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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

This paper deals with Hamiltonian systems of the form

xX=—-H ()C, y)’
y 1
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where H(x, y)=(x*+y?)/2+H, (x,y), and H,,, is a non zero
homogeneous polynomial of degree n+ 1, n>2. The solutions of system
(1) are contained in the level curves { H(x, y) =h, h € R}. Furthermore, the
origin is a centre. For any centre p of a planar differential system, the
largest neighbourhood of p which is entirely covered by periodic orbits is
called the period annulus of p. The function which associates to any closed
curve its period is called the period function. When the period function is
constant, the centre is called the isochronous centre. We are interested in
obtaining the global description of the period function 7(/) defined in the
origin’s period annulus.

It has been proved by several authors that the origin of (1) cannot be an
isochronous centre: For n=2 and 3 this fact was observed by Loud [17]
and Pleshkan [19], respectively. In the general case, Christopher and
Devlin [6] used geometrical and dynamical methods, and Schuman [20]
used Birkhoff’s normal form. Another natural approach is the computation
of the period constants (see [ 5] for definitions). Using this last approach
we obtain the same result (see Corollary 1 of the Appendix). One advan-
tage of this method is that it also provides information about the behaviour
in a neighbourhood of the origin of the period function, giving lower
bounds for the number of critical points of this function (critical periods)
associated with the origin’s period annulus. Our estrategy for the study of
T(h) consists of using the knowledge of the period constants, the
knowledge of some properties of the phase portrait of (1) and a criterion
to decide when a function has at most one critical point (see Theorem 1 in
Section 3).

To enunciate the main result we must introduce the following notation:
system (1) can be written in complex coordinates as

Z=iz+F,(z 2), with zeC,

Fn(Z, Z_) :Zk+lz}1fklzkz_l’ and Re(aFn(Za Z_)/az) EO

THEOREM A. (a) Let T(h) be the period function associated to the
origin’s period annulus of system (1). T(h) satisfies one of the following
properties:

(1) It is monotonic decreasing.

(1) It is monotonic increasing and it tends to infinity when the
periodic orbit tends to the boundary of the period annulus.

(i1) It has a unique nondegenerate critical period (a minimum) and it
tends to infinity when the periodic orbit tends to the boundary of the period
annulus.
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Furthermore,

(1) It is monotonic decreasing if and only if n is odd and
g(e) =11, I(COS Ha Sin 9) = 05

(i) It is monotonic increasing if and only if
(I) either n is even,
(IT) or nis odd, and Im(f, , 12 (n_1)2) <O.

(i1) It has a unique nondegenerate critical period if and only if n is
odd, Im(f, ;1) (n—1)2) >0, and there exists 0€ [0, 2r) such that g(0)<0.

(b) There are systems of type (1) having a critical point of center type
(different from the origin) for which the period function has at least two
critical periods.

Theorem A (a) was obtained for =2 by Li Ji-Bin [16], Coppel and
Gavrilov [ 12]. After the present work was finished, we learned about the
paper of Collins [9], where the global monotonicity of the origin’s period
function is proved in the n even case (i.e., statement (a.ii.l) of Theorem A).

Notice that Theorem A (a) cannot be applied to other centres different
from the origin because the structure of (1) is broken under translations
(except for n=2). Statement (b) of the above theorem shows that the
period function is more complicated for these centers.

A similar difference could exist with other problems. The most relevant
is that of isochronicity. From Theorem A, it is obvious that systems of type
(1) cannot have isochronous centres at the origin. In fact, this result is
already known; see [6] and [20]. But, since the structure of (1) is broken
under translations, what can be said about the isochronicity of the other
centres different from the origin? Are there isochronous centres inside the
family of Hamiltonian systems with homogeneous nonlinearities? As far as
we know, there was no answer to this question. In this paper, we prove
that:

THEOREM B. System (1) has no isochronous centres.

Our proof of Theorems A and B uses some knowledge of the phase por-
trait of (1). In particular, we need to study the structure of the hyperbolic
sectors at infinity in Poincaré’s compactification of (1). According to the
definitions used in [7], given an infinite critical point ¢ and a hyperbolic
sector # associated to ¢, we say that 5 is degenerate if its two separatrices
are contained in the equator of the Poincaré’s disk. Otherwise, we say that
A 1s non-degenerate. The control of this kind of points is important for
knowing the type of boundary of the period annulus, and for solving
Conti’s problem for system (1); see [ 10]. We prove the following result.
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THEOREM C. The following statements hold for systems of type (1).

(1) If q is a an infinite critical point in Poincare’s compactification
having a hyperbolic sector at the infinity S, then H# is degenerate.

(ii) The origin of (1) either is a global center or has a bounded period
annulus. Furthermore, the origin is a global centre of (1) if and only if
g(0)=H,  (cos 0,sin 0) =0, and this can only occur when n is odd.

