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Abstract. The celebrated Brouwer translation theorem asserts
that for a preserving orientation fixed point free homeomorphism
of the plane, each point belongs to an invariant region where the
dynamics is continuously conjugate to a translation. In this work
we prove that if we start with a Cm,m ∈ N∪{∞}, diffeomorphism
then the referred conjugacy has the same kind of regularity.
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Introduction and Main result

Let F be an orientation-preserving homeomorphism of R2 which is
fixed point free. The Brouwer’s plane translation theorem asserts that
every z ∈ R2 is contained in a domain of translation U for F, that is an
open connected subset of R2, whose boundary is L∪F (L) where L is the
image of a proper embedding of R in R2, such that L separates F (L)
and F−1(L) (L is called a Brouwer line). Moreover, if E =

⋃
n∈Z F

n(U),

where U = U ∪ L ∪ F (L), there exists a homeomorphism Φ : E → R2

such that (Φ ◦ F ◦ Φ−1)(z) = z + (1, 0).
This result was proved in 1912 by Brouwer ([1]) although many other

researchers, like for instance Scherrer, Kerékjártó, Terasaka or Sperner,
during the 20’s and the 30’s gave their own proofs trying to fix and
clarify his approach. For more details, it is interesting to read Section 2
of Guillou’s paper [5] dedicated to some historical remarks about this
Brouwer’s result. Nowadays the interested reader can also take a look
for instance to any of the proofs given in the more recent works of
Franks ([4]), Guillou ([5]), or Le Calvez and Sauzet ([7]).
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From now on if L is a Brouwer line for a planar orientation preserving
fixed point free map we denote by EL =

⋃
n∈Z F

n(U) the F -invariant
space associated to L.

In a few words, in this note we will prove that if F is a Cm diffeo-
morphism, m ∈ N ∪ {∞}, then the above conjugacy Φ can be chosen
of class Cm.

Notice that from the above paragraphs, orientation preserving fixed
point free diffeomorphisms have always Brouwer lines. Our result is:

Theorem A. Let F : R2 → R2 be a orientation preserving fixed point
free Cm diffeomorphism, m ∈ N∪{∞}. Let L be a Brouwer line. Then,
there exists a Cm diffeomorphism Ψ : EL → R2 such that (Ψ ◦ F ◦
Ψ−1)(z) = z + (1, 0).

Note that there is no loss of derivatives in this result, that is we find
a map Ψ which is as smooth as the original map F . Throughout the
paper m takes any value in N ∪ {∞} and all diffeomorphisms are of
class Cm,m ∈ N ∪ {∞}.

The study of the regularity of conjugacies between some dynamical
systems is a classical subject of interest and goes back to Poincaré. For
instance, nowadays this question is well understood for smooth diffeo-
morphisms of the circle, see [3] and its references. It is interesting to
observe that for some dynamical systems results an agreement between
the regularity of the dynamical system and the one of the conjugation
happens while for others do not. Like in Theorem A, another example
of the first situation we have the Kerékjártó’s theorem of local lin-
earization of periodic maps in a neighborhood of a fixed point ([2]).
A well-known result of the second situation is given by the Grobman-
Hartman theorem which states that a Cm diffeomorphism, with m a
positive integer, can be locally C0 linearized near a hyperbolic fixed
point but in general it can not be Cm linearized for m > 0 ([8]).

To show that if F is of class Cm then it is possible to Cm conjugate
F |E, with a translation we proceed in several steps. A first simple
reduction comes by using the celebrated Riemann mapping theorem.
Recall that it affirms that any non-empty simply connected open sub-
set W of the complex number plane C, different of the whole plane,
can be biholomorphycally mapped to the open unit disk. Moreover,
recall that by Brouwer Translation Theorem there exists a homeomor-
phism Φ : EL → R2. As a consequence EL is an open simply connected
domain. Then, in case that W = EL is not the whole plane, we can
finally transform C∞ diffeomorphically the unit disc into R2. In short
it is not restrictive to assume that F has a Brouwer line L such that
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EL = R2. Therefore we will prove Theorem A only in the case that
EL = R2. The general case follows from the previous observation.

