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We analyze whether a given set of analytic functions is an Extended Chebyshev system.
This family of functions appears studying the number of limit cycles bifurcating from
some nonlinear vector field in the plane. Our approach is mainly based on the so called
Derivation–Division algorithm. We prove that under some natural hypotheses our family is
an Extended Chebyshev system and when some of them are not fulfilled then the set
of functions is not necessarily an Extended Chebyshev system. One of these examples
constitutes an Extended Chebyshev system with high accuracy.
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1. Introduction

Given m + 1 real, analytic and linearly independent functions F = { f0(x), f1(x), . . . , fm(x)}, defined on some open inter-
val I , the problem of estimating the number of real zeroes of any non-zero function F ∈ Span F ,

F (x) =
m∑

j=0

λ j f j(x), λ j ∈ R,

is of wide interest. We will denote by Z(F ) the number of zeroes in I , counted with their multiplicities, of a function F
and by

Z(F) = max
F∈(SpanF)\{0}

Z(F ),

whenever they exist. It is easy to see that Z(F) � m. A set of functions F for which Z(F) = m is usually called an Extended
Chebyshev system on I and denoted in short as an ET-system. The set of polynomials of degree m, {1, x, x2, . . . , xm}, on any
open interval is a well-known example. Other nice examples are{

1, log x, x, x log x, x2, x2 log x, . . . , xn, xn log x
}

on (0,∞),{
1, cos x, cos(2x), . . . , cos(mx)

}
on (0,π),{

(x + a0)
−1, (x + a1)

−1, . . . , (x + am)−1} on (a,∞), where a = max
j=0,...,m

(−a j).
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