(11) A centre p of (1) different from the origin has a bounded period
annulus.

For n=2, statements (ii) and (ii1) of the above theorem can be deduced
from [2].

In Section 2 we give the proof of Theorem C and Section 3 is devoted
to proving Theorems A and B.

Finally, in the Appendix, we compute the first Lyapunov and period
constants for the origin of a system with homogeneous nonlinearities (not
necessarily Hamiltonian). They play a key role in the proof of Theorem A,
but we prefer to show the computations apart, as a technical result.
Furthermore, the way of computing these constants and their final expres-
sions help to improve a known result of Conti (see [ 11]) about the charac-
terization of the centres at the origin of (1) with constant angular speed,
see also [18]. While Conti gave an integral characterization of those
systems, we provide an explicit expression.

2. HYPERBOLIC SECTORS AT THE INFINITY AND
PROOF OF THEOREM C

First of all we need a preliminary result that can be also found in [7].
We include the proof here for the sake of completeness and because it is
simpler than that of [7].

Let ¢ be an infinite critical point of any planar polynomial Hamiltonian
vector field in the Poincaré’s compactification. We will say that J# does not
contain straight lines if given any finite straight line / which passes through
¢ (in Poincaré’s compactification) there exists compact set K large enough
so that /n (R*\K) is not contained in the interior of J#.

LemmA 1. Let g be an infinite critical point of a Hamiltonian system with
a hyperbolic sector H. Then either H is degenerate or it does not contain
straight lines. Moreover, in this case, the Hamiltonian takes the same value
on both separatrices, which are finite.
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F16. 1. Construction used in the proof of Lemma 1.

Proof. Let s, and s, be the two separatrices of . First we will prove
that if s, is not included in the equator of the Poincaré disk, then s, is not
contained either. Set xes, and {p,}, a sequence of points in the interior
of & such that lim,_, .. p,=x. Since # is a hyperbolic sector, there
exists a sequence {p),}, in the interior of # such that H(p,)= H(p,) and
moreover, lim,_, . p,=x"€s,;. Thus

H(x)= lim H(p,)= lim H(p,).

n— + oo n— + oo

Hence, we have that lim,_, . H(z) exists for all xes, when z is in the
interior of . Since H is a polynomial, s, cannot lie on the equator of the
Poincaré disk, and we are done.

When # is non-degenerate we can assume, then, that s has two finite
separatrices, s, and s,. From the above equality these separatrices have the
same value of the energy (/). First we will prove that if I'c 5 is any path
going to g, we have that (see Fig. 1)

lim  H(p)=h.

p—>q.pel’

Let {p,}, be a sequence of points in the interior of # satisfying
lim, _, , ., p,=¢. Since # is a hyperbolic sector, there exist sequences of
points {p’},, for i=1,2, such that lim,_ . p.=g,es; and H(p))=
H(p,), for i=1,2. Then

n— + oo n— + oo
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and so

lim H(p)=h.

prP—q

Suppose now that I" is a straight line. Without loss of generality, we can
suppose that this straight line is x =0. From the above argument, if we set

H(x, y) = Hy(x) + yH\(x) + ?Hy(x) + -+ +y" " H, 1(x),

then lim, , ,  H(0, y)=h. However, this is possible if and only if
Hy(0)=h, and H;(0)=0 for all j=1, .., n+ 1; that is, H(x, y)|,_o=/ and
so x=0 is formed by solutions, which contradicts the fact that I is
included in 7. |

We will introduce polar cordinates in order to prove Theorem C. The
Hamiltonian function is now written as

2

H(r, 0) = +g(6) """,

where g(0) is a trigonometric polynomial of degree n+ 1, and system (1)
becomes
F=—g(0)r",
{_ - 2)
0=1+n+1)g0)r—,

defined on the cylinder C={(r, 0):re R*, 0€[0,2n]}. Observe that the
critical points of (2) are (r,, 0,) such that g(¢,) <0 and g'(0,)=0, and
re=(=1/((n+1)g0,))""".

Proof of Theorem C. (i) Suppose that ¢ is an infinite critical point of
system (1) having a nondegenerate hyperbolic sector #. From Lemma 1,
we know that both separatrices must be finite. Without loss of generality,
we can suppose that ¢ is determined by the direction x =0 and again, by
Lemma 1, that the separatrices lien on right side of x=0.

Assume that the separatrices of /# have energy level /. Then, the energy
equation written in polar coordinates is r*/2+g(0) r"*'=h, and so we
have that

2h—r?
g(0)= ETESE (3)
We set F, () :=(2h—r?)/2r"*'. If the situation described above were
possible for any fixed 0 € (n/2 — ¢, n/2), there would be two arbitrarily large
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éh,n

FiG. 2. Graph of F, (r) for h <0 (left) and for >0 (right).

pre-images of F)_,(r) satisfying (3), but this contradicts the behaviour of
F,_,(r), for any value of & (see Fig.2).

