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1. Introduction

In the last few years, a number of papers have appeared that deal with the dynamics of

functions obtained by a perturbation of the complex function z 7! zn by adding a pole at

the origin [3, 5–7]. These rational functions are of the form f lðzÞ ¼ zn þ l=zd. When

jljp 1, we consider this function as a singular perturbation of z n. The reason for this

terminology is that when l ¼ 0, the map is z n and the dynamical behaviour is well

understood. When l – 0, however the degree jumps to n þ d and the dynamical behaviour

changes significantly. The interest in this type of perturbation arises from the application

of Newton’s method to find the roots of a family of polynomials that, at one particular

parameter value, has a multiple root. At this parameter value, the Newton iteration

function undergoes a similar type of singular perturbation.

In [8], we investigated a more general class of functions for which the pole is not

located at the origin but rather is located at some other point in the complex plane that does

not lie on the unit circle. In particular, we considered the family of functions given by

f l;aðzÞ ¼ zn þ
l

ðz 2 aÞd
; ð1Þ

where n $ 2 and d $ 1 are integers, and a and l are complex parameters where jaj – 0; 1
and jlj is sufficiently small.

In this paper, we continue the study of the family f l;a. In the first part, we study the

dynamics of equation (1) when the pole a is on the unit circle and jlj is sufficiently small.
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In the second part, we focus on the dynamics of equation (1) when n ¼ 1, d $ 1 and

a; l [ C. Our goal is to describe the topology and dynamics of the Julia set of f l;a,

i.e. the set of points where the family of iterates of f l;a is not a normal family in the sense

of Montel. Equivalently, the Julia set is the closure of the set of repelling periodic points of

f l;a. We denote the Julia set by J ¼ Jðf l;aÞ. The complement of the Julia set is called the

Fatou set.

We first consider the case when n $ 2. When l ¼ 0, infinity and the origin are

superattracting fixed points and the Julia set is the unit circle. When we add the

perturbation by setting l – 0 but very small, several aspects of the dynamics remain

the same, but others change dramatically. For example, when l – 0, the point at 1 is

still a superattracting fixed point and there is an immediate basin of attraction of 1 that

we call B ¼ Bl. On the other hand, there is a neighbourhood of the pole a that is now

mapped d-to-1 onto B. When this neighbourhood is disjoint from B we call it the trap

door and denote it by T ¼ Tl. Every point that escapes to infinity and does not lie in B

has to do so by passing through T. Since the degree of f l;a changes from n to n þ d, 2d

additional critical points are created. The set of critical points includes 1 and a whose

orbits are completely determined, so there are n þ d additional ‘free’ critical points.

The orbits of these points are of fundamental importance in characterizing the Julia

set of f l;a.

When l is sufficiently small and a – 0, we may find d1 . 0 such that, if jlj , d1, f l;a
still has an attracting fixed point q ¼ ql near the origin. Throughout this paper, we assume

that jlj , d1. Let Q ¼ Ql denote the immediate basin of attraction of q. The set of n þ d

‘free’ critical points may be divided into two groups: the first group consists of n 2 1

critical points that are attracted to q. These are the critical points that bifurcate away from

the origin when l becomes nonzero. The remaining d þ 1 critical points surround the pole

a and, for jljp 1, they are mapped close to an. It follows that the dynamics of this family

of functions is determined by the behaviour of this set of d þ 1 critical points and the

position of a when jlj is small.

We first review the case when jaj – 1. When jljp 1 and 0 , jaj , 1, the orbits of the

d þ 1 critical points that lie around a converge to the fixed point q near the origin, and

when jaj . 1 they converge to1. The following theorem summarizes some of the known

results studied in [5,8,11].

Theorem 1.1 (Structure of the Julia and Fatou sets for jaj – 1). Let n $ 2, d $ 1

and jaj – 1. Then, for jlj sufficiently small, we have:

(a) If a ¼ 0 and ðð1=nÞ þ ð1=dÞÞ , 1, the Julia set of f l;a is a Cantor set of simple

closed curves that surrounds the origin. The Fatou set consists of two discs (T and

B) and infinitely many annuli. In this case, Q is empty.

(b) If jaj – 0 the Julia set of f l;a consists of a countable union of disjoint simple closed

curves and an uncountable number of point components that accumulate on those

curves. Only one of these curves surrounds the origin. The Fatou set consists of

countably many discs and one infinitely connected component (namely, Q if jaj , 1

and B if jaj . 1).

Notice that in the cases described in the above theorem, the Fatou set of f l;a is the

union of the basin of attraction of1 and the basin of attraction of q. Also, the dynamics of

f l;a on J are completely determined by a specific quotient of a subshift of finite type. There

is always a neighbourhood of the origin in the parameter l-plane where all these maps

have conjugate dynamics on their Julia sets (see [8,11]).
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The case a ¼ 0 with n ¼ d ¼ 2 is very different. In this case, there are infinitely many

open sets in any neighbourhood of l ¼ 0 in which the Julia sets corresponding to these

parameters are all Sierpinski curves, but any two such maps whose parameters are drawn

from different open sets have non-conjugate dynamics (see [6]). Moreover, in this case,

when l! 0 the Julia sets of f l;a converge to the unit disk (see [9]). The cases when

a ¼ 0; d ¼ 1 and n $ 2 are also very different and are still under study.

Figures 1 and 2 show examples of each of the cases discussed above.

The differences between the cases jaj – 1 and jaj ¼ 1 can be explained as follows.

For sufficiently small l – 0 and outside a small neighbourhood of the pole a the map

f l;aðzÞ behaves approximately like zn, since the distance between them is small. Then, the

set of d þ 1 critical points that surround a is mapped close to an. This implies that when

jaj – 1 the orbits of these critical points behave as ‘one’ critical orbit. Instead, when

jaj ¼ 1 the critical points that surround the pole a behave independently. Some of them

can converge to q, some of them can converge to1 and some of them may be related to a

Fatou component different from B and Q, or even belong to the Julia set of f l;a. Hence, a

complete description of the Julia set can be challenging. However, when these critical

points belong to B and Q we can give a detailed description of the Julia and Fatou sets of

these maps. Let Sa denote the set of d þ 1 critical points that surround the pole a when jlj

is small.

In Theorem 1.2, we describe some important components of the Fatou set, namely the

basins of attraction of q and1. These results need no assumptions on the behaviour of the

critical points in Sa since the order d of the pole a is enough to assure that some of these

critical points belong to B.

Theorem 1.2 (No trap door). Let jaj ¼ 1 and n $ 2. Then, for jlj sufficiently small,

we have

(a) If d . 1 then B is completely invariant and Q is simply connected.

(b) If d . 4 (or if n . 2 and d . 3) then B is infinitely connected and the basin of

attraction of q has infinitely many simply connected components.

n = d = 3, a = 0 and l = –0.001

(a) (b)

n = d = 2, a = 0 and l = –0.001

Figure 1. Dynamical plane of f l;a for different values of n; d; a and l. Points in the basin of
attraction of infinity are in white. Left-hand side corresponds to ðð1=nÞ þ ð1=dÞÞ , 1 and right-hand
side corresponds to ðð1=nÞ þ ð1=dÞÞ ¼ 1. In the first case, the Julia set is a Cantor set of circles while
in the second one the Julia set is a Sierpinski curve.
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An important consequence of Theorem 1.2 is the following. When d . 1, the pole

a lies in B, that is, for jlj sufficiently small these maps have no trap door as in the case

when jaj . 1 (see [8]). Figure 3 displays the dynamical plane of f l;a corresponding to

Theorem 1.2.

