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Abstract. The aim of this paper is to share with the mathematical community a
list of 33 problems that I have found along the years during my research. I believe
that it is worth to think about them and, hopefully, it will be possible either to
solve some of the problems or to make some substantial progress. Many of them
are about planar differential equations but there are also questions about other
mathematical aspects: Abel differential equations, difference equations, global
asymptotic stability, geometrical questions, problems involving polynomials or
some recreational problems with a dynamical component.
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1. Introduction

There are several famous well-known conjectures and open problems, like for instance
Jacobian conjecture, Riemman’s conjecture, 3x+ 1 conjecture or Collatz problem, Gold-
bach’s conjecture, or Hilbert XVI problem, that almost all mathematicians know. Also a
very interesting list of 18 open problems, covering many different branches of mathema-
tics, has been published by Smale, see [122]. The aim of this work is much more modest.
I will list several concrete problems that I have found along the years. I hope that, at
least for some of them, it is possible either to solve or to make some substantial progress.

The problems will be classified in seven categories: periodic orbits, period function,
piecewise linear systems, Markus-Yamabe and La Salle problems, geometrical problems,
questions involving polynomials, and recreational questions with a dynamical flavour.
Next we briefly describe them but without precise definitions. In the corresponding next
sections they are contextualized and stated with more precision.

In Section 2 we will propose some questions about the maximum number of limit cycles
of some low dimensional differential equations, including rigid systems, homogeneous type
differential systems, Liénard systems, Riccati and Abel differential equations, and a new
point of view of Hilbert’s XVI problem. Some other related questions considered in this
section are on a second order singular differential equation, about the maximum number
of centers for polynomial differential systems and on the characterization of some rational
periodic difference equations.

In Section 3 we propose several problems for the period function of some families of
planar systems: a Hamiltonian one, a system with homogenous components, a third one
about the maximum number of critical periods for planar polynomial differential systems,
and we end with the problem proposed by Chicone about the maximum number of critical
periods for quadratic reversible centers and with a related one about the period function
of a family of reversible equivariant planar differential systems.
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Section 4 is devoted to planar piecewise linear systems. We state some problems about
their number and type of limit cycles.

In Section 5 we present some questions related with global asymptotic stability: two
problems inspired on the works of Markus, Yamabe, and La Salle and a third one dealing
with linear random differential or difference equations.

In Section 6 we state three questions with a geometric component. The first one is
well-known and it is about triangular billiards and the second one is about the extension
of classical Poncelet’s theorem for ellipses to more general algebraic ovals. The third
question is the Loewner’s conjecture.

Section 7 includes several problems involving polynomials. We start with a moments
type problem, somehow related with the Jacobian conjecture, we recall the counterexam-
ples of Kouchnirenko’s conjecture about the number of solutions of fewnomials systems
and propose an alternative question, and we end stating the Casas-Alvero’s conjecture.

Finally, in Section 8 we collect three known conjectures with some dynamical flavour:
the conjecture of multiplicative persistence, the 196 conjecture and Singmaster’s conjec-
ture.

2. Periodic orbits

The celebrated Hilbert XVIth problem, about the number of limit cycles of planar
polynomials differential systems, has been extensively studied during the last century
and also the beginning of the current one, see for instance the surveys [88, 100]. In
this section, we present some related problems for some particular families of differential
systems. We hope that advancing in these simpler cases can give some light to tackle
the general question. Some related and complementary papers, collecting also some open
problems are [25, 26, 76, 106]. This section also contains some questions about periodic
orbits on different contexts.

2.1. Low degree rigid systems. Rigid systems are planar systems such that in polar
coordinates their associated angular differential equation is θ̇ = 1. The origin is their
only equilibrium point, and their limit cycles, if exist are all nested. Moreover, centers
are also isochronous centers. They were introduced by Conti ([49]) and afterwards they
have been studied by many authors. They write as

(1)

{
ẋ = −y + xF (x, y),

ẏ = x+ yF (x, y),

where F is an arbitrary smooth function. Moreover, when F is a polynomial of degree n,
F = F0 +F1 + · · ·+Fn, where Fj are homogeneous polynomials of degree j, and in polar
coordinates they write as

(2)
dr

dθ
= r′ =

n∑

j=0

Fj(cos θ, sin θ)rj+1.

Notice that this last expression is a 2π-periodic non-autonomous differential equation of
Abel type. Its positive 2π-periodic solutions are precisely the periodic solutions of (1).

It is not difficult to see that when n = 1, that is F = F0 + F1, system (1) has not
limit cycles. Let us prove this assertion by contradiction. Let γ be a periodic orbit of
system (1). This periodic orbit is transformed into a positive 2π periodic solution of the
Riccati differential equation (2), r = r(θ).Dividing (2) by r2 and writing F1(x, y) = bx+cy
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we get that
r′(θ)

r2(θ)
=

F0

r(θ)
+ b cos θ + c sin θ.

By integrating between θ = 0 and θ = 2π,

0 =
1

r(0)
− 1

r(2π)
=

∫ 2π

0

r′(θ)

r2(θ)
dθ =

∫ 2π

0

F0

r(θ)
dθ+

∫ 2π

0

(
b cos θ+ c sin θ

)
dθ =

∫ 2π

0

F0

r(θ)
dθ.

Therefore we get a contradiction, unless F0 = 0. Hence we have proved that when F0 6= 0
system (2) with F = F0 + F1 has not periodic orbits. When F0 = 0 it can have periodic
orbits, but not limit cycles. This is so because, in this case, Riccati equation (2) is of
separable variables and it can be easily integrated.

Equation (2) when n = 2 is precisely an Abel differential equation and it is the case
we are interested. It writes as

(3)

{
ẋ = −y + x(a+ bx+ cy + dx2 + exy + fy2),

ẏ = x+ y(a+ bx+ cy + dx2 + exy + fy2).

In [73], examples with two limit cycles are given. For instance a way for obtaining two
limit cycles is by a degenerate Andronov-Hopf bifurcation, because the first Lyapunov
constants for system (3) are

V1 = e2πa − 1, V3 = π(d+ f), V5 = π
(
(c2 − b2)d− bce

)
/2.

Moreover the system has a center if and only if V1 = V3 = V5 = 0.
Associated to F2 and following again [73] we define the discriminant ∆ := e2 − 4df.

Then it holds that when ∆ ≤ 0 system (3) has at most one limit cycle and when it
exists it is hyperbolic. This is so because under this hypothesis the coefficient of r3,
F2(cos θ, sin θ), of the Abel differential equation (2) when n = 2, does not change sign
and when d2+e2+f 2 6= 0 is not identically zero. Then, following [71, 103] it holds that this
Abel equation has at most three periodic orbits, taking into account their multiplicities.
Finally, since r = 0 is always one of these periodic orbits and, by symmetry of the
equation, if r(θ) is one periodic orbit then −r(θ + π) it is also another one, we get that
equation (2), when n = 2, has at most one positive periodic orbit, which has multiplicity
one. This fact implies that when ∆ ≤ 0 system (3) has at most one (hyperbolic) limit
cycle, as we wanted to prove.

Hence, the left open problem reduces to the case ∆ > 0. In this case and without loss
of generality, parameter f can be taken as 0 via a linear change of variables. Moreover,
it is not restrictive to take d ∈ {0, 1}.

Problem 1. Consider the family of planar cubic rigid systems{
ẋ = −y + x(a+ bx+ cy + dx2 + exy),

ẏ = x+ y(a+ bx+ cy + dx2 + exy).

Is 2 its maximum number of limit cycles?

2.2. Systems with homogeneous components. We start presenting next result given
in [38], with a slightly different proof.

Theorem 2.1. Consider system

(4) ẋ = Pn(x, y), ẏ = Qm(x, y),
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where Pn and Qm are homogeneous polynomials of degrees n and m, respectively. If it
has limit cycles then n 6= m and both n and m are odd. Moreover, in this case, there are
polynomials Pn and Qm such that system (4) has at least (n+m)/2 limit cycles.

Proof. Because Pn and Qm are homogeneous, if (x0, y0) is a equilibrium point of (4)
different of the origin then, all the real line λ(x0, y0), λ ∈ R, is full of equilibrium points.
Therefore, if (4) has some periodic orbit, the origin must be the only equilibrium point
of the system. Moreover, by using [60] we know that its index ind(0, 0) satisfies

ind(0, 0) ≡ nm (mod 2).

It is well-known that if a periodic orbit surrounds a unique equilibrium point then its
index must be 1. Hence, nm ≡ 1 (mod 2) and as a consequence n and m must be odd
as we wanted to prove.

It is also well-known that if n = m then (4) can have periodic orbits, but not limit
cycles. This is so, because by homogeneity, if γ is a periodic orbit of the systems all orbits
homothetic to γ are as well periodic orbits and hence γ is not an isolated periodic orbit,
see also Section 3.2.

Hence the first part of the theorem is already proved. To prove the second part, recall
that for general C1 perturbed Hamiltonian systems,

(5)





ẋ =
∂H(x, y)

∂y
+ εR(x, y, ε),

ẏ = −∂H(x, y)

∂x
+ εS(x, y, ε),

where ε is an small parameter, its associated Melnikov–Poincaré–Pontryagin function is

M(h) =

∫

γ(h)

S(x, y, 0) dx−R(x, y, 0) dy = σ

∫∫

G(h)

∂R(x, y, 0)

∂x
+
∂S(x, y, 0)

∂y
dxdy,

where σ is ±1 according the orientation of the time parameterization of γ(h). Here, the
curves γ(h) form a continuum of ovals contained in {H(x, y) = h, for h ∈ (h0, h1)}, and
the second expression is only valid if for h = h0 the oval reduces to a point and G(h)
is the region surrounded by γ(h), see for instance [29, 58]. It is known that each simple
zero h∗ ∈ (h0, h1) of M gives rise to a limit cycle of (5) that tends, when ε→ 0, to γ(h∗).

We write n = 2k − 1 ≥ 1 and m = 2`− 1 ≥ 1, where without loss of generality k > `,
and consider,

(6)





ẋ = y2k−1 + εP2k−1(x, y) = y2k−1 + ε

2k−1∑

j=1

aj
j
y2k−1−jxj,

ẏ = −x2`−1 + εQ2`−1(x, y) = −x2`−1 + ε

2`−1∑

j=1

bj
j
x2`−1−jyj.

Then H(x, y) = x2`

2`
+ y2k

2k
, (h0, h1) = (0,∞) and

M(h) =
2k−1∑

j=1

aj

∫∫

G(h)

y2k−1−jxj−1 dxdy +
2`−1∑

j=1

bj

∫∫

G(h)

x2`−1−jyj−1 dxdy.
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By symmetry of the sets G(h) = {x2`/(2`) + y2k/(2k) ≤ h}, when j is even all the above
integrals identically vanish. So we can write j = 2i+ 1. Hence,

M(h) =
k−1∑

i=0

a2i+1

∫∫

G(h)

y2(k−i−1)x2i dxdy +
`−1∑

i=0

b2i+1

∫∫

G(h)

x2(`−i−1)y2i dxdy.

