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Abstract. We prove that a family of functions defined through some definite
integrals forms an extended complete Chebyshev system. The key point of
our proof consists of reducing the study of certain Wronskians to the Gram
determinants of a suitable set of new functions. Our result is then applied
to give upper bounds for the number of isolated periodic solutions of some
perturbed Abel equations.

1. Introduction and main results

In this paper we introduce the family of analytic functions

Ik,α(y) :=

∫ b

a

gk(t)

(1− yg(t))α
dt, (1)

for k = 0, 1, . . . , n, and prove that it is an extended complete Chebyshev system

(for short, an ECT-system). In contrast to what is commonly done in other papers,
no explicit integration of functions Ik,α is needed. In fact, our proof is based on
the standard characterization of ECT-systems through the computation of certain
Wronskians (see Theorem 2.1). The key point of our approach consists of showing
that these Wronskians coincide with some Gram determinants, for a suitable new
set of functions, associated to the usual inner product in L2([a, b]). Up to our
knowledge, this is the first time that this kind of method has been used to prove
that a given set of functions is an ECT-system.
We apply this result to determine upper bounds for the number of isolated 2π-

periodic solutions which appear when one performs a first order analysis in ε of
generalized Abel equations

dx

dt
=

cos(t)

q − 1
xq + εPn(cos(t), sin(t)) x

p, (2)

where q, p ∈ N \ {0, 1}, q 6= p, and Pn being a polynomial of degree n. Recall that
the usual Abel equation corresponds to the values {q, p} = {2, 3}. This problem is
closely related to the Hilbert sixteenth problem for planar polynomial differential
equations (see, for instance, [3, 4, 5, 7]). As it will be seen, our results improve
the previous ones for equations (2) given in [1, 3, 7].
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Before stating our main theorems, it is convenient to introduce some notation.
Thus, given k ∈ N, α, a, b ∈ R and any continuous non identically vanishing
function g(t) on [a, b], we consider the new analytic function Ik,α(y) provided by
formula (1) and defined on the open interval J given by the connected component
of the set {y ∈ R : 1 − yg(t) > 0 for all t ∈ [a, b]} which contains the origin. For
instance, if we denote m := mint∈[a,b] g(t) < 0 and M := maxt∈[a,b] g(t) > 0 then
J = (1/m, 1/M).
Our first result shows that, varying k, and for almost all α, the above set of

functions constitutes an ECT-system (Section 2 contains a precise definition of
such type of systems).

Theorem A. For any n ∈ N and any α ∈ R \ Z−, the ordered set of functions
(I0,α, I1,α, . . . , In,α), as defined in (1), is an ECT-system on J . When α ∈ Z− it
is an ECT-system on J if and only if n ≤ −α. In particular, the case where the
set of functions is an ECT-system, any non-trivial function of the form

Φα(y) :=

n∑

k=0

akIk,α(y),

with ak ∈ R, has at most n zeros in J counting multiplicities.

It was proved in [7] that when g(t) = sin(t) and [a, b] = [0, 2π], the function
Φ1 had n zeros in a neighbourhood of y = 0. In [3], this result was extended
to any Φα, for α ∈ Q+. Some of these local results were subsequently improved
in [1]. More precisely, the functions Φ1 and Φ−1/2 were explicitly computed and
their global number of zeros in J = (−1, 1) was studied. Indeed, the following
expressions were achieved for them:

Φ1(y) = Ψ1(y)
(
P2n(y)+Q2n(y)

√
1− y2

)
, (3)

and

Φ−1/2(y
2) = Ψ−1/2(y

2) (Pn(r)K(r) +Qn(r)E(r)) , (4)

Pj and Qj being suitable polynomials of degree j, r = 2 y2/(1 + y2), Ψ1(y) and
Ψ−1/2(y) being certain non-vanishing functions and K(r) and E(r) being some
concrete elliptic functions (see [2]). Having in mind expressions (3) and (4), the
authors proved that Φ1(y) had at most n zeros, counting multiplicity, in (−1, 1)
and that this upper bound was sharp. Moreover, they obtained that the function
Φ−1/2(y

