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Abstract. We characterize the local analytic integrability of weak saddles for complex
Liénard systems.

1. Introduction and main results

Since the pioneering works of Élie and Henri Cartan ([1]) and Balthasar van der Pol ([23, 24])
where Liénard type differential equations([14]),

d2x

dt2
+ f(x)

dx

dt
+ g(x) = ẍ+ f(x)ẋ+ g(x) = 0,

appear in electrical problems, many other situations have been modeled by differential equa-
tions that can be transformed into them. For instance, Liénard equations appear in mechanical
problems, in predator-prey systems ([8]) and chemical or biochemical reactions ([16, 18]). It
is also remarkable that Hilbert 16th problem restricted to planar polynomial quadratic dif-
ferential equations, which recall that in this case asks about a uniform upper bound for the
number of limit cycles that the quadratic systems can have, can be reduced to the study of
some Liénard type differential equations, see [25].

Two of the main questions about them are to know whether they are integrable or not, and
to give criteria for controlling their number of limit cycles. This paper deals with the first
one.

Poincaré proved that if a real planar analytic differential system has a weak focus at a critical
point, then this point is a center if and only if the equation has an analytic first integral defined
in a neighborhood of this point, see for instance [13, 17, 19, 21]. Then the characterization of
the centers for non-degenerate critical points is equivalent to the characterization of the local
analytic integrable cases.

Let us recall the simple and well understood characterization of the centers, and so the
local analytic integrable cases, for classical real analytic Liénard systems, g(x) ≡ x. If we
write these equations in R2 as

ẋ =
dx

dt
= y + F (x), ẏ = −x,

with F (x) = −
∫ x

0
f(s) ds analytic at zero and F (0) = F ′(0) = 0, then the origin is a center

if and only if F is an even function, see for instance [3, 6, 27]. We include for completeness a
very simple proof, which essentially is the one appearing in [3, 27]. Write F = F o +F e, where
F e(x) = (F (x) + F (−x))/2 is the even part of F and F o its odd part. If F = F e, then the
origin is a center by the classical criterion of Poincaré: the origin is a monodromic critical point
(a center or a focus) and the differential equation is reversible, because it is invariant by the
change of variables and time (x, y, t)→ (−x, y,−t). If F 6= F e, then F o(x) = ax2k+1+O2k+2(x)
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with a 6= 0, k ∈ N and we need to prove that the origin is not a center. Consider the scalar
product

(y + F (x),−x) · (y + F e(x),−x)⊥ = x
(
F (x)− F e(x)

)
= xF o(x) = ax2k+2 +O2k+3(x),

where, as usual (u, v)⊥ = (−v, u) is a perpendicular vector to (u, v). Then, on a neighborhood
of the origin, it does not change sign and vanishes only on x = 0, which is not an invariant
curve of the Liénard system. Therefore, the level sets of the Liénard system corresponding
to F = F e, which are closed curves surrounding the origin, are curves without contact for
the flow of the original Liénard system. This implies that the origin is not a center, as we
wanted to prove. In other words, we have used the first integral of the integrable case F = F e

as a Lyapunov function for the non-integrable one F 6= F e. Another proof of this result is
given in [5]. It is based on the computation of the so-called Lyapunov constants, that are the
obstructions for finding an analytic first integral of the Liénard system.

One of the motivations of this paper is to prove a similar result, but for classical Liénard
systems with a weak saddle at the origin,

ẋ = y + F (x), ẏ = x,

with F , also analytic and F (0) = F ′(0) = 0. Notice that its eigenvalues are ±1. Recall that
a saddle point is called weak if its eigenvalues are ±λ with 0 6= λ ∈ R. That is, weak saddles
are hyperbolic saddles such that the divergence of the vector field vanishes on them.

In this situation we have not the clear geometric interpretation of integrable system as the
one for which the orbits are closed and a more analytical approach is needed. In fact, the
method that we will use is the computation of the so-called (resonant) saddle quantities that
we will recall below, which as we will see, is similar to the computation of the Lyapunov
quantities used in [22]. It is also worth to mention that the duality between centers and
saddles, given by the complex change of variables and time (x1, y1, t1) = (ix, y, it), that
transforms one case into the other one when considering the system in C2, does not allow
to use the simple geometric interpretation that we have on R2. Other Liénard-like complex
systems with a weak saddle are studied in [10].