We introduce w such that h = w2k`. Then, by using the change of variables x = wkX
and y = w`X, we get that

∫∫

G(h)

x2ry2s dxdy = w2(kr+`s)+k+`

∫∫

G(1)

x2ry2s dxdy =: Ir,sw
2(kr+`s)+k+`.

Hence,

M(h) =
k−1∑

i=0

a2i+1Ii,k−iw
2k`+(2i+1)(k−`) +

`−1∑

i=0

b2i+1I`−i,iw
2k`+(2i+1)(`−k)

= w2k`

(
k−1∑

i=0

a2i+1Ii,k−iρ
2i+1 +

`−1∑

i=0

b2i+1I`−i,iρ
−(2i+1)

)

= w2k`+k+`ρ1−2`

(
k−1∑

i=0

a2i+1Ii,k−iρ
2(`+i) +

`−1∑

i=0

b2i+1I`−i,iρ
2(`−1−i)

)

=: w2k`+k+`ρ1−2`

k+`−1∑

j=0

cj
(
ρ2
)j
,

where ρ = w2(k−`) and cj are arbitrary constants, given in terms of the parameters ar
and bs. Therefore, taking suitable values of these parameters we get any polynomial of
degree k+ `−1 in ρ2. Choosing it with all its roots positive and simple we obtain that M
has k + `− 1 simple positive roots and as a consequence a system of the form (6), which
clearly belong to family (5), such that for ε small enough has k+ `− 1 = (n+m)/2 limit
cycles. �

From the above result a natural question is:

Problem 2. Is (n+m)/2 the maximum number of limit cycles of

ẋ = Pn(x, y), ẏ = Qm(x, y)

where n 6= m and Pn and Qm are homogeneous polynomials of odd degrees n and m,
respectively?

A first challenge in the above problem is to deal with the simplest case, that corresponds
to n = 1 and m = 3.
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Problem 3. (i) Consider the cubic family

(7)

{
ẋ = ax+ by,

ẏ = cx3 + dx2y + exy2 + fy3.

Is 2 its maximum number of limit cycles?
(ii) Give a simple proof, if it is true, of the uniqueness of the limit cycle for equation

(8)

{
ẋ = y,

ẏ = −x3 + dx2y + y3.

Because of the difficulty to deal with (7) some efforts have been spend with the even
more concrete system (8). For it is known that:

• It has not limit cycles for d ≥ 0 and d < −2.679, see [66].
• It has at most one limit cycle −2.381 < d < 0, see [66].
• It has at least one limit cycle for −2.110 < d < 0, see [75].
• A numerically study seems to reduce the range of existence of limit cycles to
−2.198 < d < 0.

The results of the first two items are obtained by using suitable Dulac functions, see
next section for more details about this approach. The system is also studied with the
same tool for some values of d in [28].

2.3. Low degree classical Liénard systems. Liénard equations ẍ + f(x)ẋ + x = 0
are a subject of continuous study and for many functions f present isolated oscillations.
Maybe the most famous one is the van der Pol equation, for which f is a cubic polynomial.
These oscillations can be seen as limit cycles of the associated planar system:

(9)

{
ẋ = y − F (x),

ẏ = −x,
with F ′(x) = f(x) and F (0) = 0.

When F is a polynomial of degree n its maximum number of limit cycles, say Lie(n),
is not known in general. During many years people tried to prove the conjecture of Lins,
de Melo and Pugh ([102]) that asserted that Lie(n) = [(n − 1)/2], where [ ] denotes the
integer part function. This conjecture has been proved to be false for n = 7 in [59]
and later, counterexamples for any n ≥ 6, with 2 more limit cycles that the conjectured
number, have been given in [52]. These counterexamples were found by studying slow-
fast Liénard systems. Nowadays, no upper bound for arbitrary n is neither known nor
conjectured. For more detailed information, see also the survey paper [107].

In any case, in [102] it is proved that Lie(2) = 0 and Lie(3) = 1, and in [99] that
Lie(4) = 1. In particular, the proof of this last result is not easy at all. The first not
known number is Lie(5) ≥ 2.

There is a classical tool, based on the construction of the so-called Dulac functions that
usually gives elegant proofs of the upper bound of the number of limit cycles. It is the
Bendixson–Dulac theorem. We state a particular version of it, which is useful in many
cases to prove uniqueness (and hyperbolicity) of limit cycles.

Theorem 2.2 (A very particular version of Bendixson–Dulac theorem, [66]). Let V :
R2 → R a C1 function such that ∇V vanishes on {V (x, y) = 0} at finitely many points
and the set R2 \ {V (x, y) = 0} has finitely many connected components, all them are
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simply connected but eventually one, that might have a hole (i.e., its fundamental group
is Z). Assume there exists s ∈ R such that

Ms =
∂V

∂x
P +

∂V

∂y
Q+ s

(
∂P

∂x
+
∂Q

∂y

)
V

does not change sign and vanishes only on a set of zero mesure and, moreover, that the set
{V (x, y) = 0} does not contain periodic orbits of (10). Then, the C1 differential system

(10) ẋ = P (x, y), ẏ = Q(x, y),

has:

(i) not periodic orbits when either s ≥ 0 or no special region with a hole exists,
(ii) at most one periodic orbit when s < 0 that, when exists is a hyperbolic limit cycle.

The idea of its proof when s 6= 0 is to show that the possible periodic orbits can not
cut the set {V (x, y) = 0} and later to apply the Dulac theorem to each of the connected
components of R2 \ {V (x, y) = 0} with the Dulac function |V |1/s. When s = 0 it is
easier to be proved, simply observing that M0 = V̇ . To see a detailed proof of a more
general version of the above result, and several examples of application, see [67] and their
references. We detail a couple of examples of application for systems of the form (9).

Consider system (9) with F (x) = cx3 + x5. To prove that it has at most 1 limit cycle
we will apply Theorem 2.2 with F (x, y) = y2 − F (x)y + x2 + 2c/5 and s = −1. Then
M−1(x, y) = 2x2(10x4 + 10cx2 + 3c2)/5. It is easy to see that M−1(x, y) ≥ 0 and vanishes
only on the line x = 0. Moreover, since F is quadratic on y, R2 \ {V (x, y) = 0} has at
most one connected component that can have a hole. Hence, the corresponding system
(9) has at most one limit cycle which is hyperbolic when it exists. In fact, the divergence
of the vector field associated to the system is 3cx2 + 5x4. Since when c ≥ 0 it is always
greater or equal that zero, in this case the system has no limit cycles by the classical
Bendixson theorem. When c < 0 it is not difficult to see that the limit cycle exists. A
similar approach can be used to prove the uniqueness and hyperbolicity of the limit cycle
when F (x) = cx2k+1 + x2m+1, for any natural numbers k < m, see [65].

In [117] it is proved that taking F (x) = x(1−cx2)
1+cx2

with c > 0, system (9) has at most 1
limit cycle and that a limit cycle exists for some values of c. By using Theorem 2.2 with
V (x, y) = y2 − F (x)y + x2 and again s = −1 a simple and algebraic proof, by using the
above theorem, of the uniqueness and hyperbolicity of the limit cycles is given in [67].
The theorem applies because

M−1(x, y) = − 4cx4

(1 + cx2)2
≤ 0

and it only vanishes on the line x = 0, and R2 \ {V (x, y) = 0} = R2 \ {(0, 0)} has
only one connected component, which has a hole. This last assertion follows because the
discriminant of V with respect to y is

disy(V (x, y)) = F 2(x)− 4x2 = −x
2 (cx2 + 3) (3 cx2 + 1)

(cx2 + 1)2 ≤ 0

and only vanishes at x = 0.
In next problem we propose to apply this method for low degree Liénard systems.

Problem 4. Find a proof using Dulac functions that Lie(3) = 1 and Lie(4) = 1.
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We remark that a proof that Lie(2) = 0, follows easily from the above theorem. When
F (x) = ax + bx2, if we consider V (x, y) = e−2by and s = 1, it holds that M1(x, y) =
−ae−2by. Hence if a 6= 0 this Liénard system has not periodic orbits. When a = 0 it has
a reversible center at the origin, so it has periodic orbits but not limit cycles.

2.4. Riccati and Abel differential equations. Abel differential equations appear in
the study of some planar vector fields, see for instance Section 2.1, but they are also
interesting by themselves. In general, they write as

(11)
dx

dt
= A3(t)x3 + A2(t)x2 + A1(t)x+ A0(t),

where all the functions Aj are C1 and T > 0 periodic. We are interested on finding
conditions for these functions to control their number of T periodic solutions. Usually
the T periodic solutions that are isolated among all the T periodic solutions are also
called limit cycles.

It is remarkable that while when A3 = 0 (the Riccati differential equation) the maxi-
mum number of limit cycles is two, there is no upper bound for the number of limit cycles
for general Abel differential equations (11), even when the functions Aj are trigonome-
trical polynomials, see [103].

The upper bound for Riccati differential equation follows for instance from the fact
that, on its interval of definition, the solution of this differential equation, when A3 = 0
and satisfying ϕ(0; ρ) = ρ is

x = ϕ(t; ρ) =
B(t)ρ+ C(t)

D(t)ρ+ E(t)
,

where B,C,D,E are smooth functions that depend on Aj, j = 0, 1, 2, see for instance [86].
Hence, for each fixed t, it is a Möbius map. Therefore its number of periodic solutions is
given by the number of solutions of the quadratic equation obtained from the condition
ϕ(T, ρ) = ρ. Moreover, limit cycles correspond to isolated solutions of the quadratic
equation. Nevertheless we only know how to obtain explicitly these four functions when
a particular solution of the Riccati equation is known, see for instance [32]. Hence the
following problem remains:

Problem 5. For a general T periodic Riccati differential equation

dx

dt
= A2(t)x2 + A1(t)x+ A0(t)

give effective criteria to know when it has a continuum of periodic solutions, or it has
exactly 2, 1 or 0 limit cycles.

Two useful results to obtain upper bounds on the number of limit cycles for Abel
differential equation (11) are:

(i) If A3 6= 0 and does not change sign, then the maximum number of limit cycles
is 3, see [71].

(ii) If A0 = A1 = 0 and there exist a, b ∈ R such that aA3 + bA2 6= 0 and does not
change sign, then the maximum number of limit cycles is 3, see [3]. Notice that
one of them is x = 0.