2) could have at most 4n + 2 zeros in J and provided examples having at
least 2n zeros.
Theorem A asserts that, for any g and α as in the statement, the upper bound,

n, for the number of zeros of Φα(y) in the whole interval J is sharp. Notice that
for Φα(y

2) the upper bound is 2n.
Concerning Abel equations, it will be seen that if x = ϕ(t, ρ, ε) is the solution

of equation (2) starting at x = ρ, then:

ϕ(2π, ρ, ε) = ρ+ ερpΦα(ρ
q−1) +O(ε2), (5)
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where Φα is the function introduced in Theorem A for g(t) = sin(t), α = (p −
q)/(q−1) and suitable real constants a0, a1, . . . , an. This connection between Abel
equations and the functions Φα has been, in fact, our main motivation to prove
Theorem A. In this sense, it is well-known that simple zeros in (−1, 1) \ {0} of
Φα(ρ

q−1), give rise to initial conditions for isolated 2π-periodic solutions of (2)
which tend to these zeros as ε goes to 0. We call these 2π-periodic solutions,
periodic solutions obtained by a first order analysis. Thus, we have:

Theorem B. The maximum number of 2π-periodic solutions of the generalized
Abel equation (2), obtained by a first order analysis, is n when q is even and 2n
when q is odd. Moreover in both cases these upper bounds are sharp.

2. Preliminary results and proof of Theorem A

Let f0, f1, . . . , fn be functions defined on an open interval J of R. It is said that
(f0, f1, . . . , fn) is an extended complete Chebyshev system (ECT-system) on J if,
for all k = 0, 1, . . . , n, any nontrivial linear combination a0f0(y) + a1f1(y) + · · ·+
akfk(y) has at most k isolated zeros on J counted with multiplicities. Here “T”
stands for Tchebycheff, which is one of the transcriptions of the Russian name
Chebyshev.
A very useful characterization of ECT-systems is given in the following theorem,

see [6, 8]:

Theorem 2.1. Let f0, f1, . . . , fn be analytic functions defined on an open interval
J of R. Then (f0, f1, . . . , fn) is an ECT-system on J if and only if for each
k = 0, 1, . . . , n, and all y ∈ J, the Wronskian

W (f0(y), f1(y), . . . , fk(y)) :=

∣∣∣∣∣∣∣∣∣

f0(y) f1(y) · · · fk(y)
f ′

0(y) f ′

1(y) · · · f ′

k(y)
...

...
. . .

...

f
(k)
0 (y) f

(k)
1 (y) · · · f

(k)
k (y)

∣∣∣∣∣∣∣∣∣

is different from zero.

The following well-known result of linear algebra will be, as well, a key point in
our argument.

Theorem 2.2. Let v0, v1, . . . , vn be elements of a vectorial space E endowed with
an inner product 〈 , 〉. Then

G(v0, v1, . . . , vn) :=

∣∣∣∣∣∣∣∣

〈v0, v0〉 〈v0, v1〉 · · · 〈v0, vn〉
〈v1, v0〉 〈v1, v1〉 · · · 〈v1, vn〉

...
...

. . .
...

〈vn, v0〉 〈vn, v1〉 · · · 〈vn, vn〉

∣∣∣∣∣∣∣∣
≥ 0

and it is zero if and only if the vectors v0, v1, . . . , vn are linearly dependent.

The determinant above is usually called the Gram determinant. We will use
this result to E being the space of continuous functions on a closed interval [a, b]
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and with inner product 〈u, v〉 =
∫ b

a
u(t)v(t) dt. In this context G is also called the

integral Gram determinant (see [9, pp. 45-48]).
Before proving Theorem A we need some preliminary results.

Lemma 2.3. (i) For any k ≥ 0 and ℓ ≥ 1, I
(ℓ)
k,β(y) =

∏ℓ−1
j=0(β + j)Ik+ℓ,β+ℓ(y).

(ii) For any k ≥ 1 and m ≤ k,

Ik,β(y) = y−m
(
Ik−m,β(y) +

m∑

j=1

cj(m)Ik−m,β−j(y)
)
,

where cj(m) = (−1)j
(
m
j

)
.

