Upper bounds for the number of zeroes for some Abelian integrals

Armengol Gasull ${ }^{\text {a }}$, J. Tomás Lázaro ${ }^{\mathrm{b}, *}$, Joan Torregrosa ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{\text {b }}$ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Barcelona, Spain

ARTICLE INFO

Article history:

Received 15 April 2011
Accepted 17 April 2012
Communicated by Enzo Mitidieri

MSC:

primary 34C08
secondary 34C07
34C23
37C27
41A50

Keywords:

Abelian integrals
Weak 16th Hilbert's Problem
Limit cycles
Chebyshev system
Number of zeroes of real functions

Abstract

Consider the vector field $x^{\prime}=-y G(x, y), y^{\prime}=x G(x, y)$, where the set of critical points $\{G(x, y)=0\}$ is formed by K straight lines, not passing through the origin and parallel to one or two orthogonal directions. We perturb it with a general polynomial perturbation of degree n and study the maximum number of limit cycles that can bifurcate from the period annulus of the origin in terms of K and n. Our approach is based on the explicit computation of the Abelian integral that controls the bifurcation and on a new result for bounding the number of zeroes of a certain family of real functions. When we apply our results for $K \leq 4$ we recover or improve some results obtained in several previous works.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of determining the number of limit cycles bifurcating from the period annulus of a system

$$
\left\{\begin{array}{l}
\dot{x}=-y G(x, y)+\varepsilon P(x, y) \tag{1}\\
\dot{y}=-x G(x, y)+\varepsilon Q(x, y)
\end{array}\right.
$$

where $P(x, y), Q(x, y)$ are polynomials of a given degree, $G(x, y)$ satisfies $G(0,0) \neq 0$ and ε is a small parameter, has been widely studied (see for instance [1-8]). Among this type of systems we will be concerned with those having

$$
\begin{equation*}
G(x, y)=\prod_{j=1}^{K_{1}}\left(x-\mathrm{a}_{j}\right) \prod_{\ell=1}^{K_{2}}\left(y-\mathrm{b}_{\ell}\right) \tag{2}
\end{equation*}
$$

where a_{j} and b_{ℓ} are real numbers with $\mathrm{a}_{i} \neq \mathrm{a}_{j}$ and $\mathrm{b}_{i} \neq \mathrm{b}_{j}$ for $i \neq j$. The unperturbed system $(\varepsilon=0)$ presents a centre at the origin and any line $x=\mathrm{a}_{j}$ or $y=\mathrm{b}_{\ell}$ constitutes an invariant set of singular points of the system. This invariant set is formed by parallel and/or orthogonal invariant lines.

[^0]
[^0]: * Corresponding author. Tel.: +34 934015891; fax: +34 934011713.

 E-mail addresses: gasull@mat.uab.cat (A. Gasull), jose.tomas.lazaro@upc.edu (J. Tomás Lázaro), torre@mat.uab.cat (J. Torregrosa).