(ii-iii)) Suppose that p is a centre whose period annulus, N,, is
unbounded but not global. Under this assumption, there must exist a
hyperbolic sector at infinity with at least one separatrix contained in ON,.
This implies the existence of a non-degenerate hyperbolic sector at infinity,
in contradiction to statement (i).

Therefore, 0N, either is bounded (moreover, by the analyticity of (1),
0N, cannot be a periodic orbit and it contains at least one critical point)
or is the empty set. In the latter case, p is the unique critical point and it
is a global centre (in fact, p is the origin).

To end the proof we will characterize global centers. From Eq. (2), we
see that any critical point (r,, 8,) different from the origin must satisfy
g(0,) <0 and g'(8,)=0. Thus, it is clear that the origin is the unique
critical point if and only if g(0) >0 for all [0, 2x), and from part (i)
this implies that it is a global center. Finally, notice that if # is even, then
g(0) is a trigonometric polynomial of odd degree and so g(0) = —g(6 + n).
Consequently, the property g(6) >0, for all [0, 27), can only hold when
nis odd. ||

3. PROOFS OF THEOREMS A AND B

In order to prove Theorems A and B, we need the following preliminary
results.
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THEOREM 1. An analytic function f: I=(i —,i*) = R — R has at most one
non-degenerate critical point if and only if there exists an analytic function
@: I - R such that, for all xel,

J"(x) + 9(x) f'(x) #0. (4)

Proof. Suppose that there exists an analytic function ¢: I — R such that
Eq. (4) holds. Let y be a primitive of ¢. Consider h: J=(j,j )—> 1, a
solution of the differential equation A’ =exp(y/(#)), defined in its maximal
interval of definition. Observe that since 4’ >0 and it is defined in its
maximal interval of definition, then lim, , .+ i(x)=i*. So & is a diffeo-
morphism.

Since /4’ #0 and £ is bijective, f has at most one non-degenerate critical
point if and only if fo/ does so. In order to see this last property it suffices
to see that (fo/h)" #0. We prove this as follows:

(foh)" (x)=(f"(h(x)) I'(x))" = f"(h(x))(h'(x))* + f"(h(x)) h"(x)
= f"(h(x)) """+ f'(h(x)) €2 h"‘”lﬂ( (x))
=2/ (f7(h(x)) + @(h(x)) f'(h(x))) #0.

Let us now prove the converse.

Suppose that f has no critical points. Then, it suffices to choose
@(x)=(f"(x) = f"(x)/f"(x)

If / has a non-degenerate critical point, we can assume, without loss of
generality, that it is x=0 and that f(0)=/'(0)=0 and f"(0)=A4>0.
Hence

(
(

f(x)=Ax>+ O(x?).
We choose

! 2_2 "L
o0 =5

Clearly, since f'is an analytic function for all x #0, ¢ is analytic. We must
prove that it is also analytic on x=0. An easy computation shows that
lim, _,, ¢(x) is finite. So ¢ is analytic on I

Since x =0 is the unique finite critical point of f, f(x)#0 and f’'(x) #0
for all x #0. Hence, we have that, as we wanted to prove, (f" + ¢f")(x) =
(f")?/(2f)#0, for all x#0. On the other hand, it is easy to see that
lim, ,o(f"+of )N(x)=24+#0. |

We will use this last result to prove that the period function associated
with the origin’s period annulus has at most one critical period. Before
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proving this fact, we will see that in any Hamiltonian system the set of all
periodic orbits, I, can be parameterized by the energy in any period
annulus W.

Consider in W the following total ordering:

Given y,,y,€ " we say that y, <y, if and only if Int y, = Int y,, where
Int y; denotes the bounded domain of R surrounded by v,.

Now we endow I” with the order topology. Clearly, the Hamiltonian
function H over I is continuous with respect this topology and applies I
in some interval /= (0, b) of the real line (he Ru { 4+ oo} ). To see that this
map is orderpreserving it suffices to show that it is one to one. To prove
this, suppose that H(y,)= H(y,) with y, <y, and consider the map H
restricted to the compact annulus K = Int y, \Int y,. This map attaches a
maximum and a minimum in K. Since 0K =1y, Uy, and H |,k is constant,
either H |, is constant or H | has a local extremum in its interior. In both
cases we can ensure the existence of xe K< W with (VH), =0, that is, a
critical point of the Hamiltonian vector field in the interior of W, which is
a contradiction. So the map H over [ is order-preserving (in fact it is an
order-preserving homeomorphism).

