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1. Introduction
The problem of determining the number of limit cycles bifurcating from the period annulus of a system

f

where P(x, y), Q (x, y) are polynomials of a given degree, G(x, y) satisfies G(0, 0) # 0 and ¢ is a small parameter, has been
widely studied (see for instance [ 1-8]). Among this type of systems we will be concerned with those having

—yG(x,y) + eP(x,y), (1)
—xG(x,y) +Q(x,y),

Kq Ky
Gy =[]x-ap]]o—bo. (2)
j=1 =1

where a; and b, are real numbers with a; # a; and b; # b; fori # j. The unperturbed system (¢ = 0) presents a centre at the
origin and any line x = a; or y = b, constitutes an invariant set of singular points of the system. This invariant set is formed
by parallel and/or orthogonal invariant lines.
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