If the critical points in Sa are distributed between B and Q and, for jlj sufficiently small

the number of critical points in B and Q remains constant, then we can understand the

structure and dynamics on the Julia set of f l;a. Let jSa > Bj and jSa > Qj denote the

number of critical points from Sa that lie in B and Q, respectively. There are two

possibilities shown in the next theorem.

n = d = 4, a = 0.5eip/4 and l = 0.00007

(a) (b)

n = d = 4, a = 1.2eip/4 and l = 0.00007

Figure 2. Dynamical plane of f l;a for different values of n; d; a and l. Points attracted to q are
shown in black and points attracted to 1 are shown in white. Part (a) corresponds to the case where
jaj , 1 and part (b) corresponds to jaj . 1. When jaj , 1 (resp. jaj . 1) then Q (resp. B) is
completely invariant and infinitely connected and B (resp. Q) has infinitely many simply connected
preimages.

n = 2, d = 5, a = eip/4 and l = 0.00007

(a) (b)

Same parameters as Figure (a).
Magnification around the pole a = eip/4

Figure 3. (a) Dynamical plane of f l;a for different values of n, d, a and l. Colour codes as in Figure
2. These plots represent the typical case when jaj ¼ 1 and d $ 5. In this case, B is completely
invariant and infinitely connected and the basin of attraction of q has infinitely many simply
connected components. (b) Magnification around the pole a.
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Theorem 1.3 (Structure of the Julia and Fatou sets for jaj ¼ 1). Let n $ 2, d $ 1,

jaj ¼ 1 and suppose that for l sufficiently small Sa , B < Q and that jSa > Bj and

jSa > Qj remain constant, then either

(a) Exactly one critical point from Sa belongs to B and the Julia set J is a quasi-circle

that surrounds the origin where f l;a : J 7! J is conjugate to z 7! znþd on the unit

circle. The Fatou set consists of two completely invariant discs, namely B and Q;

or else,

(b) the Julia set J consists of countably many simple close curves and uncountably

many point components that accumulate on each one of these curves. Only one of

these curves surrounds the origin. The Fatou set consists of one infinitely

connected component and infinitely many discs.

Notice that if Sa , B (resp. Sa , Q) then we are in part (b) of the above theorem. This

is exactly what happens in the case when jaj . 1 (resp. jaj , 1) described in Theorem 1.1.

For this reason, in the case jaj – 1, the situation described in Theorem 1.3 part (a) is not

observed. This new possibility when jaj ¼ 1 is allowed by the fact that the critical points in

Sa behave independently and in a very specific manner. We also have

Theorem 1.4 (Dynamics on the Julia set). Suppose f l1;a1 and f l2;a2 are two functions

such that they both lie in one of the cases distinguished in Theorem 1.3. In other words, for

jlj sufficiently small, the set Sa , B < Q and the number of critical points in B and Q

coincide for both functions but the exact position of the pole a or of these critical points is

arbitrary. Then, there exists 1 . 0 such that, for jl1j, jl2j , 1, these maps are conjugate

on their Julia sets. Moreover, the dynamics are determined by a specific quotient of a

subshift of finite type.

We can actually prove the existence of the Julia sets described in Theorem 1.3. Some

of the results in the next theorem hold only for sectors of values of l in the parameter

l-plane.

Let Arg(z) denote the argument of the complex number z. Then, given two real

numbers a and b such that 0 # a , b # 2p, we define a sector Sa;b of values of the

parameter l in the usual way, that is, Sa;b ¼ {l;a , ArgðlÞ , b}.

Theorem 1.5 (Existence). Let n $ 2 and jaj ¼ 1. For jlj sufficiently small, we have

(a) If d ¼ 1; 2, then there exists a sector Sad ;bd
in parameter l-plane such that,

if l [ Sad ;bd
then the Julia and Fatou sets of f l;a are as in Theorem 1.3 part (a).

(b) If d ¼ 2, 3, 4, then there exists a sector Sgd ;dd
in parameter l-plane such that,

if l [ Sgd ;dd
then the Julia and Fatou sets of f l;a are as in Theorem 1.3 part (b).

Moreover, inside each one of these sectors Theorem 1.4 holds.

The case when d ¼ 2 is very interesting since for some values of l sufficiently small

we can obtain very different topological and dynamical behaviour.

The fact, that for jlj sufficiently small we have that q and1 are attracting fixed points

implies that the Julia set cannot be totally disconnected. In other words, the Fatou set

consists of at least two disjoint open sets. The minimum of two is attained by part (a) of

Theorem 1.5 and, in this case, the Julia set is the common boundary of Q and B.
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Remark 1. As we mentioned, when d . 1 the basin of attraction of infinity is completely

invariant (that is, there is no trap door). By the above theorem, we also know that when

d ¼ 1 there is a sector of parameters in the l-plane for which this is also the case.

Numerical experiments suggest that when jaj ¼ 1 and jlj ! 1, the basin of attraction of1

is always completely invariant.

Figures 4 and 5 display the dynamical plane of f l;a corresponding to the different cases

that appear in Theorem 1.5.

Notice that very interesting bifurcations happen when we fix n and d so that ðð1=nÞ

þð1=dÞÞ , 1 and we also fix l sufficiently small and let the parameter a vary.

The structure of the Julia set changes dramatically when the pole a moves away from the

origin. When a ¼ 0, we have that the Julia set of f l;a is a Cantor set of simple closed curves

that surrounds the origin (see Figure 1(a)). When 0 , jaj , 1, there is a neighbourhood of

the origin in the l-plane where the Julia set of f l;a consists of countably many simple

closed curves only one of which surrounds the origin (namely, ›B) and uncountably many

point components that accumulate on these curves. The preimages of ›B lie inside ›B

(see Figure 2(a)). When jaj ¼ 1, we see that there is a sector of parameters in the l-plane

for which the Julia set of f l;a has the same topology as in the previous case but the only

curve that surrounds the origin is now ›Q and the rest of the curves lie outside ›Q (see

Figure 3). When jaj ¼ 1 and for some values of n and d (see Theorem 1.5) there is also a

sector of parameters in the l-plane for which the Julia set becomes a simple closed curve

that surrounds the origin (see Figure 4). Finally, when jaj . 1 there is a neighbourhood of

the origin in the l-plane for which the structure of the Julia set again consists of countably

many simple closed curves only one of which surrounds the origin (namely, ›Q) and

uncountably many point components that accumulate on these curves (see Figure 2(b)).

In between each one of these states, the Julia set suffers great transformations due to the

fact that the critical points in Sa are now acting independently. A complete description of

these transitions between states goes beyond the scope of this paper.

n = 4, d = 2, a = 1 and l = 0.007

(a) (b)

Same parameters as Figure 4 (a).
Magnification around the pole a = 1

Figure 4. (a) Dynamical plane of f l;a for different values of n; d; a and l. Colour codes as in Figure
2. These plots represent the case d ¼ 2 for some values of l in Sa2 ;b2

. In this case, Q and B are both
completely invariant sets that are therefore simply connected. Moreover, the Julia set is a quasi-circle
which is equal to the common boundary of Q and B. (b) Magnification around the pole a.
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In the second part of the paper, we focus on the family given by equation (1.1), when

n ¼ 1. In this case, the point at infinity is always in the Julia set and this causes major

changes in the dynamical behaviour of f l;a. Also, when n ¼ 1, we can conjugate f l;a via a

Möbiusmap tomake it completely independent of the parameters a andl. For these reasons,

the behaviour of themap f l;a with n ¼ 1 is completely different from the previous cases and

the characteristics of the Julia and Fatou sets of f l;a reflect these changes. We have

Theorem 1.6. Let n ¼ 1 and d $ 1 then for all parameters a; l [ C, the map f l;a is

conformally conjugate to z þ 1=zd. In particular, the Julia set of f l;a is connected and the

Fatou set contains all the points attracted to the unique parabolic fixed point at infinity.