One of the simplest natural open questions for Abel equations is:
8



Problem 6. Consider the family of trigonometric Abel differential equations

dx

dt
= (a0 + a1 sin t+ a2 cos t)x3 + (b0 + b1 sin t+ b2 cos t)x2.

Is 3 its maximum number of 2π periodic limit cycles?

Notice that for the above differential equation x = 0 is always a periodic solution. So,
if it is isolated from other 2π periodic solutions, it is one of these limit cycles. In [3]
the problem is introduced, the above two general results are applied to this particular
case, obtaining some particular positive answers, and the existence of examples with at
least 3 limit cycles is established. In [16] further complementary results are obtained. In
particular, it is proved that the answer is yes when a0b0 = 0.

In fact, the above problem can be extended to next one:

Problem 7. Given two integer numbers p > q ≥ 2, and m,n ∈ N, find the maximum
number of 2π periodic limit cycles for next family of Abel type differential equations

dx

dt
= Am(t)xp +Bn(t)xq,

where Am and Bn are 2π-trigonometric polynomials with respective degrees m and n.

This question was introduced in [5], where some lower bounds of the number of limit
cycles were given. A recent improvement of these bounds has been obtained in [87].

In fact, the class of Abel type equations is very interesting and intriguing. For instance,
the following result proved in [68] extends the results of previous item (i). We remark
that the result when n is odd was also obtained in [113].

Theorem 2.3. Consider the C1, T periodic Abel type differential equation

dx

dt
= A3(t)x3 + A2(t)x2 + A1(t)x+ A0(t),

where n ≥ 3 and 0 6= An does not change sign. Then:

(i) If n is odd, it has at most 3 limit cycles and the upper bound is sharp.
(ii) If n is even, there is no upper bound for its number of limit cycles.

2.5. A new Hilbert XVIth type problem. For each m ∈ N fixed, consider the follo-
wing family of polynomials differential equations:

• Family Mm given by

(ẋ, ẏ) =
m∑

j=1

ajXj(x, y), with Xj(x, y) =

{(
xnjykj , 0

)
, or,(

0, xnjykj
)
,

where (a1, a2, . . . , am) ∈ Rm and the couples (nj, kj) ∈ N2 vary among all the
possible values. Varyingm, this family covers all polynomial differential equations.

The letterM is chosen because the important point is to count the number of involved
monomials. We define HM [m] ∈ N∪{∞} to be the maximum number of limit cycles that
systems of the family Mm can have. This point of view is similar to the one of counting
the number of real solutions of planar fewnomial systems, see Section 7.2. In the recent
preprint [20] we prove:
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Theorem 2.4. It holds that HM [m] = 0 for m = 1, 2, 3 and for m ≥ 4, HM [m] ≥ m− 3.
Moreover, there exists a sequence of values of m tending to infinity such that HM [m] ≥
N(m), where

N(m) =
((m−3

2
) log(m−3

2
)

log 2

)
(1 + o(1)).

The proof of the first part for m = 1, 2, 3 follows by a case by case study. In par-
ticular, we prove that systems (ẋ, ẏ) =

(
axpyq, bxiyj + cxkyl

)
, where (a, b, c) ∈ R3 and

(p, q, i, j, k, l) ∈ N6
0, with N0 = N ∪ {0}, have no limit cycle. Currently we are working to

try to prove that HM [4] = 1.
The fact that HM [m] ≥ m − 3 for m > 3 is a straightforward consequence of known

results about classical Liénard systems. In fact, an example with this number of limit
cycles is already provided by the one given in [102] to prove that Lie(n) ≥ [(n − 1)/2],
see Section 2.3, simply taking F odd with n = 2m− 5. Then, the Liénard system (9) has
m monomials and m− 3 limit cycles.

The second part is a direct corollary of the recent paper [2] where the authors study
limit cycles for generalized slow-fast Liénard systems.

It is worth to mention that the celebrated examples of quadratic systems that prove
that H(2) ≥ 4 are given by systems with m = 8 monomials and so they have m− 4 limit
cycles, see [27, 114]. The slow-fast example of Liénard equation of degree 6 and 4 limit
cycles, that gives a counterexample of Lins, de Melo and Pugh’s conjecture, has also 8
monomials, see [52]. The cubic system given [98] that shows that H(3) ≥ 13 has m = 9
monomials and at least m+ 4 limit cycles.

Under the light of the above results, some natural problems are:

Problem 8. (i) Find upper and lower bounds for HM [m].
(ii) Find the minimal m such that there exists a planar polynomial differential system
with m monomials having at least m+1 limit cycles: the simplest polynomial differential
system with more limit cycles than monomials.

2.6. A second order differential equation. In [17, 126, 127] there are several motiva-
tions to study the T periodic solutions of the second order singular, T periodic differential
equation xp(t)x′′(t) = f(t), 0 < p ∈ R. From their results the following interesting pro-
blem can be formulated:

Problem 9. Let f(t) be a continuous T periodic function, f(t) 6≡ 0 and 0 < p ∈ R.
Find necessary and sufficient conditions on the function f that ensure the existence of
positive T periodic solutions of xp(t)x′′(t) = f(t).

Notice that a simple necessary condition is that f changes sign, because if x(t) is a T
periodic positive solution, then

∫ T

0

f(t)

xp(t)
dt =

∫ T

0

x′′(t) dt = x′(T )− x′(0) = 0.

10



A second necessary condition is that
∫ T

0
f(t) dt < 0. This can be easily proved by using

integration by parts. If x(t) is a T periodic positive solution, then
∫ T

0

f(t) dt =

∫ T

0

xp(t)x′′(t) dt = xp(t)x′(t)
∣∣∣
t=T

t=0
− p

∫ T

0

xp−1(t)(x′(t))2 dt

= −p
∫ T

0

xp−1(t)(x′(t))2 dt < 0.

In fact, in [126] it is proved that if p ≥ 2 and f(t) has only nondegenerate zeroes,
meaning that it is continuously differentiable, with nonvanishing derivative, in a neig-
hbourhood of each of its zeroes, the above two necessary conditions are also sufficient.
On the other hand, the same author proves in [127] that when p = 5/3 there is a function
f, of class C∞, satisfying both necessary conditions and such that the corresponding
differential equation has no positive periodic solution.

2.7. Number of centers. By Bezout’s theorem, a planar polynomial differential systems
of degree n > 0, with finitely many equilibrium points, has at most n2 equilibrium points.
Moreover, at most (n2 + n)/2 can have index +1, see for instance [44, 92]. Therefore, if
we define Cn as the maximum number of centers for this class of polynomials systems, it
holds that Cn ≤ (n2 + n)/2, because, remember that all centers have index +1. It is also
clear that C1 = 1.

Moreover, by using the beautiful Euler–Jacobi’s formula, it was proved in [37] that for
n ≥ 2 not all points of index +1 can lie on the same algebraic curve of degree at most
n − 1. Since all centers are on the algebraic curve given by the divergence of the vector
field equal zero, which has at most degree n− 1, we get that Cn ≤ (n2 + n)/2− 1.

Recall that this formula, for the planar case, asserts that if a polynomial system
P (x, y) = 0, Q(x, y) = 0, with P and Q with respective degrees n and m, has exactly nm
solutions (hence all them are finite and simple) then it holds that

∑

{(u,v) :P (u,v)=Q(u,v)=0}

R(u, v)

det(D(P,Q))(u, v)
= 0,

for any polynomial R(x, y) of degree smaller than n+m− 2, see for instance [80]. Here,
D(P,Q) denotes the differential of the map (P,Q).

On the other hand, in [36] it is proved that planar polynomial Hamiltonian differential
systems of degree n have at most [(n2 + 1)/2] centers and that this upper bound is
attained. Hence [(n2 + 1)/2] ≤ Cn. In fact, examples of Hamiltonian systems with this
number of centers are not difficult to be obtained. It suffices to consider

ẋ = F (y), ẏ = −F (x), with F (u) =
n∏

j=1

(u− j).

For these systems, centers and saddles are located like white and black squares on an
n× n chessboard. In short, for n ≥ 2 it is known that

[n2 + 1

2

]
≤ Cn ≤

n2 + n

2
− 1.

Hence C2 = 2, C3 = 5, and 8 ≤ C4 ≤ 9.

Problem 10. Determine the maximum number of centers, Cn, for planar polynomial
differential systems of degree n ≥ 4.
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Once the number Cn is determined, it is also interesting to know the different possible
phase portraits that systems having these maximal number of centers can have, see for
instance [14], where the Hamiltonian case when n = 3 is studied. One of the reasons is
that these systems are good candidates to have after perturbation different configurations
with many limit cycles.

2.8. On some rational difference equations. A classical problem for a given family
of planar vector fields is the so-called center-focus problem. It consists on the distinction
between these two types of monodromic equilibrium points: center or focus, or shortly
into determining all centers of the family. Next we present a similar question for some
rational difference equations. The goal here will be to determine all difference equations
that are periodic. It is proved in [32] that this periodicity is also strongly related with
the complete integrability of the discrete dynamical system associated to the difference
equation.

Let us introduce some definitions and state precisely the problem. Consider the family
of k-th order difference equations

(12) xn+k =
A0 + A1xn + A2xn+1 + · · ·+ Akxn+k−1

B0 +B1xn +B2xn+1 + · · ·+Bkxn+k−1

,

with
∑k

i=0Ai > 0,
∑k

i=0Bi > 0, Ai ≥ 0, Bi ≥ 0, and A2
1 + B2

1 6= 0. For every initial con-
dition (x1, x2, . . . , xk) ∈ (0,∞)n, they define a sequence {xi}i≥1 of positive real numbers.
One of these difference equations is called p-periodic if for all these initial conditions it
holds that xn = xn+p, for all 1 ≤ n ∈ N, and this value 0 < p ∈ N is the smallest number
with this property. That is, all the sequences with positive initial conditions generated
by (12) are p-periodic.

The following examples of p-periodic difference equations of the form (12) are known:

xn+1 = xn with p = 1, xn+1 =
1

xn
with p = 2,

xn+2 =
xn+1

xn
with p = 6, xn+2 =

1 + xn+1

xn
with p = 5,(13)

xn+3 =
1 + xn+1 + xn+2

xn
with p = 8.

Moreover, every p-periodic k-th order difference equation produces in a natural way, and
for each ` ∈ N, another one which is p`-periodic and of k`-th order. For instance, the one
of second order given in (13) gives

xn+2` =
xn+`

xn
with p = 6`, xn+2` =

1 + xn+`

xn
with p = 5`.

Similarly, every p-periodic k-th order difference equation can be unfold into a 1-parametric
family with the same property. It suffices to consider for any n ∈ N, yn = axn, with
0 6= a ∈ R. For instance, the above ones give rise to

yn+2` =
ayn+`

yn
with p = 6`, yn+2` =

a2 + ayn+`

yn
with p = 5`.

