫa, then
the Julia set of fλ,a consists of a countable collection of simple closed curves together with
an uncountable collection of point components that accumulate on these curves. Only one
of these curves surrounds the origin while all others bound disjoint disks that are eventually
mapped onto Q. Moreover, any two such maps are topologically conjugate on their Julia
sets.

By Proposition 2.8 part (c) we know that for sufficiently small λ, a lies in B, B is
infinitely connected and Q is simply connected. Let ∂Q denote the boundary of Q. The
holes in B are due to the preimages of Q and uncountably many point components that
accumulate on the boundaries of these disks.

Let d∗ = |Sa ∩B| ≤ d and assume that d∗ ≥ 2. Since there are d + 1− d∗ critical points
from Sa in Q and fλ,a is of degree n + d, it follows by the Riemann-Hurwitz formula that
there are d∗ − 1 disjoint disks that are preimages of Q in the complement of Q.

Let ρ be a simple closed curve that lies in B and such that the Julia set of fλ,a lies in
the bounded component surrounded by ρ. This component is an open neighborhood of Q.
Consider the d∗ − 1 preimages of this neighborhood that contain the preimages of Q. We
denote these sets by I1, I2, ..., Id∗−1 and notice that their boundaries are preimages of the
curve ρ. For |λ| small enough we can choose ρ so that the Ij ’s are pairwise disjoint. The
set of points whose orbits remain for all iterations in the union of the Ij forms a Cantor set
on which fλ,a is conjugate to the one-sided shift map on d∗ − 1 symbols. This follows from
standard arguments in complex dynamics [12]. This produces an uncountable number of
point components in the Julia set. However, there are many other point components in J
as we show below.
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Figure 9: Sketch for the proof of Theorem 1.3. Region A and the Ij’s for j = 1, ..., d∗ − 1 are
depicted. The annulus A is bounded by the curve τ and the curve γ and contains the boundary
of Q.

Let γ be a simple closed curve that lies in B and surrounds Q so that the pole a and the
critical points in Sa ∩B lie outside γ. Consider also a simple closed curve τ that lies inside
Q and surrounds the origin and such that all the critical points in Sq and the critical points
in Sa∩Q lie in the bounded component surrounded by τ . Notice that |Sa∩Q| = d−d∗ ≥ 0.
Let A be the annulus bounded by τ and γ. Then, ∂Q ⊂ A and notice that each Ij contains
a copy of Q and a copy of each one of the Ij ’s. See Figure 9.

To understand the complete structure of the Julia set, we show that J is homeomorphic to
a quotient of a subset of a space of one sided sequences of finitely many symbols. Moreover,
we show that fλ,a on J is conjugate to a certain quotient of a subshift of finite type on this
space. Since this is true for λ sufficiently small, this will prove our main results.

To begin the construction of the sequence space, we first partition the annulus A into n
“rectangles” that are mapped over A by fλ,a.

Proposition 3.1. There is an arc ξ lying in A and having the property that fλ,a maps ξ
1-to-1 onto a larger arc that properly contains ξ and such that one of its endpoints lies in τ
and the other one in γ. Moreover, ξ meets ∂Q at exactly one point, namely one of the fixed
points in ∂Q. With the exception of this point, all other points on ξ lie in the Fatou set.

Proof. Let p = pλ,a be one of the repelling fixed points in ∂Q. Note that p varies analytically
with both λ and a. As it is well known, there is an invariant ray in Q extending from p to
q (see [12]). Define the portion of ξ in Q ∩ A to be the piece of this ray that lies in A.

To define the piece of ξ lying outside ∂Q, let U be an open set that contains p and meets
some portion of γ and also has the property that the branch of the inverse of fλ,a that fixes
p is well-defined on U . Let f−1

λ,a denote this branch of the inverse of fλ,a. Let w ∈ γ ∩U and
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choose any arc in U that connects w to f−1
λ,a(w). Then we let the remaining of the curve ξ

be the union of the pullbacks of this arc by f−k
λ,a for all k ≥ 0. Note that this curve limits

on p as k → ∞.

We now partition A into n rectangles using the n preimages of fλ,a(ξ) that lie in A.
Denote these preimages by ξ1, ..., ξn where ξ1 = ξ and the remaining ξj’s are arranged
counterclockwise around A. Let Aj denote the closed region in A that is bounded by ξj and
ξj+1, so that An is bounded by ξn and ξ1. By construction, each Aj is mapped 1-to-1 over A
except on the boundary arcs ξj and ξj+1, which are each mapped 1-to-1 onto fλ,a(ξ1) ⊃ ξ1.