When d ¼ 1, the Fatou set consists of two simply connected regions; otherwise, it consists

of infinitely many simply connected components.

Figure 6 shows examples of the Julia sets of f l;a, when n ¼ 1 for d ¼ 2 and d ¼ 3.

n = 4, d = 2, a = 1 and l = –0.007

(a) (b)

Same parameters as Figure (a).
Magnification around the pole a = 1

Figure 5. (a) Dynamical plane of f l;a for different values of n; d; a and l. Colour codes as in Figure
2. These plot represent the case d ¼ 2 for some values of l in Sg2;d2 . In this case, B is completely
invariant and the basin of attraction of q has infinitely many simply connected components.
(b) Magnification around the pole a.

d = 2

(a) (b)

d = 3

Figure 6. Dynamical plane of z 7! z þ 1=z d for d ¼ 2 in part (a) and d ¼ 3 in part (b). Points in the
parabolic basins of infinity are shown in white. In each case, we can observe d þ 1 unbounded petals.
The boundary of the basin of attraction of infinity is the Julia set.
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The rest of the paper is organized as follows. In Section 2, we obtain some basic results

about the function f l;a when n $ 2. In Section 3, we prove Theorems 1.2–1.5. Finally, in

Section 4, we study the dynamics of f l;a when n ¼ 1 and prove Theorem 1.6.

2. Preliminaries

Let n $ 2, d $ 1 and jaj ¼ 1. A straightforward computation shows that, when l – 0,

f l;a has n þ d critical points that satisfy the equation

zn21ðz 2 aÞdþ1 ¼ l
d

n

� �
: ð2Þ

When l ¼ 0, this equation has n þ d roots, the origin with multiplicity n 2 1 and a with

multiplicity d þ 1. By continuity, for small enough jlj, these roots become simple zeros of

f 0l;a that are approximately symmetrically distributed around the origin and the pole a.

As a consequence, when jlj is small, n 2 1 of the critical points of f l;a are grouped around 0,

near the fixed point q, while d þ 1 of the critical points are grouped around the pole a.

Let c ¼ cl be one of the n þ d critical points of f l;a given by equation (2). Replacing z

by c in equation (2), we find lðc 2 aÞ2d ¼ ðn=dÞcn21ðc 2 aÞ and so the critical value v

corresponding to c is given by

v ¼ f l;aðcÞ ¼ cn þ
n

d

� �
cn21 ðc 2 aÞ;

or, equivalently

v ¼ cn21 c 1þ
n

d

� �� �
2

an

d

� �� �
: ð3Þ

Note that as l! 0, the fixed point ql ! 0 as well. From equation (3) it follows that, if

c ! 0, then v ! 0. Similarly, if c ! a, then v ! an. We use Sa to denote the set of d þ 1

critical points around a and we use Sq to denote the set of n 2 1 critical points around q.

We have

Lemma 2.1. When jlj tends to zero, the critical values corresponding to the critical points

in Sq tend to q and the critical values corresponding to the critical points in Sa tend to an.

To describe the structure of the Julia set, we first need to give an approximate location

for this set. Roughly speaking, when jlj is small, the Julia set of f l;a lies in a small annulus

around the unit circle.

Proposition 2.2. Suppose n $ 2, d $ 1 and jaj ¼ 1.

(a) Let 0 , s # 1 and suppose that jzj ¼ 12 s then, for sufficiently small l, z [ Q.

(b) Let s . 0 and suppose that jzj ¼ 1þ s then, for sufficiently small l, z [ B.

Proof. Fix n, d and a. For the first part, we have jz 2 aj $ jaj2 jzj ¼ s . 0, so that

j f l;aðzÞj # jzj
n
þ

jlj

jz 2 aj
d
# ð12 sÞn þ

jlj

sd
:
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Let jlj , sd½ð12 sÞ2 ð12 sÞn�. Then,

j f l;aðzÞj , ð12 sÞn þ
sd½ð12 sÞ2 ð12 sÞn�

sd
¼ 12 s:

As a consequence, j f l;aðzÞj , jzj and so the orbit of z converges to the fixed point q near

the origin. Therefore, z lies in Q.

For the second part, we have jz 2 aj $ jzj2 jaj ¼ s . 0, so that

j f l;aðzÞj $ jzj
n
2

jlj

jz 2 aj
d
$ ð1þ sÞn 2

jlj

sd
:

Let jlj , sd½ð1þ sÞn 2 ð1þ sÞ�. Then,

j f l;aðzÞj . ð1þ sÞn 2
sd½ð1þ sÞn 2 ð1þ sÞ�

sd
¼ 1þ s:

Hence, j f l;aðzÞj . jzj and the orbit of z converges to 1 so that z [ B. A

The following result gives us a simple procedure to verifywhen a point belongs toQ orB.

Corollary 2.3. Suppose n $ 2, d $ 1, jaj ¼ 1 and let s* ¼ ðjlj=ðn 2 1ÞÞ1=ðdþ1Þ . 0.

Then, for all s* , s , 1 we have that

(a) If jzj # 12 s then, for l sufficiently small, z [ Q.

(b) If jzj $ 1þ s then, for l sufficiently small, z [ B.

Proof. For the first part, notice that for s . 0, ð12 sÞn , 12 ns. Then, simple

computations show that

ðn 2 1Þsdþ1 , sd½ð12 sÞ2 ð12 sÞn�:

The condition s . s* is equivalent to jlj , ðn 2 1Þsdþ1 and the result follows from

Proposition 2.2. The second part follows in a similar way by noticing that for s . 0, we

have 1þ ns , ð1þ sÞ n. A

In order to prove our main theorems, we need to obtain more precise results

regarding the location of the critical points in Sa and their corresponding critical values.

To simplify the notation, we introduce two new variables d ¼ ðld=ðnan21ÞÞ1=ðdþ1Þ and

1 ¼ ðjljd=nÞð1=ðdþnÞÞ, the first one is amultivalued complex function ofl and a, and the second

one is a real function of jlj. Both parameters play a major role in the rest of this paper.

Let c be a critical point of f l;a in Sa and let v ¼ f l;aðcÞ be its corresponding critical

value. We need four lemmas all of which hold for jlj sufficiently small. In Lemma 2.4, we

prove that the distance between the critical point c and the pole a is bounded by 1.

In Lemma 2.5, we find an approximation for c that we denote by ~c. In Lemma 2.6, we

obtain an approximation for v that we denote by ~v; the distance between v and ~v will be

proved to be smaller or equal to 1jdj. Finally, in Lemma 2.7, we find a criterion to prove

when the critical value v belongs to B or Q.