Next, we will prove that the Cm diffeomorphism F, on R2, is succes-
sively Cm conjugated, via some Cm conjugations Ψ1,Ψ2,Ψ3, with some
Cm diffeomorphisms of R2, say G1, G2 and G3, respectively, obtaining
finally

G3(0, y) = (1, y) and
⋃
n∈Z

Gn
3 (U) = R2,

where here U = {(x, y) : 0 ≤ x ≤ 1}. More concretely, we prove:

• The diffeomorphism Ψ1 can be taken such that Ψ1(L) is the
straight line {0} × R and it is a Brouwer line for G1.
• The diffeomorphism Ψ2 can be constructed such that the straight

line {0}×R is a Brouwer line and G2(0, y) = (1, p(y)) for some
increasing diffeomorphism p of R.
• The diffeomorphism Ψ3 can be taken such that the straight line
{0} × R is a Brouwer line and G3(0, y) = (1, y).

The next three sections of the paper are devoted to prove each of the
steps of the proof we described above. The final section 4 contains the
proof of the main theorem.

Next, we say some words about how we will prove it. By the above
reductions, we can start with a diffeomorphism G3 = F that has L =
{0}×R as a Brouwer line, satisfying F (0, y) = (1, y) and

⋃
n∈Z F

n(U) =

R2, where U = {(x, y) : 0 ≤ x ≤ 1}. We want to prove the existence
of a Cm diffeomorphism Ψ, defined on the whole plane, such that

(1) Ψ(F (x)) = T (Ψ(x)), where T (x, y) = (x+ 1, y).

From this equality it is apparent that once Ψ is defined on U , then Ψ
restricted to F (U) is determined by Ψ on U because of condition (1).
Hence, the main point is to be able to construct a suitable seed on
U such that its extension to U ∪ F (U) is of class Cm on the common
boundary {1} × R. As we will see, one of the main tools in our con-
struction, and also in other parts of this paper, will be the sometimes
called Smoothing theorem, due to Hirsch ([6]). We will recall it in
Theorem 2.2. In a few words, it allows to modify piecewise smooth
homeomorphism in order to produce diffeomorphisms.

The question that we tackle in Theorem A, but for analytical diffeo-
morhisms, seems also natural and interesting. Unfortunately, it is not
covered at all by our approach.
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1. First step: construction of G1.

To prove this step first we show that it is possible to choose a Cm
Brouwer line, and then, by conjugacy, we will transform it into the
straight line {0} × R. Next lemma shows how to do this first choice.

One of the key points to prove next result is that a proper embedding
of R in R2 gives rise to a Jordan curve when the plane is compactified
to S2, by adding one point.

Lemma 1.1. Let F : R2 → R2 be a preserving orientation fixed point
free Cm diffeomorphism. Let L be a Brouwer line. Then there exists a
C∞ Brouwer line S ⊂ EL satisfying that EL = ES.

Proof. As before we denote by U the connected component of R2 \
({L} ∪ {F (L)}) whose boundary is L ∪ F (L). Our first proposal is
to construct a C∞ curve that is a proper embedding of R in R2 that
separates L and F (L). To do this, let σ be a simple arc that joints a
point in L with a point in F (L) through U . That is, σ is the image
of a continuous map and injective map ϕ : [0, 1] −→ R2 such that
ϕ(0) ∈ L, ϕ(1) ∈ F (L) and ϕ(t) ∈ U for all t ∈ (0, 1). Clearly σ
separates U in two unbounded, open and simply connected components
such that each one has one boundary component. We denote by U+

and U− these open components.
Now we choose z ∈ σ not in L∪F (L) and we will construct a C∞ sim-

ple curve ϕ1 : [0,∞) :−→ U+ satisfying ϕ1(0) = z and limt→∞ ‖ϕ1(t)‖ =
∞. To do this we consider Ψ : U+ −→ A a holomorphic homeomor-
phism, given by the Riemann mapping theorem, between U+ and the
unit ball A and we choose a sequence xn ∈ U+ satisfying that the se-
quences ‖xn‖ and ‖Ψ(xn)‖ are strictly increasing and lim ‖xn‖ = ∞.
Note that in this case we get lim ‖Ψ(xn)‖ = 1. Now we consider a C∞
injective map α : [1,∞) −→ A such that α(i) = Ψ(xi) for all i ∈ N
and ‖α(t)‖ ∈ [‖Ψ(xi)‖, ‖Ψ(xi+1)‖] if t ∈ (i, i + 1). Then Ψ−1 ◦ α gives
a C∞ arc in U+ beginning at x1 such that limt→∞ ‖(Ψ−1 ◦ α)(t)‖ =∞.
Now joining this arc with a C∞ arc in U+ that begins at z and ends at
x1 we obtain the desired C∞ simple curve.