For short, all these new difference equations are called equivalent to (13).

Problem 11. Are there rational difference equations of the form (12) that are not equi-
valent to the five ones given in (13)?

12



The answer to the above question for k ∈ {1, 2, 3, 4, 5, 7, 9, 11} is no, see [41]. We
remark that when the condition of non-negativeness of the coefficients of (12) is removed
much more periods and periodic difference equations appear. For instance, when k = 1
there are periodic Möbius maps with all the periods. To see more information about
related problems, see [35] and its references.

3. Period function

Let γ(s), with s in a real open interval, be a smooth parameterized continua of periodic
orbits of a smooth planar autonomous differential system. Usually, if the system is
Hamiltonian the parameter s is taken to be the energy of the system. When the continuum
of periodic orbits ends in a critical point, then the maximal set covered by them is called
period annulus of the point. The function that assigns to each s the minimal period
of γ(s) is called period function and it is usually denoted by T (s). The zeroes of T ′(s)
are called critical periods and determine them is a key point to know the behaviour of
T (s). To know properties of this function (monotonicity, number of oscillations,. . . ) is
interesting from a theoretical point of view, as well as for applications for instance in
physics or ecology ([48, 116, 129]).

3.1. A class of Hamiltonian systems. From the results of [47, 50, 69] it is known
that, on the period annulus of the origin, the period function has at most one critical
period for the family of Hamiltonian systems with Hamiltonian

H(x, y) =
1

2

(
x2 + y2

)
+Hm(x, y),

where Hm(x, y) is a homogeneous polynomial of degree m ≥ 3. Next question proposes
to study if the same result holds for a more general class of Hamiltonian systems.

Problem 12. Consider a Hamiltonian system with a center at the origin and Hamil-
tonian

H(x, y) = H2n(x, y) +Hm(x, y), m > 2n,

where H2n and Hm are homogeneous polynomials of degrees 2n and m, respectively. Has
the period annulus of the origin at most 1 critical period?

In [4] it is proved that the answer is yes when m ≥ 4n − 2. So it remains to study
the cases 2n < m < 4n − 2. Notice that the simplest open question corresponds to the
Hamiltonian H(x, y) = H4(x, y) +H5(x, y).

3.2. Systems with homogeneous components. We consider again systems
{
ẋ = P2k+1(x, y),

ẏ = Q2`+1(x, y),

where P2k+1 and Q2`+1 are homogeneous polynomials of degrees 2k + 1 and 2` + 1,
respectively.

Problem 13. (i) Characterize the centers of the above family.
(ii) Which is the maximum number of oscillations of the period function for the centers
of the above family?

13



When k = ` both questions have a simple answer. The centers can be characterized
studying their expression in polar coordinates (x, y) = (r cos θ, r sin θ), because they are
easily integrable, see [9]. In fact, they write as

ṙ = f(θ)r2k+1, θ̇ = g(θ)r2k,

where

f(θ) = P2k+1(cos θ, sin θ) cos θ +Q2k+1(cos θ, sin θ) sin θ,

g(θ) = Q2k+1(cos θ, sin θ) sin θ − P2k+1(cos θ, sin θ) cos θ.

Hence the center conditions are that g does not vanish (otherwise the system would have
invariant lines through the origin) and

∫ 2π

0

f(θ)

g(θ)
dθ = 0,

where we have obtained this last equality because the solution of dr
dθ

= f(θ)
g(θ)

r with initial

condition r(0) = s > 0 is

r(θ; s) = s exp

(∫ θ

0

f(ψ)

g(ψ)
dψ

)
.

Hence by imposing that r(0) = r(2π) the condition follows.
The period function can also be obtained from the above equations. In fact,

T (s) =

∫ 2π

0

1

|g(θ)|r2k(θ; s)
dθ =

(∫ 2π

0

exp
(
−2k

∫ θ
0
f(ψ)
g(ψ)

dψ
)

|g(θ)| dθ

)
1

s2k
=:

Ak
s2k

,

and it is constant for k = 0 (these are the linear centers) and decreasing for k ≥ 1.
In [22] the authors studied all the phase portraits when k = 0 and ` = 1, modulus the

number of limit cycles, which recall that at least is 2, see Section 2.2.

3.3. About the maximum number of critical periods. Let H(n) denote the maxi-
mum number of limit cycles that planar polynomial systems of degree n can have. From
[31] it is known that

H(n) ≥ Kn2 log(n), for some K > 0.

On the other hand, if we denote as T (n) the maximum number of critical periods that
planar polynomial systems of degree n can have, from the results of [70] it is also known
that

T (n) ≥ 1

4
n2.

Recently, this lower bound has been essentially doubled in [24, 53]. A natural question
is:

Problem 14. Is it true that T (n) ≥ Cn2 log(n) for some C > 0?
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3.4. Reversible quadratic systems. Although there are same subsequent results, in
[108] there is an excellent source of information about one of the most famous open
problems about critical periods. It was proposed by Chicone in 1994 in a review of
MathSciNet and it reads as follows:

Problem 15. Consider the family of reversible quadratic centers

(14)

{
ẋ = −y + xy,

ẏ = x+Dx2 + Fy2.

Is 2 its maximum number of critical periods?

The above systems are sometimes called Loud’s systems, because this author studied
them in 1964, see [26, 108].

3.5. Some reversible equivariant planar differential systems. Any planar analytic
system, (ẋ, ẏ) = (f(x, y), g(x, y)), can be written in complex coordinates as ż = F (z, z̄),
where z = x + iy. Moreover, when the origin is a weak focus, after a constant rescaling
of time, it writes as ż = iz +G(z, z̄), where G starts at least with second order terms.

Recall that, in real coordinates, one of the simplest criteria to know that the origin
is a center is the so-called Poincaré’s reversibility criterion. It simply says that if a
equilibrium point (the origin) is monodromic and the system is invariant by the change
of variables and time (x, y, t) → (x,−y,−t) then it is a center. This is so because if
(x(t), y(t)) is a solution of the system, then the same happens for (x(−t),−y(−t)) and by
the monodromy condition and the uniqueness of solutions, both trajectories intersect and,
hence, they coincide. This proves that this solution is a periodic orbit which is symmetric
with respect the line y = 0. Notice that in complex variables this criterion works when
the differential equation is invariant by the change of variables and time (z, t)→ (z̄,−t).
Simply by considering symmetries with respect arbitrary straight lines passing through
the origin we obtain the following well-known general result: if the origin of a differential
equation ż = F (z, z̄) is a monodromic critical point and, for some α ∈ R, this equation
is invariant by the change of variables and time (z, t) → (eiαz̄,−t), then the origin is a
(reversible) center.

If we consider the origin of ż = F (z, z̄) to be a weak focus, and we write this equation
as

ż = iz +
∑

m+n≥2

Am,nz
mz̄n, Am,n ∈ C,

then the condition for this equilibrium point to be a reversible center is simply that there
exists some α ∈ R such that Am,n = −Ām,nei(1−m+n)α, for all m,n ∈ N.

Another remarkable class of planar systems are the so-called Zk-equivariant differential
equations, see for instance [100, Sec. 7] and their references. They are differential equa-
tions ż = F (z, z̄) that are invariant by a rotation through 2π/k about the origin, or in
other words, such that the change of variable z → eiβz, for β = 2π/k, k ∈ N, leaves them
invariant. For these differential equations, the phase portrait on each sector centered at
the origin and width 2π/k, is repeated k times.

Consider the following family of polynomial Zk-equivariant differential equations

(15) ż = iz + (zz̄)nzk+1,

with n ∈ N and k a positive integer. It has a reversible center at the origin because
of Poincaré’s extended result with α = π/k. We are interested on the behaviour of the
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period function associated to this center. Notice that when n = 0 the differential equation
is holomorphic and so it has an isochronous center at the origin ([26]).

Proposition 3.1. Consider the period function associated to the origin for (15). Then its
behaviour and number of critical periods coincide with the one of the period function of the
origin of the quadratic reversible center (14) with F = 1 + D and D = −k/(2(k + n)) ∈
[−1/2, 0) .

Proof. Equation (15) in polar coordinates z = reiθ writes as

ṙ = r2n+k+1 cos(kθ), θ̇ = 1 + r2n+k sin(kθ).

Taking R = r2n+k, Θ = kθ, and reparametrizing the time by the constant factor k, the
above system of equations is converted into

R′ = bR2 cos Θ, θ′ = 1 +R sin Θ, where b = 1 +
2n

k
.

Introducing again real coordinates X + iY = ReiΘ this last system of equations writes as

X ′ = −Y + bX2 − Y 2, Y ′ = X + (1 + b)XY.

Now, taking x = −(1 + b)Y, y = −(1 + b)X, and a change of sign of the time, we arrive
to {

ẋ = −y + xy,

ẏ = x− 1
1+b

x2 + b
1+b

y2,

which is precisely a system of the form (14) with F = 1 + D and D = −1/(1 + b) ∈
[−1/2, 0) .

Finally, notice that the period of a periodic orbit surrounding the origin for this last
system is proportional to the time spend by a periodic orbit of system (15) for going from
θ = 0 to θ = 2π/k. Since the system is Zk-equivariant, the total period of this periodic
orbit is k times this last time, and the result follows. �

Notice that when n = 0 we recover one of the quadratic isochronous centers, (D,F ) =
(−1/2, 1/2), see [26]. Hence we have reduced our problem to a similar one, but for
the quadratic reversible centers (14) on the line D − F + 1 = 0 and −1/2 < D < 0.
Unfortunately, despite all the efforts done to study this quadratic family, the behaviour
of the period function on this line is not yet know, although it is believed that it is
monotonous decreasing, see [108]. Hence the following question arises:

Problem 16. Is the period function associated to the period annulus of the origin of the
differential equation ż = iz + (zz̄)nzk+1, with n and k a positive integers, monotonous
decreasing?

In fact, the above differential equation has other centers whose period functions also
deserve to be studied.

4. Piecewise linear systems

In non-smooth dynamics the differential equations appearing in the simplest models are
piecewise linear. Moreover, the discontinuity curve is often given by a straight line. These
models have attracted the attention of many scientists not only because its simplicity,
but also for the accuracy of the results obtained by using them, compared with the real
observations, see more details for instance in [1, 18, 94]. We present a couple of questions
concerning their number of limit cycles.
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4.1. Algebraic limit cycles and related questions. In this section we compare some
results about limit cycles for quadratic systems with similar ones for piecewise linear sys-
tems with a straight line of separation to highlight the parallelism between both settings.