Lemma 2.4. Let n $ 2, d $ 1, jaj ¼ 1 and 1 ¼ ðjljd=nÞ1=ðdþnÞ. For jlj sufficiently small

we have that, if c is a critical point in Sa then jc 2 aj # 1.
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Proof. Fix n; d and a. Let R0 . 0 and Ra . 0 be two real numbers such that Rn21
0 Rdþ1

a ¼

jljd=n. Consider the closed disc of radius R0 centred at the origin, that is, D0 ¼ {z : jzj #

R0}, and the closed disc of radius Ra centred at a, that is, Da ¼ {z : jz 2 aj # Ra}.

The critical points of f l;a belong to D0 < Da since all points outside this union verify

jzj
n21

jz 2 aj
dþ1

. jljd=n (see equation (2)). By hypothesis c [ Sa and since jaj ¼ 1, for

jlj sufficiently small, we have that jcj . R0 obtaining thus that jc 2 aj # Ra. Now, let

R0 ¼ ðjljd=nÞ1=ðdþnÞ and Ra ¼ ðjljd=nÞ1=ðdþnÞ and the lemma follows. A

Lemma 2.5. Let n $ 2, d $ 1, jaj ¼ 1, d ¼ ðld=ðnan21ÞÞ1=ðdþ1Þ and 1 ¼ ðjljd=n1=ðdþnÞÞ.

For jlj sufficiently small, we have that the d þ 1 critical points in Sa can be approximated by

~c ¼ a þ d. These points are the vertices of a regular polygon of d þ 1 sides centred at a.

Moreover, if c and ~c are a critical point and its approximation we have

jc 2 ~cj #
n 2 1

d þ 1
2ðnþdÞ=ðdþ1Þ 1 jdj:

Proof. Fix n; d and a. To find approximations of the critical points in Sa, we use the fact

that solving equation (2) is equivalent to computing fixed points of the multivalued

function T(z) defined by

TðzÞ ¼ a þ
ld

n zn21

� �1=ðdþ1Þ

: ð4Þ

We remark that there are d þ 1 possible different choices for the function T that are the

ðd þ 1Þ branches of the map given by equation (4). Starting with the initial point a we find

an approximate value of ~c given by

~c ¼ TðaÞ ¼ a þ d ¼ a þ
ld

n an21

� �1=ðdþ1Þ

:

It is clear that the values of ~c form the vertices of a regular polygon with d þ 1 sides

centred at a (Figure 7). Since c is the fixed point of T, we can obtain an upper bound for the

distance between the critical point c and the approximate value ~c. We have

jc 2 ~cj ¼ jTðcÞ2 TðaÞj # jT 0ðjÞkc 2 aj;

where j is a point in the segment joining c and a. From Lemma 2.4, we know that the

critical points in Sa tend to a when jlj tends to zero. Then, let jlj be small enough so that

jjj $ 1=2. We get

jT 0ðjÞj ¼
n 2 1

d þ 1

jljd

n

� �1=ðdþ1Þ

jjj
2ððnþdÞ=ðdþ1ÞÞ

#
n 2 1

d þ 1
2ðnþdÞ=ðdþ1Þjdj:

Then, using Lemma 2.4 and the above inequality, we obtain

jc 2 ~cj #
n 2 1

d þ 1
2ðnþdÞ=ðdþ1Þ 1 jdj

as we wanted to show. A

Lemma 2.6. Let n $ 2, d $ 1, jaj ¼ 1, d ¼ ðld=n an21Þ1=ðdþ1Þ and 1 ¼ ðjljd=nÞ1=ðdþnÞ.

Assume that v ¼ f l;aðcÞ is a critical value of f l;a corresponding to a critical point c in Sa.
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Let ~v ¼ f l;að~cÞ where ~c is as given in Lemma 2.5. Then, for jlj sufficiently small, ~v is an

approximation of v such that jv 2 ~vj # 1 jdj.

Proof. Fix n, d and a. In order to control the distance between v ¼ f l;aðcÞ and ~v ¼ f l;að~cÞ,

we use the Taylor expansion for f ðcÞ in terms of ~c. We have

f l;aðcÞ ¼ f l;að~cÞ þ f 0l;að~cÞðc 2 ~cÞ þOðc 2 ~cÞ2;

obtaining thus that

jv 2 ~vj # j f 0l;að~cÞj jc 2 ~cj þOðjc 2 ~cj
2
Þ:

Using the expression of ~c ¼ a þ d ¼ a þ ððldÞ=ðnan21ÞÞ1=ðdþ1Þ and the fact that f l;aðzÞ ¼

zn þ l= ðz 2 aÞd , we have

j f 0l;að~cÞj ¼ n~cn21 2
ld

ð~c 2 aÞdþ1

����
���� ¼ jnða þ dÞn21 2 nan21j

# n
Xn21

k¼1

n 2 1

k

 !
jdj

k
¼ nðn 2 1Þjdj þOðjdj

2
Þ:

Using Lemma 2.5 and the above inequality, we obtain

jv 2 ~vj #
nðn 2 1Þ2

d þ 1
2ðnþdÞ=ðdþ1Þ1jdj

2
þOð1jdj

3
Þ:

Then, by taking l, sufficiently small we have

jv 2 ~vj # 1jdj;

and the lemma follows. A

Lemma 2.7. Let n; d $ 2, jaj ¼ 1 and d ¼ ððldÞ=ðnan21ÞÞ1=ðdþ1Þ. Assume that v ¼ f l;aðcÞ

is a critical value of f l;a corresponding to a critical point c in Sa, and let ~v ¼ f l;að~cÞ be an

approximation of v as in Lemma 2.6. Let k . 1 be a constant. We have

(a) If j~vj $ 1þ kjdj^Oðjdj
2
Þ then, for jlj sufficiently small, the critical value v

belongs to B.

(b) If j~vj # 12 kjdj^Oðjdj
2
Þ then, for jlj sufficiently small, the critical value v

belongs to Q.

a
1

~c ~c ~c

d = 1

(a) (b) (c)

d = 2 d = 3

a

1
a
1

e e2 e e2 e e2

Figure 7. Sketch of the position of ~c, for the case d ¼ 1 in part (a), the case d ¼ 2 in part (b) and the
case d ¼ 3 in part (c).
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Proof. Fix n; d and a. For part (a), we first prove that ~v belongs to B, and then we verify that

this implies that v also belongs to B. To prove that ~v belongs to B, we show that for jlj

sufficiently small the condition j~vj . 1þ s* with s* ¼ ðjlj=ðn 2 1ÞÞ1=ðdþ1Þ, is satisfied.

Then, Corollary 2.3 implies the result.

From the definitions of jdj and s* it follows that when n, d $ 2, we have jdj $ s*.

Then, it is enough to show that j~vj . 1þ jdj; from hypothesis, this reduces to show

j~vj $ 1þ kjdj^Oðjdj
2
Þ . 1þ jdj:

For jlj sufficiently small and k . 1, we have that ðk 2 1Þjdj^Oðjdj
2
Þ . 0. Thus, we

conclude that ~v belongs to B.

Finally, we need to show that v ¼ f l;aðcÞ and ~v ¼ f l;að~cÞ are close enough to assure that

v also belongs to B. It follows from Lemma 2.6 that the distance between v and ~v is

bounded by 1jdj. Hence, we have that

jvj $ j~vj2 jv 2 ~vj $ 1þ kjdj^Oðjdj
2
Þ2 1jdj:

Using the fact that k . 1 we conclude that, for jlj sufficiently small, v also belongs to B

and the first part follows.