The only points whose orbits remain for all iterations in A are those points on the
simple closed curve ∂Q. Let z ∈ ∂Q. We may attach a symbol sequence S(z) to z as
follows. Consider the n distinct symbols α1, . . . , αn taken from Z \ {1, 2, . . . , d∗− 1}. Define
S(z) = (s0s1s2 . . .) where each sj is one of the symbols α1, . . . , αn and sj = αk if and only
if f j

λ,a(z) ∈ Ak. Note that there are two sequences attached to p, the sequences (α1) and
(αn). Similarly, if z ∈ ξk ∩ ∂Q, then there are also two sequences attached to z, namely
(s0s1...sj−1αk−1αn) and (s0s1...sj−1αkα1).

Note that if we make the above identifications in the space of all one-sided sequences of
the αj’s then this is precisely the same identifications that are made in coding the itineraries
of the map z 7→ zn on the unit circle. So this sequence space with these identifications and
the usual quotient topology is homeomorphic to the unit circle and the shift map on this
space is conjugate to z 7→ zn.

Finally, we extend the definition of S(z) to any point in J that remains in the union of
the Ij ’s by introducing the symbols 1, . . . , d∗−1 and defining S(z) in the usual manner. We
identify the sequences of the form (jα1) and (jαn) as well as (jαkαn) and (jαkα1).

Let Σ′ denote the space of one-sided infinite sequences of symbols α1, . . . , αn, 1, . . . , d∗−1.
Let Σ denote the space Σ′ with all of the identifications described above and endow Σ with
the quotient topology. Then, by construction, the Julia set of fλ,a is homeomorphic to Σ
and fλ,a | J is conjugate to the full shift map on Σ.

This finishes the proof of Theorems 1.3 and 1.4.

3.3 Proof of Theorem 1.5

Theorem 1.5 shows the existence of the Julia sets described in Theorem 1.3.

Proof. (a) The idea of the proof is the following. For d = 1, 2 and |λ| sufficiently small we
can always choose the argument of λ such that one critical point in Sa belongs to B and the
other d belong to Q. Then from Proposition 2.8 part (b) it follows that B and Q are both
completely invariant and simply connected and the Julia sets are as stated in Theorem 1.3
part (a).

Fix n and a. First assume that d = 1. In this case there are two values of c̃ (see
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Lemma 2.5) which are given by

c̃± = a ± δ = a ±
(

λ

n an−1

)1/2

.

We can choose the parameter λ so that a and δ are parallel vectors in the plane (see
Figure 10(a)). For this, let λ = λ0 then, Arg(λ0) has to verify

Arg(a) =
Arg(λ0) − (n − 1)Arg(a)

2
(mod 2π)

or equivalently,
Arg(λ0) = (n + 1)Arg(a) (mod 2π).

a

B

Q
1 + s∗

ṽ

c̃

(a) d = 1 and λ ∈ Sα1,β1

a

B

Q
1 + s∗

ṽ

c̃

(b) d = 2 and λ ∈ Sα2,β2

Figure 10: Sketch of the relevant objects in the proof of Theorem 1.5 part (a). In this case we
must prove that one critical point in Sa belongs to B and the rest d critical points belong to Q.

For λ = λ0 we have that |c̃±| = 1± (|λ0|/n)1/2. Let Sα1,β1 be the sector of parameters λ
with α1 = Arg(λ0) − π/10 and β1 = Arg(λ0) + π/10. Then for λ ∈ Sα1,β1 we have

|c̃+| > 1 + cos(π/20) |δ|
|c̃−| < 1 − cos(π/20) |δ|.

Simple computations show that ṽ± = fλ,a(c̃±) = c̃n
± + λ/(c̃± − a) can be written as

ṽ± = an−1(a + 2nδ) + O(δ2).

For λ in the sector Sα1,β1, we have that

|ṽ+| > 1 + cos(π/20) 2n|δ| ± O(|δ|2)
|ṽ−| < 1 − cos(π/20) 2n|δ| ± O(|δ|2).

To show that ṽ+ belongs to B and ṽ− belongs to Q it is enough to prove that |ṽ+| > 1 + s∗

and |ṽ−| < 1 − s∗, where s∗ =
(

|λ|
n−1

)1/2

(see Corollary 2.3). Then we require

cos(π/20) 2n

( |λ|
n

)1/2

>

( |λ|
n − 1

)1/2

.
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For n ≥ 2, we have cos2(π/20) 4n(n − 1) > 1, and then the above inequality is satisfied.
Then by Lemma 2.7 it follows that v+ also belongs to B and v− belongs to Q.