The existence of examples with 4 limit cycles for quadratic systems has been already
revealed in Section 2.5 and an example with 3 limit cycles for piecewise linear systems is
given in [105]. We remark that when we consider limit cycles for piecewise linear systems
we only refer to crossing limit cycles, see [55, 62]. This means that the two sides of the
limit cycle cut transversally the line of discontinuity and at these points of cutting both
vector fields point to the same half-plane, see Figure 1. In other words, the crossing limit
cycles never follow the discontinuity line, avoiding the so-called sliding motion, see again
Figure 1.

Recall that a limit cycle of a smooth differential system is called algebraic it it is an
oval of an irreducible algebraic curve. The degree of the limit cycle is the one of the
curve. Similarly, a (piecewise crossing) algebraic limit cycle for a piecewise linear system
is given also by a topological oval such that all its points are contained, on each of the
sides of the discontinuity, in an irreducible algebraic curve in any of the two sides. Then
the degree of this limit cycle is a couple (m,n) ∈ N2 being each one of these numbers the
degrees of each one of the invariant algebraic curves.

4.1. Algebraic limit cycles and related questions. In this section we compare some
results about limit cycles for quadratic systems with similar ones for piecewise linear sys-
tems with a straight line of separation to highlight the parallelism between both settings.

The existence of examples with 4 limit cycles for quadratic systems has been already
revealed in Section 2.5 and an example with 3 limit cycles for piecewise linear systems is
given in [105]. We remark that when we consider limit cycles for piecewise linear systems
we only refer to crossing limit cycles, see [55, 62]. This means that the two sides of the
limit cycle cut transversally the line of discontinuity and at these points of cutting both
vector fields point to the same half-plane, see Figure 1. In other words, the crossing limit
cycles never follow the discontinuity line, avoiding the so-called sliding motion, see again
Figure 1.

Recall that a limit cycle of a smooth differential system is called algebraic it it is an
oval of an irreducible algebraic curve. The degree of the limit cycle is the one of the
curve. Similarly, a (piecewise crossing) algebraic limit cycle for a piecewise linear system
is given also by a topological oval such that all its points are contained, on each of the
sides of the discontinuity, in an irreducible algebraic curve in any of the two sides. Then
the degree of this limit cycle is a couple (m,n) ∈ N2 being each one of these numbers the
degrees of each one of the invariant algebraic curves.

ẋ = −y, ẏ = x

ẋ = −15x− 27y + 12, ẏ = 4x+ 6y − 2

Figure 1. Example of algebraic (crossing) limit cycle of a piecewise linear system

In Figure 1 an example of piecewise algebraic limit cycle of degree (2, 2) for a piecewise
linear system is showed, see [21]. It is formed by a piece of the parabola (x+3y)2−3y−1 =
0 and a piece of the circumference x2 + y2 − 1 = 0. We remark, that although algebraic
limit cycles with sliding do exist, see for instance [21], we do not consider them.

The results about algebraic limit cycles for quadratic systems have been obtained along
the years in several papers, see for instance [30] and the references therein. Until today,
irreducible algebraic limit cycles of degrees 2,4,5 and 6 are known and it is also proved
that there are not limit cycles of degree 3. It is not known if these degrees are the only
possible ones.

On the other hand, in [21] it is proved that for piecewise linear systems, given any
couple of natural numbers (m,n) ∈ N2, with n ≥ 2 and m ≥ 2, there are algebraic limit
cycles of degree (m,n). Moreover, when n = m it is also known that the two pieces of
the piecewise algebraic limit cycle do not correspond to a single algebraic curve. In that
paper also appear examples with 2 algebraic and hyperbolic limit cycles and examples
with a double semi-stable algebraic limit cycle.

Examples of quadratic systems with 2 critical periods are given for the quadratic re-
versible centers (14) introduced in Section 3.4. See also [79] for other examples. We
do not know that the number of critical periods with piecewise linear systems has been
studied when the separation curve is a straight line. The case where this curve is more
general is studied in [130].
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The table in next problem collects the above results and shows the best known lower
bound for the objects described in the left column. When a question mark appears it
means that it is not proved that the given lower bound is the actual value. It is believed
that the table should be as it is but without question marks, but as we have already
explained, the only known result is that algebraic and non-algebraic limit cycles never
coexist for piecewise linear systems with a straight line of separation ([21]).

Problem 17. Improve this table:

Quadratic sys. Piecewise linear sys.

Limit cycles (l.c.) 4? 3?
Algebraic limit cycles 1? 2?

Non hyperbolic algebraic l.c. 0? 1?
Coex. of algebraic and non-algebraic l.c. NO? NO

Critical periods 2? ?

4.2. Another Hilbert’s XVI type problem. Let L(n) denote the maximum number
of (crossing) limit cycles of planar piecewise linear differential systems with two zones
separated by a branch of an algebraic curve of degree n. A branch is an unbounded
curve diffeomorphic to R and that defines a closed set. We also stress that although the
commonly used name is linear, indeed both vector fields are affine. In principle, although
it seems improvable, we admit that some of the numbers L(n) could be infinity. Recall
that H(n) denotes the maximum number of limit cycles that planar polynomial systems
of degree n can have. With these notations in mind we propose the following problem.

Problem 18. Improve, if possible, the lower bounds of this table:

Polynomial case Linear piecewise case

H(2) ≥ 4 L(1) ≥ 3
H(3) ≥ 13 L(2) ≥ 4

H(n) ≥ Kn2 log(n) L(n) ≥ [n/2]

The lower bounds for the values ofH(n) given in the above table have already appeared
in this paper, see Sections 2.5 and 3.3. Recently, very good lower bounds for H(n) and n
small are given in [115]. For instance, H(4) ≥ 28 or H(5) ≥ 37.

The lower bounds for L(n) and n = 1, 2 are given in [105] and [74], respectively. In [11]
it is proved that L(3) ≥ 7 and in the recent preprint [7] that L(3) ≥ 8. Also in [74] the
general lower bound for L(n) given above is proved with the aim of showing that L(n)
tends to infinity when n does. We believe that there is room for improving it. Next, we
include an idea of its proof.

Define fn(x, ε) = εTn(x) with ε > 0 suitable small, where Tn(x) is the Chebyshev
polynomial of the first kind, i.e. for |x| ≤ 1, Tn(x) = cos(n arccosx), and for |x| > 1, its
analytic extension. It is known that Tn(x) is a polynomial of degree n and all its roots
are real and in [−1, 1].

The curves of degree n, y = fn(x, ε), have a single branch and separate the plane in
two zones, Ω+ when y ≥ fn(x, ε) and Ω− when y ≤ fn(x, ε). We consider the piecewise
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linear differential systems

(16) (ẋ, ẏ) =

{
(x− 4y − 2, 1

2
x− y), on Ω+,

(−y + 1, x), on Ω−.

Some easy calculations show that the first integrals of each one of the linear systems are

H+(x, y) = 8y + x2 − 4xy + 8y2 and H−(x, y) = −2y + x2 + y2,

respectively. If instead of the separation curve y = fn(x, ε) we consider the separation
line y = 0, all the solutions are periodic orbits because H±(x, 0) = x2. The important
point is that the ones that pass trough the points (±xk, 0), where xk 6= 0 is a zero of
Tn(x), are the ones that remain as limit cycles, for ε small enough, see Figure 2.

More specifically, let m = [(n − 2)/2], and ±x0, . . . ,±xm be the 2(m + 1) zeros of
fn(x, ε) which are not zero. Then

xk = cos

(
2k + 1

2n
π

)
, k = 0, 1, . . . ,m.

Then, for each k ∈ {0, 1, . . . ,m} and ε small enough,

Γk := {(x, y)| H+(x, y) = H+(P±k), y ≥ 0} ∪ {(x, y)| H−(x, y) = H−(P±k), y ≤ 0},
is a periodic orbit of our piecewise system (16), where P±k = (±xk, 0) for k ∈ {0, 1, . . . ,m}.

Figure 2. Separation curve defined by a Chebyshev polynomial of degree
10 and 5 limit cycles.

To prove that Γk is a hyperbolic limit cycle we compute the derivative of the Poincaré
map, which is a composition of two maps and prove that it is not 1. This can be done
by using the nice formula ([8])

Π′(0) =
〈X(0), (γ′0(0))⊥〉
〈X(T ), (γ′1(0))⊥〉 exp

(∫ T

0

divX(ϕ(t)) dt

)
,

where 〈·, ·〉 is the inner product of two vectors, the superscript ⊥ denotes the orthogonal
of a two dimensional vector, that is (u, v)⊥ = (−v, u), and γ0(s) and γ1(s) are the local
expressions of two transversal sections Σ0 and Σ1 to a vector field X, and T is the time
moving from P = γ0(0) to Π(P ) = γ1(0), see Figure 3.

5. On global asymptotic stability

We will present three problems about global asymptotic stability of dynamical systems.
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Figure 3. Poincaré map

5.1. A Markus-Yamabe problem for differential equations. Markus-Yamabe con-
jecture for ordinary differential equations was stated by L. Markus and H. Yamabe in
1960, and it said:

Let ẋ = F (x), x ∈ Rn, be a smooth differential equation such that F (0) =
0 and for all x ∈ Rn, all the eigenvalues of the matrix DF (x) have negative
real part. Then the origin is globally asymptotically stable.

Nowadays it is known that it is true in dimensions 1 (it has a very simple proof) and 2
(see [61, 77, 81]), and it is false in higher dimensions. A smooth counterexample in
dimension 4 was given in 1996 in [12]. It was obtained by perturbing a continuous linear
piecewise differential system defined in R4 having a hyperbolic periodic orbit and so it
also has a periodic orbit. Polynomial counterexamples in dimension 3 and higher were
given in 1997 in [45]. These counterexamples are

ẋ = −x+ z1(x+ yz1)2, ẏ = −y − (x+ yz1)2, żi = −zi,
i = 1, 2, . . . , n− 2. It can be seen that at any point all the eigenvalues of the differential
matrix DF are −1, and that it has the particular solution

(x, y, z1, . . . , zn−2) =
(
18et,−12e2t, e−t, . . . , e−t

)
.

Notice that this solution tends to infinity when t increases. Therefore, it appears the
following natural question:

Problem 19. Are there smooth vector fields in R3 under the hypotheses of the Markus–
Yamabe’s conjecture and having periodic orbits?

5.2. A Markus–Yamabe/La Salle problem for DDS. J. P. La Salle in 1976 proposed
some possible sufficient conditions for discrete dynamical systems with a fixed point,
xm+1 = F (xm), x ∈ Rn, to be globally asymptotically stable, see [96]. Some of them are
discrete versions of the Markus–Yamabe conditions given in previous section and have
been studied in [39, 40]. Two of these conditions are:

(C1) For all x ∈ Rn, ρ (DF (x)) < 1,

(C2) For all x ∈ Rn, ρ (|DF (x)|) < 1,

where ρ is the spectral radius of the differential matrix and, given a square matrix A =(
ai,j
)
, |A| denotes the new matrix with all its entries |ai,j|. It is known that ρ(A) ≤ ρ(|A|),

see [64]. Hence Condition C2 is stronger than C1, because ρ(|A|) < 1 =⇒ ρ(A) < 1, but
it can be easily seen that ρ(A) < 1 6=⇒ ρ(|A|) < 1.