Using a symmetric construction we can obtain a C∞ simple curve
ϕ2 : (−∞, 0) :−→ U− satisfying ϕ2(0) = z and limt→−∞ ‖ϕ2(t)‖ = ∞.
Lastly joining ϕ1 and ϕ2 and modifying both in a little neighborhood
of 0 we obtain ϕ : R −→ U a proper C∞ embedding of R in R2. Set
S = ϕ(R). Now we consider S2 the compactification of R2 by adding

one point and we obtain that S̃, L̃ and F̃ (L), the corresponding com-
pactifications of L, F (L), S, are Jordan curves in S2. Furthermore it

is clear that L̃ and F̃ (L) belong to different connected components
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of S2 \ S̃. Thus S separates L and F (L) and this fact implies that S
separates F (S) and F−1(S). So S is a C∞ Brouwer line. Let V be
the open set that has boundary S ∪ F (S). Clearly V ⊂ U ∪ F (U) and
U ⊂ V ∪ F−1(V). Therefore

⋃
n∈Z F

n(V) =
⋃

n∈Z F
n(U). This ends the

proof of the Lemma.
We remark that, although in the introduction we had reduced the

problem to the situation where
⋃

n∈Z F
n(U) = R2, in this proof we have

not used at all this reduction. �

To end the construction of G1 started in lemma 1.1 we need next
result, that corresponds to Lemma 3.6 of [2]:

Proposition 1.1. Let C be a closed, connected and non-compact one
dimensional Cm submanifold of R2. Then there exists a Cm diffeomor-
phism ϕ : R2 → R2 such that ϕ(C) = {0} × R.

Lemma 1.2. Let F be a orientation preserving fixed point free Cm
diffeomorphism. Let L be a C∞ Brouwer line L and assume that EL =
R2. Then F is Cm conjugated via Ψ1 to a Cm diffeomorphism G1 of R2

and Ψ1(L) = {0}×R is a Brouwer line for G1. Moreover E{0}×R = R2.

Proof. By lemma 1.1 we can choose a C∞ Brouwer line L Then, by
Proposition 1.1 there exists a C∞ diffeomorphism Ψ1 : R2 → R2 such
that Ψ1(L) = {0} × R. Set G1 = Ψ1 ◦ f ◦ Ψ−11 . Then G1 is a Cm
diffeomorphism, Ψ1 conjugates F and G1 and {0} × R is a Brouwer
line for G1. Moreover E{0}×R = Ψ1(EL) = Ψ1(R2) = R2. �

2. Second step: construction of G2.

We start this section with a couple of preliminary results. The-
orem 3.11 in [6] asserts that two connected compact surfaces are C∞
diffeomorphic if and only if they have the same Euler characteristic and
the same number of boundary components. We will use the following
specific non-compact version:

Theorem 2.1. Two open connected subsets of R2 whose boundary con-
sists of the same number of boundary components, where each one of
them is a Cm proper embedding of R in R2, are Cm diffeomorphic.

Next we recall the Smoothing theorem, that allows to modify a piece-
wise smooth homeomorphism in order to obtain a diffeomorphism. This
result is proved in Hirsch book [9] in the C∞ context. We will also use
a Cm version with m ∈ N given in item (a) of [2, Thm. 3.2].

Theorem 2.2. Let W0 and W1 be two manifolds without boundary
of dimension n and assume that they can be decomposed in the form
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Wi = Mi ∪ Ni, i = 0, 1, where Mi and Ni are closed n-dimensional
sub-manifolds satisfying

Mi ∩Ni = ∂Mi = ∂Ni = Vi.

In addition assume that Φ : W0 → W1 is a homeomorphism mapping
Cm diffeomorphically M0 onto M1 and N0 onto N1. Then there exists
a Cm diffeomorphism Ψ : W0 → W1 such that

Ψ(M0) = M1, Ψ(N0) = N1 and Ψ = Φ on V0.

Moreover Ψ can be chosen in such a way that it coincides with Φ outside
a given neighborhood of V0.

Now we are ready to prove the goal of this section.