The case when d = 2 is very similar and then we briefly explain the main changes in the
above argument. In this case we have to show that one critical point in Sa belongs to B
and the other two critical points belong to Q. For this, we pick a value of the parameter λ,
that we call λ0, such that there is only one c̃ with modulus larger than 1 and such that a
and δ are parallel vectors in the plane (see Figure 10(b)). The three values of c̃ are given by

c̃i = a + δ = a +

(

2λ

n an−1

)1/3

, for i = 1, 2, 3.

The value of Arg(λ0) is the solution of Arg(a) = Arg(δ), so it has to satisfy

Arg(a) =
Arg(λ0) − (n − 1)Arg(a)

3
(mod 2π).

Thus, we have that Arg(λ0) = (n + 2)Arg(a) (mod 2π). Now, we define the sector of
parameters Sα2,β2 given by α2 = Arg(λ0) − π/10 and β2 = Arg(λ0) + π/10. Then when
λ ∈ Sα2,β2 we have

|c̃1| > 1 + cos(π/30) |δ|
|c̃i| < 1 − cos(11π/30) |δ| for i = 2, 3.

We can rewrite ṽi = fλ,a(c̃i) = c̃n
i + λ/(c̃i − a)2 as

ṽi = an−1(a +
3

2
nδ) + O(δ2) for i = 1, 2, 3.

Hence for λ ∈ Sα2,β2 we obtain

|ṽ1| > 1 +
3

2
n cos(π/30) |δ|

|ṽi| < 1 − 3

2
n cos(11π/30) |δ| for i = 2, 3.

When n ≥ 2, we have that 3
2
n cos(π/30) > 1 and also 3

2
n cos(11π/30) > 1, and Lemma 2.7

implies that v1 belongs to B and v2 and v3 belong to Q as we wanted to show.

(b) The idea to prove this part is the following. When d = 2, 3, 4 we can choose Arg(λ)
such that two critical points in Sa belong to B and the rest belong to Q. Then from Propo-
sition 2.8 part (c) we conclude that B is completely invariant and the basin of attraction of
q has infinitely many simply connected components. Then, the structure of the Julia and
Fatou sets is as in Theorem 1.3 part (b).

In this case c̃ is given by

c̃ = a + δ = a +

(

dλ

n an−1

)
1

d+1

.
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If we impose that Arg(δ) = Arg(a)+ π
d+1

for some value λ0, we obtain that Arg(λ0) verifies

Arg(a) +
π

d + 1
=

Arg(λ0) − (n − 1)Arg(a)

d + 1
(mod 2π)

or equivalently,
Arg(λ0) = (n + d)Arg(a) + π (mod 2π).

For λ = λ0 there are two values of c̃ that we denote by c̃1 and c̃2, such that |c̃1| = |c̃2|
and this is equal to the largest value of the d + 1 possible values of c̃ (see Figure 11). We
have

|c̃1|, |c̃2| = 1 + cos

(

π

d + 1

)

|δ|.

a

B

1 + s∗

ṽ1

c̃1

ṽ2

c̃2

(a) d = 2 and λ ∈ Sγ2,δ2

a

B

1 + s∗

ṽ1

c̃1

ṽ2

c̃2

(b) d = 3 and λ ∈ Sγ3,δ3

a

B

1 + s∗

ṽ1

c̃1

ṽ2

c̃2

(c) d = 4 and λ ∈ Sγ4,δ4

Figure 11: Sketch of the relevant objects in the proof of Theorem 1.5 part (b). In this case it is
enough to prove that two critical values belong to B.

Let Sγd,δd
be the sector of parameters λ with γd = Arg(λ0) − π/10 and δd = Arg(λ0) +

π/10. Then, when λ ∈ Sγd,δd
we have

|c̃1|, |c̃2| > 1 + cos

(

11π

10(d + 1)

)

|δ|.

Simple computations show that, for i = 1, 2, ṽi can be written as

ṽi = an−1(a + n(1 +
1

d
)δ) + O(|δ|2) for i = 1, 2.

Hence for λ ∈ Sγd,δd
we have that

|ṽi| ≥ 1 + n(1 +
1

d
) cos

(

11π

10(d + 1)

)

|δ| + O(|δ|2) for i = 1, 2.

It is easy to check that when n ≥ 2 and d = 2, 3, 4 we have that n (1 + 1
d
) cos

(

11π
10(d+1)

)

> 1.

Then, using Lemma 2.7 we conclude that v1 and v2 belong to B.
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The fact that the other critical points in Sa belong to Q follows in a similar fashion.
For example, when d = 2 we have that the third critical point c̃3 is such that |c̃3| <
1 − |δ| cos(π/30). Then ṽ3 is such that |ṽ3| < 1 − 3/2n|δ| cos(π/30). It follows easily that
for n ≥ 2 we have 3/2n cos(π/30) > 1 and then v3 ∈ Q. When d = 3 we have to check that
the other two critical points are in Q and this follows as above.