Before stating our main result, we introduce some notation and motivate the extension of
our problem to C2.

The general center problem for analytic vector fields in R2 with an elementary singular
point of the form

ẋ = −y +O2(x, y), ẏ = x+O2(x, y),

is sometimes embedded by the change of variable u = x+ iy and the corresponding conjugate
variable v = x− iy into the complex vector fields of the form

u̇ = u+O2(u, v), v̇ = −v +O2(u, v).

The next extension of the above system is to consider analytic vector fields in C2 of the form

(1) u̇ = λu+O2(u, v), v̇ = −µ v +O2(u, v),

where λ, µ ∈ C \ {0}.
It is already proved by Poincaré ([12, 20]) that if λ/µ 6∈ Q+ then the differential equation

(1) has no local analytic first integral in a neighborhood of zero. The case λ/µ = p/q ∈ Q+,
with gcd(p, q) = 1, is called [p : −q] resonant case and in this situation, adding some more
necessary conditions, the local analytic integrability is sometimes possible. Let us briefly
recall how to obtain these conditions.

Changing the time, if necessary, the [p : −q] resonant case can be written as

(2) u̇ = p u+O2(u, v), v̇ = −q v +O2(u, v),
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with p, q ∈ Z+. For this system the linear part has the analytic first integral H0(u, v) =
uqvp and we can seek the conditions for the existence of an analytic first integral H(u, v) =
H0(u, v) + Op+q+1(u, v) for system (2). Hence we get the equation Ḣ(u, v) = v1H

2
0 (u, v) +

v3H
3
0 (u, v)+ · · · , and the so-called [p : −q] resonant saddle quantities vi are polynomials of the

coefficients of system (2). If all the vi are zero we say that we have a formal analytic resonant
saddle, see [11, 26] and references therein. From this result we obtain also the existence of a
local analytic first integral, see [21].

In this work we aim to give a simple and self-contained proof of the characterization of the
integrable complex analytic differential systems in C2 of the form

(3) ẋ = y + F (x), ẏ = ax, 0 6= a ∈ C,

where F (x) is an analytic function of x without linear and constant terms. We prove:

Theorem 1. System (3) is locally integrable at the origin if and only if F (x) is and even
function of x.

Notice that if we restrict our attention to (x, y) ∈ R2, our result covers the classical Liénard
case with a weak focus at the origin, a = −1, and the weak saddle case, a = 1, which has a
[1 : −1] resonance. Our result also extends to C2 some of the results of [15].

As a corollary of Theorem 1 and using the ideas of Cherkas([3]) and Christopher, Lloyd
and Pearson([6]) we get the characterization of the real analytic integrable weak saddles for
general Liénard systems, see also [2, 7, 9]. This corollary is also recently proved in [15] and
extends to the weak saddle case the known results for the weak focus case.

Consider the differential systems in R2 of the form

(4) ẋ = y + F (x), ẏ = g(x),

where F and g are analytic functions of x, F (x) without linear and constant terms and with
g(0) = 0 and g′(0) 6= 0 and set G(x) =

∫ x

0
g(ξ)dξ.

Corollary 2. System (4) has an integrable resonant weak saddle (resp. weak focus) at the
origin if and only if g′(0) > 0 (resp. g′(0) < 0) and F (x) = φ(G(x)), for some analytic
function φ with φ(0) = 0.

2. Proof of the results

Proof of Theorem 1. System (3) can be transformed into system

(5) ẋ = y + F (x), ẏ = x,

doing the change of variables x = x, Y = by and the change of time dt = b ds with b any of
the roots 1/

√
a. Observe that for simplicity we write again y instead of Y.

Consider F (x) =
∑∞

i=2 aix
i. As explained in the introduction, to find the saddle quantities

we propose a formal first integral of the form

(6) H(x, y) = x2 − y2 +
∞∑
k=3

Hk(x, y),

where Hk(x, y) are homogeneous polynomials that can be written

Hk(x, y) =
∑
i+j=k

ci,jx
iyj.
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Now we compute the derivative of H along the vector field associated to system (5) and we
obtain a linear system for each function Hk. For instance for H3 we have the linear system

0 1 0 0
3 0 2 0
0 2 0 3
0 0 1 0




c3,0
c2,1
c1,2
c0,3

 = −


2a2
0
0
0

 .