The second part follows in a similar way. The details are left to the reader. A

In the next proposition, we prove that controlling the behaviour of some critical points we

can obtain information about the topology of the basin of attraction of1 and q. We have

Proposition 2.8. Let n $ 2, d $ 1 and jaj ¼ 1. Then, for jlj sufficiently small

(a) If one or more critical values corresponding to the critical points in Sa belong to B

then B is completely invariant.

(b) Q and B are completely invariant and simply connected if and only if one critical

point in Sa belongs to B and the remaining d critical points in Sa belong to Q.

(c) If two or more critical values corresponding to critical points in Sa belong to B

then B is infinitely connected and the basin of attraction of q has infinitely many

simply connected components.

Proof.

(a) We prove the result by contradiction. Let c be a critical point in Sa such that its

corresponding critical value v ¼ f l;aðcÞ belongs to B. Assume that B is not

completely invariant. Then, there exists a preimage of B disjoint from B; we call

this preimage T. Since the only preimage of 1 different from itself is a, we

conclude that a [ T . Now, B is mapped to itself at least n-to-1 because 1 [ B,

and T is mapped to B at least d-to-1 because a [ T . Since the map is of degree

n þ d we conclude that c � T;B. This is a contradiction to the fact that v [ B.

Then, B is completely invariant as we wanted to show.

(b) First assume that B and Q are completely invariant and simply connected sets. This

implies that the pole a belongs to B. We have that f l;a maps Q to itself, and B to

itself both in an ðn þ dÞ-to-1 fashion. On the one hand, the connectivity of Q is

m ¼ 1, the degree of the map is s ¼ n þ d and the number of critical points in Q is

N ¼ n 2 1þ x; that is, n 2 1 close to 0 and x close to a. By the Riemann–Hurwitz

formula, we get

m 2 2 ¼ sðm 2 2Þ þ N; so that x ¼ d:
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On the other hand, the connectivity of B is m ¼ 1, the degree of the map is

s ¼ n þ d and the number of critical points in B is N ¼ n 2 1 þ d 2 1 þ y; that

is, n 2 1 at 1, d 2 1 at the pole a and y close to a. By the Riemann–Hurwitz

formula, we get

m 2 2 ¼ sðm 2 2Þ þ N; so that y ¼ 1;

and one direction of the implication follows.

For the other direction of the implication, assume that one critical point in Sa

belongs to B and the other d critical points in Sa belong to Q. It follows from part

(a) that B is completely invariant. The fact that B is completely invariant implies

that Q is simply connected. To see this notice that when B is completely invariant

then the Julia set is equal to the boundary of B. Now, consider any Jordan curve g

completely contained in Q. Let U0 and U1 be the two components ofCng. Without

loss of generality, we can assume that B is contained in U0. By construction, U1

cannot contain points in the Julia set, hence U1 is contained in Q proving thus that

Q is simply connected.

Now, consider f l;a : Q ! Q. The connectivity of Q is m ¼ 1, the number of

critical points in the domain is N ¼ n 2 1þ d; that is, n 2 1 close by 0 and d close

to a, and the degree of the map is s. By the Riemann–Hurwitz formula, we get

m 2 2 ¼ sðm 2 2Þ þ N; so that s ¼ n þ d;

and then Q is completely invariant. Finally, since Q is completely invariant we

have that B is simply connected and the result follows.

(c) Since B contains at least two critical points from Sa, it follows from part (a) that B

is completely invariant. Then, Q is simply connected. Since B is the immediate

basin of attraction of a superattracting fixed point, then B is either simply

connected or infinitely connected. This follows from a well known result in

complex dynamics (see Theorem 5.2.1 in [1]). It follows from part (b) that B is

infinitely connected and Q is not completely invariant. Therefore, the basin of

attraction of q has infinitely many simply connected components. A

3. The case n $ 2

In this section, we prove the results concerning the topological characteristics of the Julia

and the Fatou sets as well as the dynamics of f l;a on its Julia set when n $ 2. These results

are Theorems 1.2–1.5 stated in Section 1.

3.1 Proof of Theorem 1.2

Theorem 1.2 shows that in most cases, the basin of attraction of infinity is completely

invariant, that is, there is no trap door.

Proof. (a) The idea of the proof is to find a critical point c in Sa such that its corresponding

critical value v ¼ f l;aðcÞ belongs to B. To do this, we prove that for jlj sufficiently small,

jvj . 1þ s* with s* ¼ ðjlj=ðn 2 1ÞÞ1=ðdþ1Þ, and then the result follows from Corollary 2.3.

Finally, by Proposition 2.8 part (a), we conclude that B is completely invariant.

Since we do not know the values of c and v, we use the approximations ~c and ~v ¼ f l;að~cÞ

defined in Lemmas 2.5 and 2.6.
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Fix n; d $ 2 and a. We denote by cm the critical point in Sa with the largest magnitude;

that is, jcmj $ jcj for all c [ Sa. Let vm ¼ f l;aðcmÞ be the critical value corresponding to

cm. Also, let ~cm and ~vm ¼ f l;að~cmÞ be approximations of cm and vm, respectively. As we

have shown in the proof of Lemma 2.5, the d þ 1 values of ~c are given by

~c ¼ a þ d ¼ a þ
ld

nan21

� �1=ðdþ1Þ

:

The fact that the values of ~c are located at the vertices of a regular polygon centred at a and

the condition that cm is the value of c with the largest modulus imply that (Figure 8)

j~cmj $ 1þ jdj cos
p

d þ 1

� �
: ð5Þ

To compute ~vm ¼ f l;að~cmÞ ¼ ~cn
m þ l=ð~cm 2 aÞd, we note that

~cn
m ¼ ða þ dÞn ¼ an þ nan21dþOðjdj

2
Þ;

and

l

ð~cm 2 aÞd
¼

l

dd
¼

n

d
an21d:

Then, ~vm can be written as

~vm ¼ f l;að~cmÞ ¼ an21 a þ n 1þ
1

d

� �
d

� �
þOðd2Þ:

By definition, ~cm is taken so that it has the largest modulus and from the above expression

the same happens with the corresponding value of ~vm. Then, we have

j~vmj $ 1þ n 1þ
1

d

� �
cos

p

d þ 1

� �
jdj^Oðjdj

2
Þ:

When n; d $ 2, we have that nð1þ ð1=dÞÞ cos ðp=ðd þ 1ÞÞ . 1. Then, using Lemma 2.7,

we conclude that vm belongs to B as we wanted to show.