In fact, in [39] the authors already gave an example due to W. Szlenk of a rational map
satisfying condition C1, for n = 2, for which the origin is not globally asymptotically sta-
ble, because it has a 4-periodic orbit. Similarly, polynomial maps satisfying condition C1,
for n ≥ 3, for which the origin is not globally asymptotically stable are presented in [45].
These maps have orbits that tend to infinity. The following question remains open:
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for n ≥ 3, for which the origin is not globally asymptotically stable are presented in [45].
These maps have orbits that tend to infinity. The following question remains open:

Problem 20. Let F : R2 → R2 be a smooth map having a fixed point and such that

ρ (|DF (x)|) < 1, for all x ∈ R2.

Is it true that the fixed point is globally asymptotically stable?

5.3. Random linear differential or difference equations. Given a n-th order linear
homogeneous differential equation it is natural to wonder which is the probability of the
zero solution of being a global attractor. Let us formalize this question.

Consider for instance the 3-rd order linear differential equation

Ax′′′(t) +Bx′′(t) + Cx′(t) +Dx(t) = 0,

where A,B,C,D are real continuous random variables. It is natural to require that all
these random variables are independent and identically distributed (i.i.d.). Also it seems
reasonable to impose that they are such that the random vector (A,B,C,D) has uniform
distribution in R4. But such a distribution is impossible for unbounded probability spaces.
Anyway, let us see that there is a natural election for it.

It is clear that the solutions of the above differential equation do not vary if we multiply
the equation by a positive constant. This means that in the space of parameters, R4,
all the differential equations with parameters belonging to the same half-straight line
passing through the origin are the same. Hence, we can ask for a probability distribution
density f of the coefficients such that the random vector

(17)

(
A

S
,
B

S
,
C

S
,
D

S

)
, with S =

√
A2 +B2 + C2 +D2,

has a uniform distribution on the sphere S3 ⊂ R4, that is a compact set. In [34] it is
proved the following result:

Theorem 5.1. Let X1, X2, . . . , Xn be i.i.d. one-dimensional real random variables with
a continuous positive density function f . The random vector

(
X1

S
,
X2

S
, . . . ,

Xn

S

)
, with S =

( n∑

i=1

X2
i

)1/2

,

has a uniform distribution in Sn−1 ⊂ Rn if and only if each Xi is a normal random
variable with zero mean.

Hence it is natural to consider linear random homogeneous differential equations of
order n

(18) Anx
(n)(t) + An−1x

(n−1)(t) + · · ·+ A2x
′′(t) + A1x

′(t) + A0x(t) = 0,

where all Aj are i.i.d. random variables with N(0, 1) distribution.
To know the probability that the zero solution is globally asymptotically stable is

equivalent to know the probability, say pn, that all the roots of its associated random
characteristic polynomial

Q(λ) = Anλ
n + An−1λ

n−1 + · · ·+ A1λ+ A0
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have negative real part. Recall that the conditions among the coefficients that imply
this property are given by algebraic relations among them and can be obtained via the
Routh–Hurwitz criterion.

In [34] it is proved that pn ≤ 1/2n, so limn→∞ pn = 0. Furthermore, it is also shown
that p1 = 1/2, p2 = 1/4, p3 = 1/16, p4 < 1/32, and, by using Monte Carlo simulation,
that p4 ' 0.0092 and p5 ' 0.0007. Hence the following questions arise:

Problem 21. Let pn be the probability that the zero solution of the n-th order linear
random differential equation (18) is globally asymptotically stable. Find the asymptotic
expansion of pn at n =∞. Is it true that the sequence pn is strictly decreasing?

Similar problems can be consider for the random difference equations of order n of type

(19) Anxk+n + An−1xk+n−1 + · · ·+ A1xk+1 + A0xk = 0,

where all the coefficients are again i.i.d. random variables with N(0, 1) distribution. In
this situation, the global asymptotic stability happens when all the zeros of the associ-
ated random characteristic polynomial Q(λ) have modulus smaller than 1. Recall that
this property is characterized by the so-called Jury criterion. In fact, it is possible to
get Jury conditions from Routh–Hurwitz conditions and viceversa by using the Möbius
transformation that sends the left hand part of the complex plane into the complex ball
of radius 1 and its inverse.

If we call qn the probability of the zero solution of (19) to be globally asymptotically
stable, for instance, q1 = 1/2, q2 = arctan(

√
2)/π ' 0.304, q3 ' 0.172, q4 ' 0.103, and

q5 ' 0.059, see again [34].

6. Some geometrical problems

In this section we present three problems with a geometric flavour.

6.1. Triangular billiards. Consider a mathematical ideal convex billiard with a smooth
C1 boundary. A punctual ball moves on it alternating between free motion (following a
straight line) and specular reflections from its boundary. When the particle hits the
boundary it reflects from it without loss of speed with an elastic collision. Then, it is
know that there are always periodic trajectories ([91]). The number of times that a
periodic trajectory touches the boundary before closing is called its period.

If we consider a convex billiard, but with a polygonal boundary it is natural to wonder
if periodic trajectories also always exist. For this type of billiards if the punctual ball
arrives to a corner the trajectory stops and, of course, it is not periodic. In fact, even for
triangular billiards this question is an open problem.

Problem 22. Do all triangular billiards have some periodic trajectory?

For many triangular billiards the answer is yes, see [10, 85]. For instance, this is the
case when the boundary of the billiard is an acute triangle. In this case there is always a
periodic trajectory of period 3. It is formed by the triangle that has as vertices the basis
points at the boundaries of the three heights, see Figure 4. Sometimes this trajectory is
called Fagnano’s trajectory, because he found it in 1775 for solving another problem: find
the inscribed triangle to an acute triangle with smaller length, see Figure 4. The answer
is also affirmative for rectangular triangles, isosceles triangles ([46]), for obtuse triangles
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Figure 4. Trajectories with periods 3 and 6 for an acute triangular billiard.

with no angle larger that 100 degrees ([118]), and also for rational triangles ([15]). Recall
that a triangle is called rational if all its angles are rational multiples of π.

6.2. An extended Poncelet’s problem. Given two convex algebraic ovals, γ and Γ,
as in Figure 5, consider the Poncelet’s map P from the exterior curve Γ into itself, also
introduced in this figure. The iteration of this procedure is sometimes called Poncelet’s
procedure.

where p ∈ Γ, pq1 ∩Γ is the first point in the set {pq1 ∩Γ, pq2 ∩Γ} that we find when, starting

from p, we follow Γ counterclockwise, see Figure 1. Notice that P−1(p) = pq2 ∩ Γ.

p

P (p)

P−1(p)

P 2(p)

Γ

γ

FIGURE 1. The Poncelet’s map.

The implicit function theorem together with the geometrical interpretation of the con-

struction of P imply that it is a Cr diffeomorphism from Γ into itself. So P can be seen as

a Cr diffeomorphism of the circle and has associated a rotation number

ρ = ρ(P ) = ρ(γ, Γ) ∈ (0, 1/2).

See for instance [1, 2] for the definition of rotation number. Notice that usually a rotation

number is in (0, 1). Our choice of q1 for the Poncelet’s map implies that indeed ρ < 1/2. It

is also well known that if Φ is any diffeomorphism of the circle of class at least C2 and such

that ρ(Φ) ̸∈ Q then Φ is conjugated to a rotation of angle ρ(Φ). So this is the situation for

the Poncelet’s map P when ρ(P ) ̸∈ Q and r ≥ 2.

With the above notation the celebrated Poncelet’s Theorem asserts that if γ and Γ are

ellipses, with arbitrary relative positions, and ρ = ρ(γ, Γ) ∈ Q then the Poncelet’s map is

also conjugated to the rotation of angle ρ in S1. In geometrical terms, if starting at some

point p ∈ Γ the Poncelet’s process of drawing tangent lines to γ closes after n steps then

the same holds for any other starting point in Γ. There are several proofs of this nice result

in [10, Sec. 4.3] and a different one, based on a beautiful approach of Bertrand and Jacobi

through differential equations and elliptic integrals in [9, pp. 191-194]. In Section 4 we

give another proof based on dynamical and computational tools, by using the results of [4].

The problem of determining explicit conditions over the coefficients of the two ellipses to

ensure that the Poncelet’s map is conjugated to a rational rotation was solved by Cayley.

An excellent exposition of this result is given in [7].

A monograph devoted to Poncelet’s theorem and related results has recently appeared,

see [6].

2

Figure 5. Poncelet’s map.

The name for this map is introduced in [33] because Poncelet, a French engineer and
a mathematician, considered it for first time when both ovals are ellipses, while he was
prisoner in Saratov (Russia) during 1812-1814. He proved the following nice theorem
that is illustrated in Figure 6 when n = 3.

Theorem 6.1 (Poncelet’s theorem). If given an initial point p on the exterior ellipse Γ
the Poncelet’s procedure closes for first time after n steps, then the same happens for any
other initial condition.

There are several proofs of the above theorem, see [123]. In fact, in the language of
dynamical systems the above result can be extended giving the following theorem:

Theorem 6.2. Let P be the Poncelet’s map between two ellipses. Then P is conjugated
with a rotation R of the circle. In particular,

(i) if the rotation number of R is rational then all points are periodic for P and with
the same period (original Poncelet’s theorem).
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This fact is Poncelet’s theorem, also known as Poncelet’s closure
theorem, and is named after Jean Poncelet.
Figure 6. Two 3 steps closed Poncelet’s trajectories.

(ii) if the rotation number of R is irrational then all points of any orbit of P are dense
on the exterior ellipse.

In [33] it is proved the following result, that shows that Poncelet’s result is not true
for all ovals.

Proposition 6.3. Consider γ = {x2n+y2n = 1} and Γ = {x2m+y2m = 2} with n,m ∈ N.
Then their associated Poncelet’s map has rotation number 1/4 and it is conjugated to a
rotation if and only if n = m = 1.

A natural question is the following:

Problem 23. Are there two irreducible algebraic curves of degrees n and m, with n+m >
4, having each one of them an oval, for which the Poncelet’s map P is well defined and
it is conjugated to a rotation of the circle?

This problem is somehow reminiscent of the classical Birkhoff’s conjecture. Recall that
it claims that the boundary of a strictly convex integrable billiard table is necessarily an
ellipse (or a circle as a special case). Recently, in [90] it is proved a local version of this
conjecture: a small integrable perturbation of an ellipse must be an ellipse.