Hence, it seems natural to consider the period function over 7 instead of
the original period function which is defined over the period annulus W,
because we can use standard techniques of differential analysis to study the
properties of the period function. Therefore, in the sequel we will talk
about the period function 7(/) which gives the period of the closed orbit
with energy H =h.

From Eq. (2), T(h) can be computed as

do

2n
= G @ A

(5)

(for short, in the following we denote r:=r(6,h)) while 8|,_,=1+
(n+1)g(0)r(0, h)"~! does not vanish. This condition is verified in a
deleted neighbourhood of the origin because lim, ,, 6= 1. The following
lemma asserts that this condition holds in the whole period annulus of the
origin W. This result is well known (see [3], [8] or [9]), but we include
here, for the sake of completeness, a different proof.

LEMMA 2. The period annulus associated with the origin of (1), W, has
no points (r, 0) on which 0=1+ (n+1)g(0)r"~'=0.

Proof. First we prove that there are no points in xe W for which
O(x)=0(x)=0. Consider 8(x) =1+ (n+1)g(0) r" . Then, f(x)=(n>—1)
g(0) "%+ (n+1)g(0)r"~'0. Hence, O(x)=0(x)=0 implies that 6=
7=0 and, as a consequence, x is a critical point different from the origin,
which contradicts the fact that xe W.
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Set I=[0, a), the image of W by H (remember that H is a homeo-
morphism between the set of periodic orbits " and I). For each % € I denote
by 7, the closed curve of H=/h contained in W. Define the map L: [ - R
by

L(h)y=min [1+(n+1)g(0)r" '],
This function is clearly well defined and continuous. If L ~'(0) = ¢J there is
nothing to prove. Suppose that L~1(0)# . Then L~'(0) is a closed set
which does not contain 0 because L(0)=1. Let %, be the infimum of
L~'(0). Then the orbit y,, is the first orbit (in the ordering of I) such that
there exists x €y, with 0(x)=0. Set ¢ ,(1) = (r,(1), 0,(1)) be the solution of
(2) with initial condition y. Since 6(x)#0, the function 6.(¢) has a local
extremum at 0. This implies that, for &> 0 small enough, the function 6 ()
also has a local extremum for y € y,, _,. Therefore there exists zey,, _, with
0(z)=0 and hence L(h,—¢)=0. This last equality is in contradiction to
the fact that h,=1inf L='(0). |

From the above result and the energy equation r%/2 +g(0) r"*'=h, it
follows that

dh

E:r(1+(n+1)g((9)r”*l)>0 (6)
in the whole period annulus. Furthermore, any fixed periodic orbit in the
origin’s period annulus has positive energy. Finally, observe that the above
results imply that 7(/4) is an analytic function.

LemmA 3. The period function associated to the period annulus of the
origin of (1) satisfies

d 2 p?
T =[5 do.

Proof. Let y denote a closed orbit of energy / corresponding to a
solution (6, h) of (2). From the expression (5), using (6), we have

F“ do
o 1+(n+1)g(0)r(0, h)" !

T(h)=

d 27 p?
=%j Sdo.

0
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THEOREM 2. The period function associated with the period annulus of
the origin of (1) has at most one critical period.

Proof. As we have seen in Lemma 3, T(h)=(d/dh) 3" (r*/2) dO. So
Eq. (4) can be written as

1 r2n
T"(h) + () T'(h) =5 |

3 2

d
= () + o)

2 (1) d0 #0. (7)

We set M(r,0)=1+n+1)g(0)r"~"' (we call it M, for the sake of
brevity). Taking into account Eq.(6), we have that the middle part of
expression (7) can be written as

lr” —2(n*—=1)(n—3)g(0) r" >M+6(n*—1)> g*0) r**—°
2Jo M

—2(n’—1)g(0) "’
M3

+ o(h) do. (8)

We choose ¢(h)=—[(n—3)/2] 1/h, defined in I=(0,a), for some
aeR* U {+o0} (notice that the fact that the energy in the period annulus

takes only positive values plays an important role here). Tedious computa-
tion transforms the expression (8) into

7t Dnn—1)° zzn—4< nt3 = 1)
ZL g GO (1S (n k1) g(0) ) do.

Note that 0<(n+3)/(4n) <1. Then, since by Lemma 2 in the whole
origin’s period annulus 1+ (n+ 1) g(0) ¥"~' >0 holds, we have that

3
1+”;; (n+1)g(0) "' >0,
and then
2+ Dnn—172 o [ n+3 -
L g0 142 G (n+1)g(0) ") do>o0.