Lemma 2.1. Let G1 be the Cm diffeomorphism given in Lemma 1.2
that has the Brouwer line {0} × R. There exists a Cm diffeomorphism
G2 conjugated to G1, such that {0}×R is a Brouwer line and G2(0, y) =
(1, p(y)), for some Cm increasing diffeomorphism p of R..

Proof. Consider the manifolds (with boundary) A,B,A′ and B′ where
A is the adherence of the region between L = {0} × R and G1(L), the
set B is the adherence of the connected component of R2\(L∪{G1(L)})
whose boundary is exactly {G1(L)}, and

A′ = {(x, y) : 0 ≤ x ≤ 1}, B′ = {(x, y) : x ≥ 1},

see Figure 1 for more details. By Theorem 2.1 there exist a Cm diffeo-
morphism Θ between A and A′ and a Cm diffeomorphism ∆ between
B and B′.

Let r be the Cm diffeomorphism such that Θ ◦∆−1(1, y) = (1, r(y)).
Let us consider now R : B′ → B′ defined by R(x, y) = (x, r(y)). Notice
also that Θ(0, y) = (0, s(y)) where s is another Cm diffeomorphism. Let
Φ : R2 → R2 be defined as

Φ(x, y) =

 (x, s(y)), if x ≤ 0;
Θ(x, y), if (x, y) ∈ A;
R ◦∆(x, y), if (x, y) ∈ B.

Then Φ is a plane homeomorphism which is a Cm diffeomorphism in
R2 \D where D = L∪ {G1(L)}. Applying Theorem 2.2 to Φ we find a
Cm diffeomorphism Ψ2 in R2 such that Ψ2|D = Φ|D. Finally, G2 = Ψ2 ◦
G1 ◦Ψ−12 is the desired Cm diffeomorphism. Note that by construction
G2(0, y) = (1, p(y)) for some diffeomorphism p that must be increasing
because G2 preserves orientation and sends points (x, y) with x ∈ (0, 1)
to points with first coordinate greater than one. �
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Θ

∆

A B A′ B′

L G1(L)

{0} ×R {1} ×R

Figure 1. Diffeomorphisms Θ and ∆

3. Third step: construction of G3.

Lemma 3.1. Let G2 be the Cm diffeomorphism given in lemma 2.1.
There exists a Cm diffeomorphism G3, conjugated to G2, for which {0}×
R is a Brouwer line and G3(0, y) = (1, y).

Proof. We know that G2(0, y) = (1, p(y)), for some Cm increasing dif-
feomorphism p. Let Φ : R2 → R2 be defined as

Φ(x, y) =

 (x, y) if x ≤ 0;
(x, xp−1(y) + (1− x)y) if x ∈ [0, 1];
(x, p−1(y)) if x ≥ 1.

Clearly Φ is a homeomophism that restricted to R2 \
(
({0} × R) ∪

({1} × R)
)

is a Cm diffeomorphism. Applying Theorem 2.2 to the
function Φ, we obtain a Cm diffeomorphism Ψ3 such that its restriction
to ({0} × R) ∪ ({1} × R) agrees with Φ. Thus, conjugating G2 by Ψ3

we obtain G3 with the property stated in this lemma. �

4. Proof of Theorem A.

Recall that from all the previous reductions we can start with a Cm
plane diffeomorphism F satisfying F (0, y) = (1, y) and

⋃
n∈Z F

n(U) =

R2, where U = [0, 1]× R.
Recall also, that as we have already explained in the introduction, if

a conjugation Ψ satisfying Ψ◦F ◦Ψ−1 = T, where T (x, y) = (x+1, y), is
defined on U , automatically it is also defined on the whole plane. This
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is so, because the conjugation condition writes as Ψ(F (x)) = T (Ψ(x)).
In short, Ψ restricted to F (U) is determined by the definition of Ψ
in U .

Hence, we start with a Cm diffeomorphism Ψ only defined on U , and
we firstly need to find conditions on it, that imply that its extension
to U ∪ F (U) is also of class Cm on the common boundary {1} × R.