Inspired on the above point of view, we propose next local version of the above question:

Problem 24. Consider the ovals γ = {x2 +y2−1 = 0} and Γε = {p2(x, y)+εpm(x, y) =
0} where Γ0 is an ellipse that surrounds γ, p2(x, y)+εpm(x, y) = 0 is an irreducible curve,
with pm a polynomial of degree m ≥ 3, and ε is a small parameter. Is it true that the
Poncelet’s map associated to both ovals is conjugated to a rotation if and only if ε = 0?

6.3. Loewner’s conjecture. By using the complex notation introduced in Section 3.5
we consider the Cauchy–Riemman operator

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Then
∂2

∂z̄2
=

1

4

(
∂2

∂x2
− ∂2

∂x2
+ 2i

∂2

∂x∂y

)
.

Similarly, given 1 < n ∈ N, we can define ∂n

∂z̄n
. Given a neighbourhood of the origin

U ⊂ R2 and a class Cn+1 function f : U → R such that f(0, 0) = 0, we look at the planar
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differential equation

ẋ = 2n Re

(
∂n

∂z̄n
f(x, y)

)
, ẏ = 2n Im

(
∂n

∂z̄n
f(x, y)

)
.(20)

For instance for n = 1 and 2 we have

(ẋ, ẏ) = (fx(x, y), fy(x, y)), n = 1,

(ẋ, ẏ) = (fxx(x, y)− fyy(x, y), 2fx,y(x, y)), n = 2.

Recall that the index is an integer number associated to any isolated equilibrium point
of a planar differential equation that measures the number of turns of its associated vector
field near it, see [58] for a precise definition. When this isolated equilibrium point admits
a finite sectorial decomposition (this always happens for instance in the analytic case,
for non-monodromic singularities, see [89]) and e, h, and p denote its number of elliptic,
hyperbolic, and parabolic sectors, respectively, then the index is 1+ e−h

2
, due to Poincaré’s

index formula.
According to [124], next conjecture was proposed by Loewner around 1950, see also

[104].

Problem 25 (Loewner’s conjecture). Assume that the origin is an isolated equilibrium
point of the differential equation (20) and that f is analytic at this point. Then the index
of the associated vector field at the origin is is not greater than n.

Another related conjecture is Carathéodory’s conjecture, that asserts that every smooth
convex embedding of a 2-sphere in R3, i.e. an ovaloid, must have at least two umbilics.
Recall that for any surface in R3, the eigenspaces of the second fundamental form de-
fine two orthogonal line fields (principal directions) whose singularities are exactly the
so-called umbilics. It is known that if Loewner’s conjecture is true when n = 2 the
Carathéodory’s conjecture is also true in the analytic case, see for instance [6, 83].

Loewner’s conjecture is true for n = 1 and several authors have proved it for n = 2,
although there are several wrong proofs, see some comments in [82, 83]. Anyway, it would
be very interesting to have simple proofs of Loewner’s conjecture for n = 2 and to further
investigate it, also for functions of class Cn+1.

7. Problems involving polynomials

7.1. A moments problem. Arno van den Essen, the author of the interesting mono-
graph [128] about the Jacobian conjecture, which recall that asserts the bijectivity of
the complex polynomial maps with constant Jacobian, call our attention to the following
question:

Problem 26. Let f(x1, x2, . . . , xn) be a polynomial in C[x1, x2, · · · , xn] such that the
following moment conditions hold

Mm :=

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

fm(x1, x2, . . . , xn) dx1 dx2 · · · dxn = 0, m ≥ 1.

Is it true that f = 0?
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This question and some extensions where some especial weights are added to the above
integrals, is very related with the Jacobian conjecture, see [54, 63]. Obviously it can also
be extended to wider classes of maps f.

In fact, the answer when n = 1 is yes, see [112], but anyway, in this case it would be
nice to get a simple direct proof. Notice that when n = 1 for |t| small enough

1

1− tf(x)
= 1 +

∞∑

m=1

(tf(x))m,

and since the convergence is uniform, we get that under the above hypotheses,

∫ 1

0

1

1− tf(x)
dx = 1 +

∞∑

m=1

tm
∫ 1

0

fm(x) dx = 1 +
∞∑

m=1

Mmt
m = 1.

Hence the answer of the above question when n = 1 is equivalent to prove that if f(x)
be a polynomial in C[x] such that for all |t| small enough:

∫ 1

0

1

1− tf(x)
dx = 1,

then f = 0.
Also an interesting related question is the following:

Problem 27. (i) Let f(x) be a polynomial in C[x] with k monomials. Is there a value
N(k) such that if the following finite set of moment conditions hold:

Mn :=

∫ 1

0

fn(x) dx = 0, 1 ≤ n ≤ N(k),

then f = 0?
(ii) If the answer is yes, find N(k) or a good upper bound of this number.

This type of questions also appear in some classical problems for Abel differential equa-
tions, where the vanishing of certain moments imply the solution of the center problem,
see for instance [42].

7.2. Around Kouchnirenko’s conjecture. Descartes’ rule implies that a 1-variable
real polynomial with m monomials has at most m− 1 simple positive real roots.

The Kouchnirenko’s conjecture was posed as an attempt to extend this rule to the
several variables context. In the 2-variables case this conjecture said that:

A real polynomial system f1(x, y) = f2(x, y) = 0 would have at most
(m1 − 1)(m2 − 1) simple solutions with positive coordinates, where mi is
the number of monomials of each polynomial fi, i = 1, 2.

This conjecture was stated by A. Kouchnirenko in the late 70’s, and published in [93] in
1980. In 2002, in [84] a family of counterexamples given by two trimonomials, being their
minimal degree 106, was constructed. In 2003 a much simpler family of counterexamples
was presented in [101] again formed by two trimonomials, but of degree 6. Both have
exactly 5 simple solutions with positive coordinates instead of the 4 predicted by the
conjecture. A similar counterexample is:

26



Proposition 7.1 ([72]). The bivariate trinomial system

(21)





P (x, y) := x6 +
61

43
y3 − y = 0,

Q(x, y) := y6 +
61

43
x3 − x = 0,

has 5 real simple solutions with positive entries.

It is not difficult to find numerically 5 approximated solutions of the system. They are
(x̃1, x̃5), (x̃2, x̃4), (x̃3, x̃3), (x̃4, x̃2), (x̃5, x̃1), where x̃1 = 0.59679166, x̃2 = 0.68913517, x̃3 =
0.74035310, x̃4 = 0.77980435 and x̃5 = 0.81602099. A proof that these solutions actually
exist follows by using Poincaré-Miranda theorem, see [72]. Recall that this theorem is an
extension of the classical Intermediate Value theorem (or Bolzano’s theorem) to higher
dimensions. It was stated by H. Poincaré in 1883 and 1884, and proved by himself in
1886. In 1940, C. Miranda ([110]) re-obtained the result as an equivalent formulation of
Brouwer fixed point theorem:

Theorem 7.2 (Poincaré-Miranda ([109])). Set B = {x = (x1, . . . , xn) ∈ Rn : Li < xi <
Ui, 1 ≤ i ≤ n}. Suppose that f = (f1, f2, . . . , fn) : B → Rn is continuous, f(x) 6= 0 for
all x ∈ ∂B, and for 1 ≤ i ≤ n,

fi(x1, . . . , xi−1, Li, xi+1, . . . , xn) ≤ 0 and

fi(x1, . . . , xi−1, Ui, xi+1, . . . , xn) ≥ 0.

Then, there exists s ∈ B such that f(s) = 0.

In Figure 7 we illustrate the hypotheses of the theorem for n = 2.
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Then, there exists s ∈ B such that f(s) = 0.

In Figure 7 we illustrate the hypotheses of the theorem for n = 2.

f1(x1, x2) = 0

f2(x1, x2) = 0

f1 < 0 f1 > 0

f2 < 0

f2 > 0

x1

x2

Figure 7. A Poincaré-Miranda box.
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To prove Proposition 7.1 we consider the following 5 intervals, with x̃i ∈ Ii,

I1 =

[
1

2
,
1619

2500

]
, I2 =

[
1619

2500
,
18

25

]
, I3 =

[
18

25
,

75857

100000

]
,

I4 =

[
75857

100000
,
4

5

]
, I5 =

[
4

5
,

83

100

]
.

and prove that our system has 5 actual solutions (x1, x5), (x2, x4), (x3, x3), (x4, x2),
(x5, x1), with xi ∈ Ii. By Descartes’ rule we know that there is exactly one simple positive
real root of P (x, x). The corresponding (x3, x3) is in in I3 × I3. By the symmetry of the
system, if (x∗, y∗) is one of its solutions then (y∗, x∗) also is. Finally, we can prove the
existence of two more solutions (and so, their symmetric ones) by using the Poincaré-
Miranda theorem in the boxes I1 × I5 and I2 × I4, see again [72].

In [56, 101] the authors prove that any bivariate trinomial system m1 = m2 = 3 has at
most 5 real simple solutions with positive entries and henceforth this bound is sharp. A
very interesting problem is:

Problem 28. Find a reasonable (or sharp) upper bound in terms of mi for the maxi-
mum number of simple solutions with positive coordinates, for a real polynomial system
f1(x, y) = f2(x, y) = 0, where mi, i = 1, 2, is the number of monomials of each fi.

Not sharp upper bounds are known from the nice approach of Khovanskĭı who was a
pioneer in 1980 in the study of the so called fewnomials ([93]). His general upper bound
is as follows: given a system of n real polynomial equations in n variables with a total of

n+ k+ 1 distinct monomials possesses at most 2(n+k
2 )(n+ 1)n+k nondegenerate solutions

with positive entries. This upper bound has been improved in [13] decreasing it until
e2+3

4
2(k

2)nk. In fact, in [13] when n > k, an example with [n+k
k

]k nondegenerate solutions
with positive entries is given, showing that for k fixed and n big enough this last upper
bound is almost asymptotically sharp.

To illustrate that the above results are not sharp enough, let us apply them to the planar
trinomial situation (n = 2) where the sharp upper bound is 5. In principle, it seems that
k = 3, because there are 6 involved monomials, but notice that the number of solutions
in the first quadrant remains unchanged when we multiply any of the equations by any
monomial xiyj. Hence, before applying the given bounds, we can do this modification in a
convenient way to force to coincide two of them. In this way the value k can be assumed
to be k = 2. Hence, Khovanskĭı’s upper bound gives 2634 = 5184 and its improvement
gives 20.

Recall again that by using Descartes’ rule it is easy to answer this last problem in one
variable. Moreover, the m− 1 corresponding to positive solutions implies a global upper
bound of 2m − 1 solutions: m − 1 positive roots, m − 1 negative ones and, eventually,
the root 0, that can be multiple, with any multiplicity.