Since T(#4) is analytic, the theorem follows by applying Theorem 1. ||
Now we are able to prove Theorem A.
Proof of Theorem A.
(a) From Eq. (5), and taking into account (6), we have that

dT(h)
dh

B 2n g(0)r" =3 do
=~ D=1 | T s et
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To prove statement (i), we recall that 14+ (n+1)g(0) 7" '#0 in the
whole origin’s period annulus. Hence, if g(0) = H,, . ,(cos 0, sin §) > 0, from
(9) we directly obtain that dT/dh(h) <0. Conversely, suppose that 7(%) is
monotonic decreasing. This implies—using Theorem C (ii)—that the origin
is a global centre (otherwise, the boundary of the origin’s period annulus
would have a critical point and 7(/) would tend increasingly to infinity)
and, again by Theorem C (ii), if the origin is a global centre then g(6) > 0.

Suppose now that g(6) takes negative values. By Theorem C (ii), we also
know that the period annulus of the origin is bounded and contains some
critical point. This fact implies that the period function tends to infinity as
the closed orbits tend to this boundary.

If instead of parameterizing the closed curves of the period annulus W by
the Hamiltonian energy we use the point of intersection of any closed curve
of W with the OX*-axis we get another period function called #(r).
Observe that this can be done in the whole W, because in this set
1+(n+1)g(0)r"~'>0, and #(r) =T(r*/2 +g(0) r"*'). Hence

1
Hl4+(n+1)g(0)r—1

T'(h) = r(r), (10)
where h =712+ g(0) r" ..

From the above expression we get that the main preliminary result we
have obtained, Theorem 2, is still valid for #(r).

To prove statements (ii) and (iii), we use the results of the Appendix.
From Proposition 1 of the Appendix, we know that

b _{0, if n is even,
VUl —2nIm( Sy wo1yp)s ifmis odd.

Moreover, in the proof of Corollary 1 of the Appendix, we deduce that
b,>0.

We distinguish then two cases, depending on the value of the first
period-Abel constant:

(ii) b,>0.

Depending on whether b, vanishes or not, the period function in polar
coordinates may be written (see Corollary 2 of the Appendix) as

(r)=2rn+b,r* 24+ 0(r* 1), with b,>0,
or

H(r)=2n+b, "'+ 0(r"), with b,>0.
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In both cases, in a neighbourhood (0, d), the period function #(r) is
monotonically increasing. Thus, Theorem C (ii) and Theorem 2 ensure that
t(r) is monotonic increasing in its domain and tends to infinity near the
boundary of the origin’s period annulus, and so does T(4).

(iii) b, <O.
Thus, the period function in polar coordinates may be written as
((r)y=2m+br" '+ 0(r"), with b, <.

Therefore, in a neighbourhood (0,d), the period function T7(r) is
monotonicaly decreasing. As in the statement (ii), we recall Theorem C (ii)
and Theorem 2. In the current case, they imply that 7(/) reaches a unique
minimum and then it tends to infinity as the closed orbits tend to boundary
of the period annulus. ||

(b) Consider the system

{x=—y—ex4—2dx3y+3x2y2+y4, (11)

¥ =x+5cx* +4dex®y + 3 dx? y? —2xy>.

It has a centre at the point (0, 1). By a translation to the origin and the

linear change of time dt/dr = —l/ﬁ, it is transformed in the following
quartic system:

X= —y—3x2—2y2+2\ﬁdx3—6x2y—§y3
+3ex4+2ﬂdx3y—3x2y2—§y4,
yzx—3\/gdx2+6xy—126x3—6\/§dx2y
+6x92 =15 /3 ex* — 12ex’y —3 /3 dx?y* + 2xp°.

(12)

The first two period constants (we call them p, and p,) are known for
general systems, see for instance [ 15]. Straightforward computations give
that

129 135 .9

ATy E S
Do 2 + 4 +2e

832,883 945 25005 _ 152,685
Pa=%308 T8 s C s

Since p, and p, are independent and can take any real value, standard
arguments imply that there are values of the parameters for which the
period function associated with the period annulus of (0, 1) has at least two
critical points in a neighbourhood of the critical point. ||
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Proof of Theorem B. Let p be a centre of system (1) and N, its period
annulus. From Theorem C (ii), we know that either N, is bounded and its
boundary contains a critical point—and then it cannot be an isochronous
centre—or p is a global centre. The last case is possible if and only if n is
odd and g(0)=H,, (cos0,sin §)>0. From Theorem A (i), the period
function 7(%) defined in the origin’s period annulus is globally monotonic
decreasing, and so it cannot be an isochronous centre. ||

APPENDIX: LYAPUNOV AND PERIOD CONSTANTS

Consider
Z=iz+F,(z 2), with zeC, (13)

where F,(z,Z) is a homogeneous polynomial of degree n. We will usually

write F,(z,2) =Y, . ,_. fr..2"Z', where f; ;€ C. For the sake of simplicity,
we define, for a fixed n:

.f(n+/+1)/2 (n—1—1)/2 if le'Qns

= ’ 14

&1 {0 it 1¢Q,, (14)

where Q,={leZ: (n+1)is odd and —(n+1)<I<n—1}.