When d = 4 there are actually two different sectors in parameter λ-plane for which part
(b) of Theorem 1.5 holds. One case is as shown above when two critical points from Sa

belong to B and the other three critical points from Sa belong to Q. The other way occurs
when the opposite happens, that is, when there are three critical points from Sa in B and
two in Q. This case can be proved in a similar fashion and it is left to the reader.

4 The case n = 1.

In this part we study the family of complex maps given by

fλ,a(z) = z +
λ

(z − a)d

where d ≥ 1 is an integer and a and λ are complex parameters. As a difference between this
case and the case n > 1 we observe that the expression of fλ,a(z) suggests that the same
map could be derived by applying the so called Newton’s Iteration Method. The Newton
iteration function N(z) of a function h(z) is given by

N(z) = z − h(z)

h′(z)

where h′(z) denotes the derivative of h(z). This method can be used to approximate the
roots of polynomials, and has been shown to display very interesting Julia sets when the
function N(z) is considered as a map on the Riemann sphere (see, for example, [2, 14]).
Indeed, if we let

h(z) = ke−
(z−a)d+1

λ(d+1)

where k is an arbitrary constant, then fλ,a(z) is the Newton iteration function for h(z)1.
This follows easily since h(z) is the general solution of the differential equation

λ
dh

dz
= −(z − a)dh.

The study of the dynamics of fλ,a(z) is simplified by the fact that we can conjugate the
map to eliminate the parameters λ and a. A simple computation shows that:

1As a curiosity, notice that if we let d = 1 and k = 1/
√

λ2π then the function h(z) is a Gaussian
distribution in the variable z with expected value a and variance λ.
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Lemma 4.1. The function fλ,a(z) is conjugate to the function g(z) = z + 1/zd under
z 7→ λ−1/(d+1)(z − a).

Therefore we study the map given by

g(z) = z +
1

zd

where d ≥ 1 is an integer. There is no dependence on complex parameters so for each value
of d we have just a unique representative of the family fλ,a.

The following theorem is due to Shishikura [15] (see also [10]) and gives a connection
between the number of weakly repelling fixed points of a rational map and the connectivity
of the Julia set. Recall that a weakly repelling fixed point is a fixed point that is either
repelling or parabolic of multiplier 1.

Theorem 4.2. If the Julia set of a rational map f of degree ≥ 2 is disconnected, then there
exist two weakly repelling fixed points of f .

It is easy to check that g(z) has only one parabolic fixed point at infinity and then
Theorem 1.7 follows as a corollary of Theorem 4.2. In the following paragraphs we describe
the symmetries and dynamical behavior of the function g(z).

When d = 1 we have that the Julia set of g(z) is the imaginary axis. This follows since
the imaginary axis is the smallest closed set with more than two points that is completely
invariant under the map. It is easy to check that |g′(z)| > 1 for z ∈ iR and that every point
that is not in the imaginary axis moves away from it under iteration. The Fatou set consists
of the two completely invariant half-planes Re(z) > 0 and Re(z) < 0 for z ∈ C. Each half
of the real axis is forward invariant and every orbit in one of the two half-planes approaches
the real axis under iteration and converges to infinity.

When d > 1, the Julia set is still connected as we have already shown; however, the
Fatou set now consists of infinitely many simply connected components. The degree of g(z)
is d + 1 so the map has 2d critical points counted with multiplicity. The pole 0 is a critical
point of order d−1 and then, there are d+1 critical points symmetrically distributed around
the origin. The critical points c of g are given by

(4.1) c = d
1

d+1 .

Infinity and its preimages lie in the Julia set of g(z). This set includes the prepoles, that
is, the preimages of the pole at the origin. The prepoles p of g(z) are also symmetrically

distributed around the origin and are given by p = (−1)
1

d+1 . The critical points c of g(z)
are mapped to the critical values v. We have

(4.2) v = g(c) = d
1

d+1 (1 + 1/d).

A straightforward computation shows that each line of the form ωt with ωd+1 = 1 and
t > 0 is forward invariant under g(z). Moreover, every point in one of these lines converges
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monotonically to infinity under iteration. From Equations (4.1) and (4.2), it follows that
the critical points lie in these lines where the orbit of every point converges to infinity. In
other words, each one of the critical points lies in a different petal of the flower around
infinity.

Figure 6 displays some examples of the Julia sets studied in this section.
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