(b) Fix n $ 2, d $ 5 and a with jaj ¼ 1. By Proposition 2.8 part (c), we only need to prove

that two critical values corresponding to critical points in Sa belong to B. We denote by cm

and cl, the two critical points in Sa with the largest magnitudes; that is, jcmj $ jclj $ jcj for

a

1

B
ũ ũ

d = 3

(a) (b)

a
1s* s*

B
fl ,a fl ,a

c̃c̃

d = 4

Figure 8. Sketch of the relevant objects, for the case d ¼ 3 in part (a) and for the case d ¼ 4 in
part (b), in the proof of Theorem 1.2 part (a). In this case, it is enough to prove that one critical
point belongs to B.
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all c [ Sa. We also denote by vm ¼ f l;aðcmÞ and vl ¼ f l;aðclÞ their corresponding critical

values. From Theorem 1.2 part (a) we conclude that, for jlj sufficiently small, vm belongs

to B. Then, we only have to prove that vl also belongs to B. Let ~cl and ~vl ¼ f l;að~clÞ denote

approximations of cl and vl, respectively. From Lemma 2.5, we know that ~c ¼ a þ d are

the vertices of a regular polygon of d þ 1 sides centred at a. The definition of cm and cl

implies that ~cl is adjacent to ~cm and then they are separated by an angle of 2p=ðd þ 1Þ

measured from a. So, if ~cm and a have the same argument, then the modulus of ~cm is equal

to 1þ jdj and

j~clj ¼ 1þ jdj cos
2p

d þ 1

� �
:

Instead, if ~cm and a have different arguments, then one of the vertices adjacent to ~cm has

modulus larger than the above value. Then, in general, the modulus of ~cl satisfies

j~clj $ 1þ jdj cos
2p

d þ 1

� �
: ð6Þ

Same computations as in the proof of part (a) show that

j~vlj $ 1þ n 1þ
1

d

� �
cos

2p

d þ 1

� �
jdj^Oðjdj

2
Þ:

It is easy to check that when n . 1 and d . 4 (or if n . 2 and d . 3), we have that

nð1þ ð1=dÞÞ cos ð2p=ðd þ 1ÞÞ . 1. Then, using Lemma 2.7, we conclude that vl also

belongs to B as we wanted to show. A

3.2 Proofs of Theorems 1.3 and 1.4

Theorems 1.3 and 1.4 deal with the topology of the Julia and Fatou sets when the critical

points in Sa are distributed between B and Q. They also describe the dynamics of f l;a on its

Julia set.

First, notice that part (a) of Theorem 1.3 follows easily from part (b) of Proposition 2.8

then we focus on part (b) of Theorem 1.3. The proof of Theorem 1.4 will become clear

from the proof of Theorem 1.3.

The hypothesis of Theorem 1.3 states that n $ 2, d $ 1, jaj ¼ 1 and for l sufficiently

small Sa , B < Q. Also, the number of critical points in Q and B is fixed for jlj

sufficiently small. Moreover, we know that either Sa > B ¼ Y or there are at least two

critical points from Sa in B and the rest lie in Q. From Theorem 1.2, we conclude that the

first situation can only happen in the very special case when d ¼ 1. Numerical experiments

suggest that this rarely happens (if it happens at all). See Remark 1. In this particular case,

we would have the existence of a disjoint preimage of B, that is, a trap door T, and all the

critical points in Sa would lie in Q. The proof that the structure of the Julia set is as stated in

Theorem 1.3 follows the same lines as in [8] in the case when jaj , 1. In this section, we

focus on the second case, that is, when more than one critical point from Sa belongs to B

and the rest belong to Q.

We shall prove that for any a with jaj ¼ 1, there exists 1a . 0 such that if jlj , 1a, then

the Julia set of f l;a consists of a countable collection of simple closed curves together with an

uncountable collection of point components that accumulate on these curves. Only one
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of these curves surrounds the origin while all others bound disjoint discs that are eventually

mapped ontoQ. Moreover, any two suchmaps are topologically conjugate on their Julia sets.

By Proposition 2.8 part (c), we know that for sufficiently small l, a lies in B, B

is infinitely connected and Q is simply connected. Let ›Q denote the boundary of Q.

The holes in B are due to the preimages of Q and uncountably many point components that

accumulate on the boundaries of these discs.

Let d* ¼ jSa > Bj # d and assume that d* $ 2. Since there are d þ 12 d* critical

points from Sa in Q and f l;a is of degree n þ d, it follows by the Riemann–Hurwitz formula

that there are d* 2 1 disjoint discs that are preimages of Q in the complement of �Q.

Let r be a simple closed curve that lies in B and such that the Julia set of f l;a lies in the

bounded component surrounded by r. This component is an open neighbourhood of �Q.

Consider the d* 2 1 preimages of this neighbourhood that contain the preimages of Q.

We denote these sets by I1; I2; . . . ; Id*21 and notice that their boundaries are preimages of the

curve r. For jlj small enough, we can choose r so that the Ij’s are pairwise disjoint. The set of

points whose orbits remain for all iterations in the union of the Ij forms a Cantor set on which

f l;a is conjugate to the one-sided shift map on d* 2 1 symbols. This follows from standard

arguments in complex dynamics [4,12]. This produces an uncountable number of point

components in the Julia set. However, there aremany other point components in J aswe show

below.

Let g be a simple closed curve that lies in B and surrounds Q so that the pole a and

the critical points in Sa > B lie outside g. Consider also a simple closed curve t that lies

inside Q and surrounds the origin and such that all the critical points in Sq and the critical

points in Sa > Q lie in the bounded component surrounded by t. Notice that,

jSa > Qj ¼ d 2 d* $ 0. Let A be the annulus bounded by t and g. Then, ›Q , A and

notice that each Ij contains a copy of �Q and a copy of each one of the Ij’s. See Figure 9.

To understand the complete structure of the Julia set, we show that J is homeomorphic

to a quotient of a subset of a space of one-sided sequences of finitely many symbols.

Moreover, we show that f l;a on J is conjugate to a certain quotient of a subshift of finite

type on this space. Since this is true for l sufficiently small, this will prove our main

results.

To begin the construction of the sequence space, we first partition the annulusA into n

‘rectangles’ that are mapped over A by f l;a.

a

r
I2

I1

0

g

∂Q

Figure 9. Sketch for the proof of Theorem 1.3. Region A and the Ij’s for j ¼ 1; . . . ; d* 2 1 are
depicted. The annulus A is bounded by the curve t and the curve g and contains the boundary of Q.
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Proposition 3.1. There is an arc j lying in A and having the property that f l;a maps j

1-to-1 onto a larger arc that properly contains j and such that one of its endpoints lies in t

and the other one in g. Moreover, j meets ›Q at exactly one point, namely one of the fixed

points in ›Q. With the exception of this point, all other points on j lie in the Fatou set.

Proof. Let p ¼ pl;a be one of the repelling fixed points in ›Q. Note that p varies

analytically with both l and a. As it is well known, there is an invariant ray in Q extending

from p to q ([12]). Define the portion of j in Q >A to be the piece of this ray that lies inA.

To define the piece of j lying outside ›Q, let U be an open set that contains p and meets

some portion of g and also has the property that the branch of the inverse of f l;a that fixes p

is well-defined on U. Let f21
l;a denote this branch of the inverse of f l;a. Let w [ g> U and

choose any arc in U that connects w to f21
l;aðwÞ. Then, we let the remaining of the curve j be

the union of the pullbacks of this arc by f2k
l;a for all k $ 0. Note that this curve limits on p as

k !1. A

We now partition A into n rectangles using the n preimages of f l;aðjÞ that lie in A.

Denote these preimages by j1; . . . ; jn where j1 ¼ j and the remaining jj’s are arranged

counterclockwise aroundA. Let Aj denote the closed region inA that is bounded by jj and

jjþ1, so that An is bounded by jn and j1. By construction, each Aj is mapped 1-to-1 over A
except on the boundary arcs jj and jjþ1, which are each mapped 1-to-1 onto f l;aðj1Þ . j1.