With this aim, we introduce G(x, y) = F (x, y) − (1, 0). We claim
that if we define a Cm diffeomorphism Ψ : U → U satisfying:

• The map Ψ identically coincides with G in a neighborhood of
{0} × R,
• The map Ψ is the identity in a neighborhood {1} × R,

then its extension to U ∪ F (U) also is a Cm diffeomorphism. From it,
clearly, this extension procedure can be continued until Ψ is defined on
the whole plane because

⋃
n∈Z F

n(U) = R2.
Let us prove the claim. The conjugacy condition can be written as

Ψ = T ◦ Ψ ◦ F−1. We know that in U and near {1} × R the map Ψ is
simply the identity. Therefore, to prove that its extension to U ∪F (U)
gives rise to a Cm map it suffices to prove that it is also the identity
near {1}×R but in F (U). If (x, y) ∈ F (U) and close enough to {1}×R,
F−1(x, y) is in U and near {0}×R. Hence, for (x, y) ∈ F (U) and close
enough to {1} × R,

Ψ(x, y) =T ◦Ψ ◦ F−1(x, y)

=Ψ(F−1(x, y)) + (1, 0) = G(F−1(x, y)) + (1, 0)

=F (F−1((x, y))− (1, 0) + (1, 0) = (x, y),

as we wanted to prove. Notice that we have used that Ψ coincides with
G in a neighborhood of {0} × R.

To construct the seed Ψ on U , satisfying the above two properties,
we will proceed by defining it on several pieces of U and then Cm joining
them by applying several times Theorem 2.2.

Let us start our construction. Let V be a neighborhood of {0} × R
of the form V = {(x, y) : 0 ≤ x ≤ σ(y)}, where σ is a C∞ function,
and such that G(V ) ⊂ [0, 1/2)×R, see Figure 2.(a). This can be done,
simply by the continuity of G, because G(0, y) = (0, y). In that figure
Σ = {(σ(y), y) , y ∈ R}.

Let k ∈ R be such that 1/2 < k < 1. Set A = {(x, y) : σ(y) ≤ x ≤
k} which is Cm diffeomorphic to [0, 1]×R (through a Cm diffeomorphism
∆) which moreover we can assume that satisfies ∆(σ(y), y) = (0, y).
Let B be the subset of U whose boundary is the curve G(Σ) and the
straight line x = k which as above is also Cm diffeomorphic to [0, 1]×R
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x = 0 G(Σ) x = k x = 1

V A

G(V )
B

0 1/2 k 1

Σ G(Σ)
(a) (b)

Figure 2. Subsets of the strip [0, 1] × R introduced to
define the diffeomorphisms Θ and ∆ in the proof of The-
orem A

(through a Cm diffeomorphism Θ) that satisfies Θ(G(σ(y), y)) = (0, y),
see Figure 2.(b).

Then Θ−1 ◦∆ : A → B is a Cm diffeomorphism that agrees with G
restricted to the curve Σ. Thus, we are able to define S : [0, k]× R→
[0, k]× R as

S(x, y) =

{
G(x, y), if (x, y) ∈ V ;

Θ−1 ◦∆(x, y), if (x, y) ∈ A,

which is a diffeomorphism in [0, k]×R\Σ, although is a global homeo-
morphism. Applying Theorem 2.2 we obtain Φ1 : [0, k]×R→ [0, k]×R
which agrees with G in some neighborhood of {0} × R and such that
Φ1(k, y) = (k, `(y)) for some Cm diffeomorphism `. Let δ > 0 be such
that k < δ < 1 and consider R : [k, 1]× R→ [k, 1]× R defined as

R(x, y) =


(
x,
x− k
δ − k

y +
δ − x
δ − k

`(y)
)
, if k ≤ x ≤ δ;

(x, y), if δ ≤ x ≤ 1.
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Notice that R is a Cm diffeomorphism on each of the above two pieces
and a global homeomorphism on the strip. Applying once more Theo-
rem 2.2 we obtain a Cm diffeomorphism defined on [k, 1]× R, that we
call Φ2. Notice that Φ2 agrees with Φ1 on x = k and is the identity in
[δ, 1]×R. Thus, applying again Theorem 2.2 to Φ : [0, 1]×R→ [0, 1]×R
defined as

Φ(x, y) =

{
Φ1(x, y), if 0 ≤ x ≤ k;

Φ2(x, y), if k ≤ x ≤ 1,

we obtain the desired Cm diffeomorphism Ψ defined on U = [0, 1] × R
that is the searched seed. This is so, because near x = 0 the diffeo-
morphism Φ coincides with Φ1 which, in turn, coincides with G, and
near x = 1 it coincides with Φ2 that in that region is the identity. As
a consequence, the theorem follows.
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