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Abstract
Consider a family of planar systems depending on two parameters (n, b) and
having at most one limit cycle. Assume that the limit cycle disappears at
some homoclinic (or heteroclinic) connection when �(n, b) = 0. We present
a method that allows us to obtain a sequence of explicit algebraic lower and
upper bounds for the bifurcation set �(n, b) = 0. The method is applied to two
quadratic families, one of them is the well-known Bogdanov–Takens system.
One of the results that we obtain for this system is the bifurcation curve for
small values of n, given by b = 5

7n1/2 + 72
2401n− 30024

45294865n3/2 − 2352961656
11108339166925n2 +

O(n5/2). We obtain the new three terms from purely algebraic calculations,
without evaluating Melnikov functions.
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1. Introduction

Consider a smooth family of planar differential equations (ẋ, ẏ) = (P (x, y; n, b),
Q(x, y; n, b)), (n, b) ∈ R2, for which the existence of at most one limit cycle is already
known and moreover all the bifurcations occurring in the family are well understood. For this
family we could say that the Qualitative theory of ordinary differential equations has achieved
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