From the last equation we obtain c1,2 = 0. Now we go to the second equation and we have
c3,0 = 0. These two conditions are the only ones that we will use for the next steps of the
proof. The linear system for H4 is

0 1 0 0 0
4 0 2 0 0
0 3 0 3 0
0 0 2 0 4
0 0 0 1 0




c4,0
c3,1
c2,2
c1,3
c0,4

 = −


2a3 + 3a2c3,0

2a2c2,1
a2c1,2

0
0

 .

From the last equation we obtain c1,3 = 0. Next, we consider the third equation, and taking
into account that c1,2 = 0, we deduce c3,1 = 0. Finally, the first equation gives us that a3
must be zero, taking into account that c3,0 = 0, obtaining the first condition to have formal
integrability for system (5). The linear system for H5 is

0 1 0 0 0 0
5 0 2 0 0 0
0 4 0 3 0 0
0 0 3 0 4 0
0 0 0 2 0 5
0 0 0 0 1 0




c5,0
c4,1
c3,2
c2,3
c1,4
c0,5

 = −


2a4 + 3a3c3,0 + 4a2c4,0

2a3c2,1 + 3a2c3,1
a3c1,2 + 2a2c2,2

a2c1,3
0
0


From the last equation we have c1,4 = 0, now going to the fourth one, and taking into account
that c1,3 = 0, we arrive to c3,2 = 0. Finally, from the second equation, and taking into account
that a3 = 0 and c3,1 = 0, we have c5,0 = 0. Similarly, the linear system for H6 is

0 1 0 0 0 0 0
6 0 2 0 0 0 0
0 5 0 3 0 0 0
0 0 4 0 4 0 0
0 0 0 3 0 5 0
0 0 0 0 2 0 6
0 0 0 0 0 1 0





c6,0
c5,1
c4,2
c3,3
c2,4
c1,5
c06


= −



2a5 + 3a4c3,0 + 4a3c4,0 + 5a2c5,0
2a4c2,1 + 3a3c3,1 + 4a2c4,1
a4c1,2 + 2a3c2,2 + 3a2c3,2

a3c1,3 + 2a2c2,3
a2c1,4

0
0


.

Now, taking into account that c1,2 = c3,0 = 0, c1,4 = c3,2 = c5,0 = 0, and a3 = 0 we obtain
that c1,5 = c3,3 = c5,1 = 0 and that a5 must be zero, that is the second condition to have
integrability for system (5).

Let us prove the theorem by induction. Our induction hypothesis is that for each n odd,
the necessary conditions for system (5) to have a formal first integral H of the form (6) are:

cn,0 = cn−2,2 = · · · = c3,n−3 = c1,n−1 = 0, cn,1 = cn−2,3 = · · · = c3,n−2 = c1,n = 0,

and a3 = a5 = · · · = an = 0.
In fact, until now, we have prove the induction hypothesis for n = 3 and n = 5. Clearly,

the proof for n = 5 is not needed to use the induction method but we have included it for the
sake of clarity.
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For any m we have that the linear system obtained that (6) is a formal first integral is

0 1 0 0 0 · · · 0
m 0 2 0 0 · · · 0
0 m− 1 0 3 0 · · · 0

0 · · · . . . 0
. . . · · · 0

0 · · · 0 3 0 m− 1 0
0 · · · 0 0 2 0 m
0 · · · 0 0 0 1 0





cm,0

cm−1,1
cm−2,2
...
c2,m−2
c1,m−1
c0,m


=

−



2am−1 + 3am−2c3,0 + · · ·+ (m− 2)a3cm−2,0 + (m− 1)a2cm−1,0
2am−2c21 + 3am−3c31 + · · ·+ (m− 3)a3cm−3,1 + (m− 2)a2cm−2,1
am−3c12 + 2am−4c22 + · · ·+ (m− 4)a3cm−4,2 + (m− 3)a2cm−3,2

...
a2c1,m−2

0
0


.