Our interest is mainly focused on computing the so-called Lyapunov and
period constants for system (13). To this end, we perform the following
changes of variables:

If we first introduce the usual polar coordinates by setting R*=zZ
and O=arctan (Imz/Rez), and then apply the change r=R"""'/
(1+Im(S,(0)) R"™") (suggested in [4]), system (13) may be written:

_Ay(0)r + 45(0)r°
1—Ir111(5n(9))” (15)

T 1—Im(S,(0))r

where S,(0) is a trigonometric polynomial defined by S (9) e F (e, e~ ),
thus, 4,(0)=Re((n—1) S,(0)+iS,(0)) and A5(0)=[(n—1)/2] Re 152(0))
By eliminating the time, we reach the Abel equation:

dr

%zAz(G)r2+A3(9)r3. (16)
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Following [ 1], for this differential equation, consider the solution (0, p)
that takes the value p when 0 =0. Therefore,

10, p)=p +uy(0)p*+us(0)p> + ..., with u,(0)=0 for k=2. (17)

Let P(p)=r(2=n, p) be the return map between R x {0} and Rx {2xn}. We
will say that system (16) has a centre at r =0 if and only if u,(27) =0, for
all k=2. On the other hand, it has a focus if it exists some k such that
u;(2m) # 0. When, for system (13), u;(2n) =0 for j=1, .., m — 1, we will say
that its Lyapunov—Abel constant of order m is a,, = u,,(2n).

Substituting (17) in (16) we easily get the following relations, which
suggest a recurrent way to find the Lyapunov—Abel constants a;:

u/2:A2>
uy=A;+24,u,, (18)
uy=A>u3+2A4,u5+ 3A45u,, ...

Once we know that the origin of (13) is a centre, there is a simple way
to give the conditions for it to be an isochronous centre. We observe that
we cannot use the Abel equation (16), since this equation does not take
into account the time variable. The idea we will use is suggested in [ 13]:
if we take the second equation of (15) and we integrate the time, we obtain

i(p) = f:"1—Im<Sn<e>>r<a,p>de=2n— j: Im(S,(0)) r(0, p) o,  (19)

where r(0, p) is given above.
The system (13) has an isochronous centre at the origin if it is a centre
and, furthermore,

2n )
[ (s, )0, prdo=[ s, o0 < S u,(0) pf> o
=y (f $.0)) u,(0) d0> pi=0.
j=1
Hence, the conditions to have an isochronous centre are

bj;=—jznlm(sﬂ(e))u,(e)w:o, for j>1. (20)
0

The numbers b; will be called period-Abel constants.
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In the main result we give some of the first Lyapunov-Abel and
period—Abel constants for all systems of type (13) in terms of the coef-
ficients of the equation and valid for all ne N. The above approach has
been already used in [14] to give integral expressions for the Lyapunov
and period constants. As we will see in the applications, our result allows
us to establish general properties for systems of type (13) of any degree; see
for instance Corollary 1 and Proposition 2 in this Appendix.

ProposITION 1. The following assertions are true for systems of type
(13), with F,(z, Z) homogeneous of degree n:

(a) The first three Lyapunov—Abel constants are
a,=2n(n—1) Re(gy),

a;=(1—n) nzlm(glgfl)a

n(l—n) 88
a,= Re< Y z[ li((n—1+1+k)g,(,+k)
Lk, I+k#0 +

+(n—1—1—k>g,+k)>.

(b) The first two period—Abel constants are

by = —2mIm(g,),

n—I—-1 _
b,= _7T<Z fg/g/'i_z Y gzg1>-

1#0 >0

The statement basically follows by integrating the recurrences given in
(18). We set first some useful notation for the integration steps:

Given a trigonometric polynomial p(0) =3, . x pre™’ + p, with K a finite
subset of Z\{0}, we define

0 0
O =[ perdz= 3 | Beriipo| = 3 B 1)1y

keK k 0 keKlk

PO = 3 T+ py,
keklk

and {p} =p, {p}" =p. In general, we can write (0) = p(0) — p(0).

The difference between both primitives of p(0) is that p contains an
“extra” constant term, while p(0) is the primitive of p(#) which has no con-
stant terms. This fact will be crucial for the fluency of our computations.
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Observe also that

ﬁ'w):{ 5 ikpke”ﬂf’}w = Y ple— 1) =p(0)— p(0),

k#0

ﬁ'<9)={ 5 ikpke"k“} = Y pee™=p(0)—po.

k#0 k#0

The last one, then, becomes a trigonometric polynomial without constant
terms.