It is natural to wonder if the following modified Kouchnirenko’s bound works.

Problem 29. Is (2m1− 1)(2m2− 1) the maximum number of simple solutions of a real
polynomial system f1(x, y) = f2(x, y) = 0, where mi is the number of monomials of each
fi?
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It is very easy to find examples of uncoupled systems having (2m1−1)(2m2−1) simple
solutions. For instance, for m1 = m2 = 3, then (2m1 − 1)(2m2 − 1) = 25. Consider
(x2 − 1)(x2 − 4)x = x5 − 5x3 − x. Then the system

{
x5 − 5x3 − x = 0,
y5 − 5y3 − y = 0,

has the 25 simple solutions (xi, xj) with xi, xj ∈ {−2,−1, 0, 1, 2}. Similarly, the system
{
x5+r − 5x3+r − x1+r = 0,
y5+s − 5y3+s − y1+s = 0, s > 0, r > 0,

has 16 simple solutions and 9 multiple ones.
Another example with 25 solutions can be constructed from our counterexample (21).

It is obtained by taking the equations yP (x2, y2) = 0 and xQ(x2, y2) = 0, giving




(
x12 +

61

43
y6 − y2

)
y = x12y +

61

43
y7 − y3 = 0,

(
y12 +

61

43
x6 − x2

)
x = y12x+

61

43
x7 − x3 = 0,

which has 4 × 5 = 20 solutions, 5 in each quadrant, plus 5 more on the axes: (0, 0),
(±x∗, 0) and (0,±y∗), for some x∗ and y∗. Again 25 solutions and here (0, 0) is not a
simple solution.

Of course there are also natural extensions to n equations and n variables of the above
problems.

7.3. Casas-Alvero’s conjecture. Casas-Alvero arrived to the next conjecture at the
turn of this century, when he was working trying to obtain an irreducibility criterion for
two variable power series with complex coefficients ([23]).

Problem 30 (Casas-Alvero’s conjecture). If a complex polynomial P of degree n > 1
shares roots with all its derivatives, P (k), k = 1, 2 . . . , n− 1, then there exist two complex
numbers, a and b 6= 0, such that P (z) = b(z − a)n.

Notice that, in principle, the common root between P and each P (k) might depend
on k. Several authors have got partial answers, but as far as we know, the conjecture
remains open. For n ≤ 4 the conjecture is a simple consequence of the wonderful Gauss–
Lucas theorem, that asserts that the complex roots of P ′(z) are in the convex hull of the
roots of P (z). It is also known that the conjecture is true for low degrees and also when n
is pm, 2pm, 3pm, or 4pm, for some prime number p and m ∈ N. Nowadays, the first cases
left open are n = 24, 28, or 30. See the nice survey [57] and its references.

It is also known that if the conjecture holds in C, then it is true over all fields of
characteristic 0. On the other hand, it is not true over all fields of characteristic p,
see [78]. For instance, consider P (x) = x2(x2 + 1) in characteristic 5 with roots 0, 0, 2
and 3. Then P ′(x) = 2x(2x2 + 1), P ′′(x) = 12x2 + 2 = 2(x2 + 1), and P ′′′(x) = 4x and all
them share roots with P.

Adding the hypotheses that P is a real polynomial and all its roots are real, the
conjecture has a real counterpart, that also remains open. It says that P (x) = b(x− a)n

for some real numbers a and b 6= 0. For this case, from Rolle’s theorem it follows easily
for n ≤ 4. However, it is not difficult to see that this tool does not suffice to prove it for
bigger n.
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Remarkably, in the real case it is proved in [57] that if the condition for one of the
derivatives of P is removed, then there exist polynomials, different from b(x − a)n, sa-
tisfying the remaining n − 2 conditions. The construction presented in that paper of
some of these polynomials is a nice consequence of the Brouwer’s fixed point theorem in
a suitable context.

Recently in [43] it is shown that the natural extension of this real conjecture to the
smooth world is not true. There it is considered the following problem: Fix 1 < n ∈ N
and let F be a class Cn real function such that F (n)(x) 6= 0 for all x ∈ R, having n real
zeroes, taking into account their multiplicities. Assume that F shares zeroes with all its
derivatives, F (k), k = 1, 2 . . . , n − 1. Is it true that F (x) = b(f(x))n for some 0 6= b ∈ R
and some f, a class Cn real function, that has exactly one simple zero?

The answer for the above problem is “yes” for n ≤ 4 and “no” for n = 5. More
concretely, it is proved that there exists r > 1 such that if we consider

F (x) =

∫ x

0

∫ u

0

∫ w

1

∫ z

c

∫ y

1

(
r − sin(t)

)
dt dy dz dw du

it holds that F has the five zeroes 0, 0, 1, c, d satisfying 0 < 1 < c < d,

F ′(0) = 0, F ′′(1) = 0, F ′′′(c) = 0, F (4)(1) = 0, and F (5)(x) = r − sin(x) > 0,

and F is not of the proposed form.

8. Some conjectures with a dynamical flavour

One of the most famous open problems is the so-called 3x + 1 conjecture or Collatz
problem ([95]). Recall that it assures that for any x0 ∈ N, the sequence defined by

xn+1 = g(xn) =

{
3xn + 1, when xn is odd,

xn/2, when xn is even,

arrives after finitely many steps to the 3-periodic behaviour 4, 2, 1, 4, 2, 1, . . .
We end this paper with three similar but less known conjectures. The first one was

proposed by N. Sloane ([121]) in a journal of recreational mathematics.

Problem 31 (Conjecture of multiplicative persistence). Given n ∈ N, let Π(n) ∈ N
be the product of all its digits. Set Pm(n) ∈ N for the first positive integer such that
ΠPm(n)(n) = ΠPm(n)+1(n), where Π0 = Id i Πk(n) = Π(Πk−1(n)). Is it true that for all
n ∈ N, Pm(n) ≤ 11?

For instance, for n = 68889, Π(68889) = 6× 8× 8× 8× 9 = 27648 and

68889→ 27648→ 2688→ 768→ 336→ 54→ 20→ 0→ 0→ 0→ · · · .
Then Pm(6889) = 7, because Π7(6889) = Π8(6889) = 0 is the first coincidence. The
smallest numbers with respective multiplicative persistence 1, 2, . . . , 11 are

10, 25, 39, 77, 679, 6788, 68889, 2677889, 26 888 999, 3 778 888 999, 277 777 788 888 899.

There are not examples with higher multiplicative persistence for n < 10233.

Notice that for instance Π(M) = 2193476. In general, a simple first observation already
pointed out in [121] is that the prime factors of any Π(n) with persistence bigger than 3
must be either 2i3j7k or 3i5j7k. Therefore, it suffices to study the persistence of these
numbers. This is so, because Π(n) = 2i3j5k7m, is a product of one digit prime numbers,
with all the exponents greater or equal than zero, and moreover if 2 and 5 appear together
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2i3j5k7m ends with zero and then Π2(n) = Π3(n) = 0. This problem has been recently
extended to other basis and studied from a dynamical systems point of view in [51].

Problem 32 (196 conjecture). Let f : N→ N be defined as f(n) = n+rev(n), where rev
is the map that reverses the order of the digits of n. Then, there are infinitely many na-
tural numbers n such that fk(n), for 0 < k ∈ N, where f 0 = Id and fk(n) = f(fk−1(n)),
is never a palindromic number. Moreover, the smallest of these numbers is 196.

For instance, if n = 183, f(183) = 183 + 381 = 564, and

183→ 564→ 564 + 465 = 1029→ 1029 + 9201 = 10230→ 10230 + 3201 = 13431,

that is a palindromic number. Starting with n = 89, we need 24 iterations to arrive to
a palindromic number, that is 88132 000 23188. Until today, starting with n = 196 no
palindromic numbers have been found yet, see [111]. It is not clear the origin of this
problem. The first reference goes back to Lehmer in 1938 ([97]). The question recovered
some interest after the paper [125], published in 1967. Sometimes the numbers n such
that fk(n) is never a palindromic number are called Lychrel’s numbers (it is an acronym
of the name Cheryl).

The first numbers that could be Lychrel’s numbers are

196, 295, 394, 493, 592, 689, 691, 788, 790, 879, 887, 978, 986, . . .

In Figure 8 we plot the function h that assigns to each n ∈ N the minimum value
h(n) ≤ 1000 such that fh(n) is a palindromic number, or 1000 when none of the first 1000
iterates is a palindromic number. I thank Antoni Guillamon for sharing with me the
Maple code that I have used to generate this figure. For the sake of clarity, we restrict
the plot to the strip 1 ≤ h(n) ≤ 40. Its spikes correspond to the 13 values of the above
list. Notice also that for all the other values of n, the function h(n) is at most 24.

Figure 8. Possible Lychrel’s numbers.

Although in basis 10 the existence of Lychrel’s numbers is an open problem, it is not
difficult to find some of them in other basis. For instance in basis 2, if we take n = 101102

is one of them. This is so, because f 4(n) = 101101002,

101102 → 101102 + 011012 = 1000112 → 10101002 → 11010012 → 101101002,

f 8(n) = 10111010002, f
12(n) = 1011110100002, and in general ([19]) after 4m iterates we

arrive to a number that starts with 10, after has m + 1 ones, then 01 and it ends with
m+ 1 zeroes.
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Problem 33 (Singmaster’s conjecture). There is a value S ∈ N such that any number
different from 1 appears in the Pascal’s triangle at most S times.

This conjecture was proposed by David Singmaster in 1971, see [119]. He already
proved in 1975 that there are infinitely many values that appear 6 times. One of them is
120,

120 =

(
120

1

)
=

(
120

119

)
=

(
16

2

)
=

(
16

14

)
=

(
10

3

)
=

(
10

7

)
.

In fact, it holds that

m =

(
m

1

)
=

(
m

m− 1

)
=

(
n+ 1

k + 1

)
=

(
n+ 1

n− k

)
=

(
n

k + 2

)
=

(
n

n− k − 2

)
,

where for any i ∈ N, n = F2i+2F2i+3 − 1, k = F2iF2i+3 − 1, m =
(
n+1
k+1

)
, and Fj is the j-th

Fibonacci number, being F0 = 0 and F1 = 1, see [120]. The only known number that
appears 8 times is

3003 =

(
3003

1

)
=

(
3003

3002

)
=

(
78

2

)
=

(
78

76

)
=

(
15

5

)
=

(
15

10

)
=

(
14

6

)
=

(
14

8

)
.

Hence, if the conjecture holds, S ≥ 8. It seems that Singmaster thought that S could be
10 or 12, although many people starts thinking that S = 8. Notice that any 1 < m ∈ N
appears finitely many times because this value can only appear in the first m+ 1 files.
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