Let us prove our induction hypothesis for any n (odd) assuming that it is true for n− 2.
When m = n is odd the determinant of the above linear system is different from zero and

then the system is compatible and determined. Moreover, using the induction hypothesis
and starting from the last equation and going up in the other equations we arrive to cn,0 =
cn−2,2 = · · · = c3,n−3 = c1,n−1 = 0, as we wanted to prove.

However for m = n + 1 even we have that the determinant of the corresponding linear
system is zero. Anyhow, using again our induction hypothesis, from the last equation we
have c1,n = 0 and going up in the equations we get that cn,1 = cn−2,3 = · · · = c1,n = 0 and the
first equation reduces to

0 = 2an + 3an−1c3,0 + · · ·+ (n− 1)a3cn−1,0 + na2cn,0.

Then, we know that ci,0 = 0 if i is odd and if i is even the ci,0 is multiplied by ai with i odd.
Since, moreover again by induction hypothesis, we know that a3 = a5 = · · · = an−2 = 0 we
obtain 0 = 2an which implies an = 0, as we wanted to show.

This proves that system (5) has only a formal first integral when F is even. Then, applying
[21, Cor. 3.2.6] we have that under this hypothesis system (5) has an analytic first integral
around the origin. �

Proof of Corollary 2. Following [3, 6], let us see that system (4) can be locally transformed
into a classical Liénard system in R2 of the form

ẋ = y + F̃ (x), ẏ = σx,

where σ = sign(g′(0)) and F̃ is an analytic function. Let u be the root of 2σG(x) that has
the same sign that x,

u = φ(x) = sign(x)
√

2σG(x) = x
√
|g′(0)|(1 +O1(x)),

which is well defined and analytic in a neighborhood of x = 0. Moreover, it has an analytic
inverse x = ξ(u) = u(1 +O1(u))/

√
|g′(0)|. The transformation u = φ(x) converts system (4)

into the new system

u̇ =
σg(ξ(u))

u
(y + F (ξ(u))), ẋ = g(ξ(u)).
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Since g(ξ(u))/u = σ
√
|g′(0))|+O1(u) is analytic and nonzero in a neighborhood of the origin

we can do the change of time dt/ds = σu/g(ξ(u)) and it becomes the classical Liénard system,

u′ = y + F (ξ(u)), ẋ = σu.

By Theorem 1 the condition to have integrability for such system is that F (ξ(u)) is an analytic
even function of u. The chain of equalities

F (ξ(u)) = φ̂(u2) = φ̂(2σG(x)) = φ(G(x))

proves the corollary. �

By using Lüroth theorem as in [4] we get the following effective characterization of real
integrable polynomial Liénard systems with a weak saddle at the origin:

Corollary 3. Consider system (4) with F and G polynomials. Then it has an integrable

resonant weak saddle at the origin if and only if there exist polynomials F̂ , Ĝ and u, with
u(0) = u′(0) = 0, u′′(0) 6= 0, such that

F (x) = F̂ (u(x)), G(x) = Ĝ(u(x)).

The strong saddles case. The problem of the local integrability for strong (that is, non-
weak) saddles of Liénard systems is not considered in our work. Notice that if instead of
system (4) we take in R2 the system

(7) ẋ = y + F (x), ẏ = x,

with F (0) = 0 but F ′(0) 6= 0, it has a strong saddle at the origin. It is convenient to write
F ′(0) = 1/c− c, with c ∈ R+ \ {1}. We remove the case c = 1 to avoid the weak saddle case.
Then its eigenvalues are −c < 0 < 1/c, and the Poincaré necessary condition for having an

analytic first integral at the origin is c2 = q/p ∈ Q+. In fact, if F (x) ≡ (
√
p/q −

√
q/p)x it

is not difficult to prove that

H(x, y) =
(√

p x+
√
q y
)q(√

p y −√q x
)p

is a first integral of the linear Liénard system. We do not know if there are nonlinear integrable
cases in system (7).
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INTEGRABILITY OF LIÉNARD SYSTEMS WITH A WEAK SADDLE 7

[7] A. Gasull, J. Torregrosa, Center problem for several differential equations via Cherkas’ method, J.
Math. Anal. Appl. 228 (1998), 322–343.

[8] G.F. Gause, The struggle for existence, Baltimore, Williams and Wilkins, 1934; new edition New York,
Dover, 1971.
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