The only points whose orbits remain for all iterations in A are those points on the

simple closed curve ›Q. Let z [ ›Q. We may attach a symbol sequence SðzÞ to z as

follows. Consider the n distinct symbols a1; . . . ;an taken from Zn{1; 2; . . . ; d* 2 1}.

Define SðzÞ ¼ ðs0s1s2 . . . Þ where each sj is one of the symbols a1; . . . ;an and sj ¼ ak if

and only if f
j
l;aðzÞ [ Ak. Note that there are two sequences attached to p, the sequences

ða1Þ and ðanÞ. Similarly, if z [ jk > ›Q, then there are also two sequences attached to z,

namely ðs0s1 . . . sj21ak21anÞ and ðs0s1 . . . sj21aka1Þ.

Note that if we make the above identifications in the space of all one-sided sequences

of the aj’s then this is precisely the same identifications that are made in coding the

itineraries of the map z 7! zn on the unit circle. So this sequence space with these

identifications and the usual quotient topology is homeomorphic to the unit circle and the

shift map on this space is conjugate to z 7! zn.

Finally, we extend the definition of S(z) to any point in J that remains in the union of

the Ij’s by introducing the symbols 1; . . . ; d* 2 1 and defining S(z) in the usual manner.

We identify the sequences of the form ðja1Þ and ðjanÞ as well as ðjakanÞ and ðjaka1Þ.

Let S0 denote the space of one-sided infinite sequences of symbols a1; . . . ;an;
1; . . . ; d* 2 1. Let S denote the space S0 with all of the identifications described above and

endow S with the quotient topology. Then, by construction, the Julia set of f l;a is

homeomorphic to S and f l;ajJ is conjugate to the full shift map on S.

This finishes the proof of Theorems 1.3 and 1.4.

3.3 Proof of Theorem 1.5

Theorem 1.5 shows the existence of the Julia sets described in Theorem 1.3.

Proof. (a) The idea of the proof is the following. For d ¼ 1,2 and jlj sufficiently small, we

can always choose the argument of l such that one critical point in Sa belongs to B and the

other d belong to Q. Then, from Proposition 2.8 part (b) it follows that B and Q are both

completely invariant and simply connected and the Julia sets are as stated in Theorem 1.3

part (a).
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Fix n and a. First assume that d ¼ 1. In this case, there are two values of ~c (see Lemma

2.5) which are given by

~c^ ¼ a ^ d ¼ a ^
l

nan21

� �1
2

:

We can choose the parameter l, so that a and d are parallel vectors in the plane (see

Figure 10(a)). For this, let l ¼ l0 then, Argðl0Þ has to verify

ArgðaÞ ¼
Argðl0Þ2 ðn 2 1ÞArgðaÞ

2
ðmod 2pÞ;

or equivalently

Argðl0Þ ¼ ðn þ 1ÞArgðaÞ ðmod 2pÞ:

For l ¼ l0, we have that j~c^j ¼ 1^ ðjl0j=nÞ1=2. Let Sa1;b1
be the sector of parameters

l with a1 ¼ Argðl0Þ2 p=10 and b1 ¼ Argðl0Þ þ p=10. Then, for l [ Sa1;b1
we have

j~cþj . 1þ cos ðp=20Þjdj;

j~c2j , 12 cos ðp=20Þjdj:

Simple computations show that ~v^ ¼ f l;að~c^Þ ¼ ~cn
^ þ l=ð~c^2 aÞ can be written as

~v^ ¼ an21ða þ 2ndÞ þOðd2Þ:

For l in the sector Sa1;b1
, we have that

j~vþj . 1þ cos ðp=20Þ2njdj^Oðjdj
2
Þ;

j~v2j , 12 cos ðp=20Þ2njdj^Oðjdj
2
Þ:

To show that ~vþ belongs to B and ~v2 belongs to Q it is enough to prove that j~vþj . 1þ s*

a

Q Q

1+s* 1+s*

B
(a) (b)

ũ ũ

d = 1 and l ∈ Sa1, b1
d = 2 and l ∈ Sa2 ,b2

a

B

c̃c̃

Figure 10. Sketch of the relevant objects, for the case d ¼ 1 in part (a) and for the case d ¼ 2
in part (b), in the proof of Theorem 1.5 part (a). In this case, we must prove that one critical point in
Sa belongs to B and the rest d critical points belong to Q.
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and j~v2j , 12 s*, where s* ¼ ðjlj=ðn 2 1ÞÞ1=2 (see Corollary 2.3). Then, we require

cos ðp=20Þ2n
jlj

n

� �1=2

.
jlj

n 2 1

� �1
2

:

For n $ 2, we have cos 2ðp=20Þ4nðn 2 1Þ . 1, and then the above inequality is satisfied.

Then, by Lemma 2.7 it follows that vþ also belongs to B and v2 belongs to Q.

The case when d ¼ 2 is very similar and then we briefly explain the main changes in

the above argument. In this case, we have to show that one critical point in Sa belongs to B

and the other two critical points belong to Q. For this, we pick a value of the parameter l,

that we call l0, such that there is only one ~c with modulus larger than 1 and such that a and

d are parallel vectors in the plane (see Figure 10(b)). The three values of ~c are given by

~ci ¼ a þ d ¼ a þ
2l

nan21

� �1=3

; for i ¼ 1; 2; 3:

The value of Argðl0Þ is the solution of ArgðaÞ ¼ ArgðdÞ, so it has to satisfy

ArgðaÞ ¼
Argðl0Þ2 ðn 2 1ÞArgðaÞ

3
ðmod 2pÞ:

Thus, we have that Argðl0Þ ¼ ðn þ 2ÞArgðaÞ ðmod 2pÞ. Now, we define the sector of

parameters Sa2;b2
given by a2 ¼ Argðl0Þ2 p=10 and b2 ¼ Argðl0Þ þ p=10. Then, when

l [ Sa2;b2
, we have

j~c1j . 1þ cos ðp=30Þjdj;

j~cij , 12 cos ð11p=30Þjdj for i ¼ 2; 3:

We can rewrite ~vi ¼ f l;að~ciÞ ¼ ~cn
i þ l=ð~ci 2 aÞ2 as

~vi ¼ an21 a þ
3

2
nd

� �
þOðd2Þ for i ¼ 1; 2; 3:

Hence, for l [ Sa2;b2
, we obtain

j~v1j . 1þ
3

2
n cos ðp=30Þjdj;

j~vij , 12
3

2
n cos ð11p=30Þjdj for i ¼ 2; 3:

When n $ 2, we have that ð3=2Þn cos ðp=30Þ . 1 and also ð3=2Þn cos ð11p=30Þ . 1, and

Lemma 2.7 implies that v1 belongs to B and v2 and v3 belong to Q as we wanted to show.

(b) The idea to prove this part is the following. When d ¼ 2; 3; 4, we can choose ArgðlÞ

such that two critical points in Sa belong to B and the rest belong to Q. Then, from

Proposition 2.8 part (c), we conclude that B is completely invariant and the basin of

attraction of q has infinitely many simply connected components. Then, the structure of the

Julia and Fatou sets is as in Theorem 1.3 part (b).
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In this case, ~c is given by

~c ¼ a þ d ¼ a þ
dl

nan21

� � 1
dþ1

:

If we impose that ArgðdÞ ¼ ArgðaÞ þ ðp=ðd þ 1ÞÞ for some value l0, we obtain that

Argðl0Þ verifies

ArgðaÞ þ
p

d þ 1
¼

Argðl0Þ2 ðn 2 1ÞArgðaÞ

d þ 1
ðmod 2pÞ;

or equivalently

Argðl0Þ ¼ ðn þ dÞArgðaÞ þ p ðmod 2pÞ:

For l ¼ l0, there are two values of ~c that we denote by ~c1 and ~c2, such that j~c1j ¼ j~c2j

and this is equal to the largest value of the d þ 1 possible values of ~c (see Figure 11).