Proof. The functions Ik,β(y) are analytic on J and

I
(ℓ)
k,β(y) =

∫ b

a

∂ℓ

∂yℓ
gk(t)

(1− yg(t))β
dt,

so the proof of statement (i) is straightforward.
We will prove statement (ii) by induction on m. The case m = 1 follows

multiplying by (1 − yg(t)) the numerator and the denominator of the integrand
of (1):

Ik−1,β−1(y) =

∫ b

a

gk−1(t)

(1− yg(t))β
dt− y

∫ b

a

gk(t)

(1− yg(t))β
dt = Ik−1,β(y)− yIk,β(y).

Thus, let us assume that the expression of Ik,β holds until m. Then, taking into
account that cj(m)− cj−1(m) = cj(m+ 1), it follows that

Ik,β(y) = y−m
( m∑

j=0

cj(m)Ik−m,β−j(y)
)

= y−m
( m∑

j=0

cj(m) y−1(Ik−m−1,β−j(y)− Ik−m−1,β−j−1(y))
)

= y−m−1
(m+1∑

j=0

cj(m+ 1)Ik−m−1,β−j(y)
)

and, therefore, the assertion is proved for m+ 1. �

The following lemma relates a Wronskian with the determinant of a symmetric
matrix which, at the end, will become a Gram determinant.

Lemma 2.4. Let I0,α, . . . , In,α be the functions defined in (1). Then for y 6= 0,

Wn := W (I0,α, I1,α, . . . , In,α) = y−(1+n)nDn(α)

∣∣∣∣∣∣∣∣

I0,α−n I0,α−n+1 · · · I0,α
I0,α−n+1 I0,α−n+2 · · · I0,α+1

...
...

. . .
...

I0,α I0,α+1 · · · I0,α+n

∣∣∣∣∣∣∣∣
,

(6)
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where Dn(α) =
n−1∏
j=0

(α+ j)n−j .

Proof. Using the expression for the derivatives provided by Lemma 2.3(i) we can
write

Wn = Dn(α)

∣∣∣∣∣∣∣∣

I0,α I1,α · · · In,α
I1,α+1 I2,α+1 · · · In+1,α+1

...
...

. . .
...

In,α+n In+1,α+n · · · I2n,α+n

∣∣∣∣∣∣∣∣
. (7)

If we denote the i-row of the previous determinant by Ri = [Ii,α+i, . . . , Ii+n,α+i]
for i = 0, . . . , n, and use Lemma 2.3(ii) we get

Ri = y−i
(
R̂i +

i∑

j=1

cj(i)R̂i−j

)
,

where R̂i = [I0,α+i, . . . , In,α+i] . Then, from the elementary properties of the deter-
minants we obtain that

Wn = y−
(1+n)n

2 Dn(α)

∣∣∣∣∣∣∣∣

I0,α I1,α · · · In,α
I0,α+1 I1,α+1 · · · In,α+1

...
...

. . .
...

I0,α+n I1,α+n · · · In,α+n

∣∣∣∣∣∣∣∣
.

Applying again Lemma 2.3(ii), but this time to the columns of the determinant,
the desired result is achieved. �

Next result will be the key point in our proof of Theorem A.

Proposition 2.5. Let Wn be the Wronskian defined in Lemma 2.4. Then, if α is
a negative integer and n > −α then Wn = 0. Otherwise, Wn does not vanish on
the interval J and sgn(Wn) = sgn(Dn(α)).

Proof. If α is a negative integer and n > −α it is clear that Dn(α) = 0 and, from
equality (7), it follows that Wn = 0. So, assume that Dn(α) 6= 0 and consider the

auxiliary functions fi(t) = (1− yg(t))(n−α)/2−i , for i = 0, 1, . . . , n, which are well
defined on J since they satisfy 1− yg(t) > 0 on this set. Notice that

〈fi, fj〉 =

∫ b

a

(1− yg(t))n−α−i−j dt = I0,α−n+i+j(y).