Proof of Proposition 1.

(i) To integrate (18) we compute the expressions of S,(8), 4,(8), and
A4(0) in terms of the coefficients given in (14):

S,(0)=2 g™,
!

A2(6)=ReZ(n—1—l)g,e”", (22)
/
n—1

A5(0)= — 3 Ing/gkei(uk)e-
Lk

By using (18) and the above expressions we have that

ub(0)=A5(0)=Re ) (n—1—1) g,e™.

!

This implies that

u>(0) = Ao(0) = Re Zj (n—1—1)g,e" do
;7 0
—1-1 1?0
=Re[(n—1)g09+ D (n,i)g,e‘”’ )
1%0 il 0

Thus, a, =u,(2n) =2n(n—1) Re g,.

To compute the subsequent «;, we will assume that a,=0 and so
Re g, =0 (this assumption may also be read as u,(27) =0, /72(271):0 or
@(27:):?1\2(0)). Of course, we also must re-consider the functions 4,,
A,=u,, and 4 under this restriction. As a consequence, A,(6) becomes a
trigonometric polynomial without constant terms.
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The second equality of (18) gives that

~ ~ ~ ~

u3(9) {A3+2A2”2}~(0):143(‘9)'1'2{142”2} (9):1‘?3(‘9)'1'{(1422)’} (0)

= A3(0) + 4,2(0) — 4,2(0).

Then, imposing that a, =0,

as=u;(2n)

= A4y(2nm)
:1_n1m< Y gglt Y S8k e"<’+k><>2n
2 I+k=0 1o i+ K) 0

=n(l—n)Im Z 818k

I+k=0
=n(l—n)Im) g,g_,

1

Again from (18), and using that u, =/Tz, we get that

1y(0) = {As12 + 24505 + 34315} (0) = { A, A2+ 24 u5+345u,) (0)

= H(A) +26(LA)} +{4: D)
To compute a, we must assume that A »(2m) = A 3(27) =0. Thus,
ay=uy(2n)={A4,4,} " (2n).

Moreover, there exists some constant C such that {A3A~2}~ (27) =
{445} (2r)+ CA5(2n), and so

as= {143;1\2}~ (2m).

This simple trick clarifies the forthcoming computations,

~ 1—n Ak n—j—1 .
A3A2:< ) Im Z glgke(1+k)g><ReZ = gjejﬁ>

I+k#0 J#£0 J

1—n ) n—j—1
_ I i(l+k)O .
=~ Im EA gigre i (ee

W0 _ g o)
j 9
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where 4= {(j, 1, k):I+k+#0,j#0}; and so,

1—n 2 i1 -
4 Y [ g, eI (g0 — g e ) do),
40 1y

a4:

l—n n—j—1
2 Im{ Y Tg/gkg,ﬂ

J+k+1=0

n— 2n

-1 .
-y %gzgkg,«HJrZWf"‘”

—j+k+1=0 s#0 0

818k
i I e +I1+k—1
" Ik, lgk;éo i(l+k) (—¢ (/+k)(n )

—&iin—I—k—1))

(1l —n) -
=TSR Y (g gl k= 1)+ Egn— =k = 1)),
Lk, l+k+#0 +

as we wanted to prove.

(i) Referring to the period constants, since u,(f) = 1, we immediately
obtian the expression for b :

27
b, = fj Im S, (0) d0 = —27 Im g,.

0

On the other hand, from (20), and assuming that a;=0 for all / and
b, =0, we see that

b, = _f” Im S,(0) A,(6) = —fzn Im S,(0) 45(0)

2r — ] —
_ 7} <Im Z gleil()> <Re Z n / lgje”">
0

1#0 j=0 Y
1 > n—j—1 i i — —i
=—3 Imj z a gie-’('(g,e/”—g,e 10)
0 /%0 )
1 2 —j—1 . o
=*Rej Z n ] gj(glé"“H)H—EI6’7'(’71)6)
2 0 yizo J
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By using that (n+/—1)/[—(n—1[—1)/I=2 and that a, =0, we get that the
real part of the above expression can be removed and then

1 _
by=—mn Z 7((n+l—l)g/g7/+(n—l—1)g1g/)

1#0

n—I[1—1 _
= _7T<2 Y g8 i+ ) ] g1g1>, (23)

1>0 1#0
which gives an expression for b,. ||
As a consequence of Proposition 1, we can state the following results.
COROLLARY 1. Suppose that system (13) is Hamiltonian. Then the origin
cannot be an isochronous centre.

Proof.  We will prove that for such systems the second period—Abel con-
stant is always positive, and hence that the origin cannot be an
isochronous centre.

In the case of Hamiltonian systems we have that Re(0F/0z)=0 and so
we get the following characterization:

(n+l+1)g+(n—I1+1)g_,=0.