We have

j~c1j; j~c2j ¼ 1þ cos
p

d þ 1

� �
jdj:

Let Sgd ;dd
be the sector of parameters l with gd ¼ Argðl0Þ2 p=10 and

dd ¼ Argðl0Þ þ p=10. Then, when l [ Sgd ;dd
we have,

j~c1j; j~c2j . 1þ cos
11p

10ðd þ 1Þ

� �
jdj:

Simple computations show that, for i ¼ 1; 2; ~vi can be written as

~vi ¼ an21 a þ n 1þ
1

d

� �
d

� �
þOðjdj

2
Þ for i ¼ 1; 2:

1+s*

B

a

(a) (b) (c)
ũ2

ũ1

d = 2 and l Œ Sg2 ,d2
d = 4 and l Œ Sg4 ,d4

d = 3 and l Œ Sg3 ,d3

c̃2

c̃1

1+s*

B

a

ũ2

ũ1c̃2

c̃1

1+s*

B

a

ũ2

ũ1c̃2

c̃1

Figure 11. Sketch of the relevant objects, for the case d ¼ 2 in part (a), the case d ¼ 3 in part (b)
and the case d ¼ 4 in part (c), in the proof of Theorem 1.5 part (b). In this case, it is enough to prove
that two critical values belong to B.
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Hence, for l [ Sgd ;dd
we have that

j~vij $ 1þ n 1þ
1

d

� �
cos

11p

10ðd þ 1Þ

� �
jdj þOðjdj

2
Þ for i ¼ 1; 2:

It is easy to check that when n $ 2 and d ¼ 2; 3; 4, we have that nð1þ ð1=dÞÞ cos ðð11pÞ=
ð10ðd þ 1ÞÞÞ . 1. Then, using Lemma 2.7, we conclude that v1 and v2 belong to B.

The fact that the other critical points in Sa belong to Q follows in a similar fashion. For

example, when d ¼ 2, we have that the third critical point ~c3 is such that

j~c3j , 12 jdj cos ðp=30Þ. Then, ~v3 is such that j~v3j , 12 3=2njdj cos ðp=30Þ. It follows
easily that for n $ 2, we have ð3=2Þn cos ðp=30Þ . 1 and then v3 [ Q. When d ¼ 3, we

have to check that the other two critical points are in Q and this follows as above.

When d ¼ 4, there are actually two different sectors in parameter l-plane for which

part (b) of Theorem 1.5 holds. One case is as shown above when two critical points from Sa

belong to B and the other three critical points from Sa belong to Q. The other way occurs

when the opposite happens, that is, when there are three critical points from Sa in B and

two in Q. This case can be proved in a similar fashion and it is left to the reader.

4. The case n 5 1

In this part, we study the family of complex maps given by

f l;aðzÞ ¼ z þ
l

ðz 2 aÞd

where d $ 1 is an integer and a and l are complex parameters. As a difference between

this case and the case n . 1, we observe that the expression of f l;aðzÞ suggests that the

same map could be derived by applying the so called Newton’s Iteration Method.

The Newton iteration function N(z) of a function h(z) is given by

NðzÞ ¼ z 2
hðzÞ

h0ðzÞ
;

where h0ðzÞ denotes the derivative of hðzÞ. This method can be used to approximate the

roots of polynomials, and has been shown to display very interesting Julia sets when the

function NðzÞ is considered as a map on the Riemann sphere (see, for example, [2,14]).

Indeed, if we let

hðzÞ ¼ ke
2ðz2aÞdþ1

lðdþ1Þ

where k is an arbitrary constant, then f l;aðzÞ is the Newton iteration function for hðzÞ1. This

follows easily since h(z) is the general solution of the differential equation

l
dh

dz
¼ 2ðz 2 aÞd h:

The study of the dynamics of f l;aðzÞ is simplified by the fact that we can conjugate the

map to eliminate the parameters l and a. A simple computation shows that
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Lemma 4.1. The function f l;aðzÞ is conjugate to the function gðzÞ ¼ z þ ð1=zÞd under

z 7! l21=ðdþ1Þðz 2 aÞ.

Therefore, we study the map given by

gðzÞ ¼ z þ
1

zd

where d $ 1 is an integer. There is no dependence on complex parameters, so for each

value of d we have just a unique representative of the family f l;a.

The following theorem is due to Shishikura [15] (see also [10]) and gives a connection

between the number of weakly repelling fixed points of a rational map and the connectivity

of the Julia set. Recall that a weakly repelling fixed point is a fixed point that is either

repelling or parabolic of multiplier 1.

Theorem 4.2. If the Julia set of a rational map f of degree $ 2 is disconnected, then there

exist two weakly repelling fixed points of f .

It is easy to check that gðzÞ has only one parabolic fixed point at infinity and then

Theorem 1.6 follows as a corollary of Theorem 4.2. In the following paragraphs, we

describe the symmetries and dynamical behaviour of the function gðzÞ.

When d ¼ 1, we have that the Julia set of gðzÞ is the imaginary axis. This follows since

the imaginary axis is the smallest closed set with more than two points that is completely

invariant under the map. It is easy to check that jg0ðzÞj . 1 for z [ iR and that every point

that is not in the imaginary axis moves away from it under iteration. The Fatou set consists

of the two completely invariant half-planes Re ðzÞ . 0 and Re ðzÞ , 0 for z [ C. Each

half of the real axis is forward invariant and every orbit in one of the two half-planes

approaches the real axis under iteration and converges to infinity.

When d . 1, the Julia set is still connected as we have already shown; however, the

Fatou set now consists of infinitely many simply connected components. The degree of

gðzÞ is d þ 1 so the map has 2d critical points counted with multiplicity. The pole 0 is a

critical point of order d 2 1 and then, there are d þ 1 critical points symmetrically

distributed around the origin. The critical points c of g are given by

c ¼ d
1

dþ1: ð7Þ

Infinity and its preimages lie in the Julia set of gðzÞ. This set includes the prepoles, that

is, the preimages of the pole at the origin. The prepoles p of gðzÞ are also symmetrically

distributed around the origin and are given by p ¼ ð21Þð1=ðdþ1ÞÞ. The critical points c of

gðzÞ are mapped to the critical values v. We have

v ¼ gðcÞ ¼ d
1

dþ1ð1þ 1=dÞ: ð8Þ

A straightforward computation shows that each line of the form vt with vdþ1 ¼ 1 and

t . 0 is forward invariant under gðzÞ. Moreover, every point in one of these lines

converges monotonically to infinity under iteration. From equations (7) and (8), it follows

that the critical points lie in these lines where the orbit of every point converges to

infinity. In other words, each one of the critical points lies in a different petal of the flower

around infinity.

Figure 6 displays some examples of the Julia sets studied in this section.
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Note

1. As a curiosity, notice that if we let d ¼ 1 and k ¼ 1=
ffiffiffiffiffiffiffiffiffi
l2p

p
then the function hðzÞ is a Gaussian

distribution in the variable z with expected value a and variance l.
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