Hence, using the equivalent expression (6) of the Wronskian for y 6= 0,

Wn = y−(1+n)nDn(α)G(f0, f1, . . . , fn), (8)

where G(f0, f1, . . . , fn) is the integral Gram determinant. From Theorem 2.2, it
is non-negative and vanishes if and only if the functions fi are linearly dependent.
The independence of the functions fi(t) = (1−yg(t))−(α+n)/2(1−yg(t))n−i follows
from the fact that g(t) 6≡ 0. Therefore, the sign of Wn on the set J \{0} is the sign
of Dn(α) because the Gram determinant in (8) is always positive and y(1+n)n > 0.
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It can be seen in the expression of Wn in (7) that the determinant appearing
there is also positive when it is evaluated at y = 0 since it can also be written as
the new integral Gram determinant,

∣∣∣∣∣∣∣∣

I0,α(0) I1,α(0) · · · In,α(0)
I1,α+1(0) I2,α+1(0) · · · In+1,α+1(0)

...
...

. . .
...

In,α+n(0) In+1,α+n(0) · · · I2n,α+n(0)

∣∣∣∣∣∣∣∣
= G(1, g, g2, . . . , gn) > 0.

Thus Wn is well defined on the whole J , does not vanish and its sign coincides
with the one of Dn(α), as we wanted to prove. �

Remark 2.6. Notice that, although for α = −m ∈ Z− the functions

Ik,−m =

∫ b

a

gk(t)(1− y g(t))m dt,

are well defined for all y ∈ R, our result only proves that the set (I0,−m, I1,−m, . . . ,
In,−m), for n ≤ −α = m, is an ECT-system on J . For instance, it is easy to see
that the functions

a0I0,−2(y) + a1I1,−2(y),

which are polynomials of degree 2 in y, can have two zeros in R. This shows that
(I0,−2, I1,−2) is not a ECT-system on the whole R.

Proof of Theorem A. From Theorem 2.1 we know that it is enough to show that,
under our hypotheses and for any k = 0, 1, . . . , n, the Wronskian of the func-
tions (I0,α, I1,α, . . . , Ik,α) does not vanish on J . This is a direct consequence of
Proposition 2.5. �

3. Proof of Theorem B

First we prove that expression (5) holds. Following the computations of [1, 3]
one can easily get that

ϕ(t, ρ, ε) =ρ

(
1

1− ρq−1 sin(t)

) 1
q−1

+ ε

(
ρ

1− ρq−1 sin(t)

)p ∫ t

0

Pn(cos(s), sin(s))

(1− ρq−1 sin(s))α
ds+O(ε2).

Notice that since ρ ∈ (−1, 1) the flow is well defined for all t ∈ R. Then

ϕ(2π, ρ, ε) = ρ+ ερp
∫ 2π

0

Pn(cos(t), sin(t))

(1− ρq−1 sin(t))α
dt +O(ε2).

Since cos2ℓ(t) = (1−sin2(t))ℓ and cos2ℓ+1(t) = (1−sin2(t))ℓ cos(t) it turns out that
∫ 2π

0

Pn(cos(t), sin(t))

(1− ρq−1 sin(t))α
dt =

∫ 2π

0

Qn(sin(t))

(1− ρq−1 sin(t))α
dt = Φα(ρ

q−1),

where Qn is a new polynomial of degree n, that we can write as Qn(z) = a0 +
a1z + a2z

2 + · · ·+ anz
n. Hence (5) follows.
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The maximum number of isolated 2π-periodic solutions obtained by a first order
analysis can be obtained studying the zeroes of (ϕ(2π, ρ, ε)−ρ)/ε = ρpΦα(ρ

q−1)+
O(ε). This number is controlled by the zeroes of Φα(ρ

q−1). Taking y = ρq−1

and J = (−1, 1) we know from Theorem A that the maximum number of zeros
of Φα(y) in J , counting multiplicities, is n and that this upper bound is sharp.
Hence Theorem B follows taking into account that when q is odd Φα(ρ

q−1) =
Φα((−ρ)q−1). �
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