By substituting the relation given by (23), we get

b2=—71' Z

I#0

g,g,<—(n+l—l)(n+l~|—l)

-1
O T

g8 —4nl 4ng,g,
[ —_— = — 0.
DV e P D Vi R

1#0 1#0

COROLLARY 2. Assume that system (13) has a center at the origin. For r
small enough let t(r) denote the period function of the solution of (13) which
starts at the point z=r+0i. Let b, and b, be given by Proposition 1. Then
the following hold.

(i) if by#0 then t(r) =2 +b,r" '+ O(r™),
(ii) i b, =0 and b, #0 then #(r) =21 +b,r*" 24+ O(r* V).

Proof. Consider b, #0. By the definition of b,, see (20), it turns out
that

i(p)=2n+b,p+0(p*),
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where #(p) is given in (19). From the change used to get (15), we have that

Hr)= f<1 +Im(r;n((l))) r"1>'

Hence the proof follows by direct substitution. The case b, =0 and b, #0
can be proved in a similar way. ||

The expression of the Lyapunov—Abel constants in the way given in
Proposition 1 is also a good language in which prove and write more
explicitly a result of Conti, see [ 11], which gives necessary conditions for
the origin of a system of type (13) satisfying

do
E_l

to be a centre. When this centre exists, it is obvious that it is an
isochronous one.

In real variables, these systems admit the general form:
x= _y+x Z Cnfk,kxnikyk
k=0

(24)

y=x+y Z Cnfk,kxnikyk'
k=0

The above system expressed in complex coordinates turns out to be:
i=iz+F,, (2 2), (25)
with
= 1 ¢ S\n—k N AN
Fn+l(2a2)2? Z Cnik’kZ(Z-i-Z) (Z_Z) (_l) .
k=0
Expanding the binomials, we finally obtain that
Fn+1(Za Z_): Z fl,leZ_m’
I+m=n+1
where
1 . n—k\ [k
fim=g5 T2 (" (D en
: 2 ; i J2 ok
n=Il+m-—1, and

A:{(kajl,j2)50<k<na0<j1 <n—k,0<j,<k,j, +j2=m}.
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PrOPOSITION 2. (1) A system of type (24) (which in complex coordinates
is written as (25)) has a center at the origin if and only if its first
Lyapunov-Abel constant a, is zero.

(ii)
0 if nis odd,
a4y =42 : —k\/k (26)
’ nnnZ(—l)‘/Z(—i)k<n. ><.>Cn_k,k if n is even,
2" 7 J1 J2
where

A'={(k, ji, j2):0<k<n 0<j, <n—k, 0<j,<k, j,+j,=n/2}.
Conditions for several n obtained applying (26) are
n=2 Co.2+ € 0=0,
n=4 3co.4+Ca 2+ 304 0=0,
n==6 S5co. 6+ CratCqo+5¢60=0,
n=14 429¢q 14 +33cy 15+ 9¢y 1o+ 5¢6 5+ 5S¢ 6 +9¢10, 4+ 33¢15, 5
+429¢,4. =0,
n=20 46,189¢ 20 +2,431c, 15 +429¢, 16+ 143¢6 14+ TTcg 15+ 63¢10, 10
+T77c15, s+ 143¢14 6 +429¢ 16 4+ 2,431,155, +46,189¢, o =0.
Proof of Proposition2. (i) The necessity is obvious. To prove the

sufficiency, suppose that Re g,=0. By using (22) this last equality is
equivalent to

27r
Re L S, . 1(0) d0=0.

Then, integrating system (25) in polar coordinates, we will obtain that all
the orbits are closed, and so that the origin is a centre. This is done in the
following.

From r? =zz and (25), it follows that

rF=Re(zZF, (z, 2)) = Re(re*iHFnJrl(reie’ re*ig)),

= Re(eiianJr l(ema e*iﬁ)) = Re(SnJr 1(6))a ando ﬁnaHY)

1 27 2
—} :Ref S, . 1(0)d0=0.
0

n
nr-o
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Finally we will prove (ii). In our notation, this constant is written as

a,=2nnReg, (see Proposition 1), where g, are defined as in (14). As we
have pointed out before, if there is a center in this sytem it is isochronous.
So the first period—Abel constant b, is always zero. Therefore (see Proposi-
tion 1), Re gy =g,.

From (14) we obtain that g, =0 if # is odd, and that

1 ) L (n—k\/k
gozf(n+2)/2~n/2:2n§,(_l)'/2(_l)k< ji ><j2>cnk,ks

where

A’:{(k,jl,jz):o<k<n,0<h<n—k»0<h<k»ﬁ ”2:;}’

if n is even, as we wanted to prove. ||
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