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LIMIT CYCLES FOR A CLASS OF ABEL EQUATIONS*

A. GASULL?T AND J. LLIBRET

Abstract. The number of solutions of the Abel differential equation dx(t)/dt=
A(t)x(1)>+ B(t)x(t)*+ C(t)x(t) satisfying the condition x(0) = x(1) is studied, under the hypothesis that
either A(t) or B(t) does not change sign for t€[0, 1]. The main result obtained is that there are either
infinitely many or at most three such solutions. This result is also applied to control the maximum number
of limit cycles for some planar polynomial vector fields with homogeneous nonlinearities.
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1. Introduction and statement of the main results. A problem proposed by Pugh
(see [12]) consists of the following: Let ay, a,, - - -, a, : R> R be smooth functions and
consider the differential equation

d
(1) 71‘: 4y (X" +a,_ (X" +- -+ ay()x+alr), O0=t=1.

We will say that a solution x(t) of (1) is a closed solution or a periodic solution if
itis defined in the interval [0, 1] and x(0) = x(1). The adjectives *““closed” and “periodic”
are motivated by the case where a,, a,," -, a, are 1-periodic, in which (1) can be
considered in the cylinder and the “closed” solutions really correspond to periodic
orbits in the cylinder. An isolated closed solution in the set of all the closed solutions
will be called a limit cycle. Then the problem is: Does there exist a bound on the
number of limit cycles of (1)?

In the case n =2, (1) is called the Riccati equation and the problem of determining
the number of limit cycles is already known: there are at most two of them (see, for
instance, [12], [14]). When n=3, (1) is called the Abel equation. Also in [12] it is
proved that there is no upper bound for the number of closed solutions for the Abel
equations. Hence a more specific problem arises: Give a bound on the number of limit
cycles of Abel equations assuming additional hypotheses on as(t), a,(t), a;(t), and
ao(t).

A problem that is studied in several papers is Pugh’s problem for Abel equations
when a;(t) does not change sign (see [7], [12], [18]). In this case the maximum number
of closed solutions is three.

The Ricatti equation acquired importance when it was introduced by Jacopo
Francesco, Count Riccati of Venice (1676-1754), who worked in acoustics, to help
solve second-order ordinary differential equations. Abel’s differential equation arose
in the context of the studies of N. H. Abel on the theory of elliptic functions.

The aim of this paper is to study the problem of determining the maximum number
of limit cycles of Abel equations when ay(¢) =0 and one of the other three functions
that define the differential equation does not change sign. For simplicity we write the
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Abel equation with ay(¢t) =0 in the following form:

() %=A(t)x3+B(t)x2+ C(t)x.
Note that any Abel equation with a periodic orbit x,(¢) can be written in the form
(2) by using the new coordinate X = x — x,(¢). Observe also that the function A(¢) does
not change in the new coordinate.

Let L and L' be the straight lines ¢t =0 and ¢ =1, respectively, defined on the strip
(1, x) € [0, 1] xR, where part of the flow of (2) lies. We consider the returnmap h: L—> L'
(when it is defined) as follows. If y e L then h(y) =x(1, y), where x(¢, y) denotes the
solution of (2) such that x(0, y) =y. Note that a periodic solution x(t, y) satisfies
h(y) =y. The multiplicity of a limit cycle x(t, y) is the multiplicity of y as a zero of the
function h(y)—y. Multiplicity of limit cycles for (2) is studied in [1], [16].

The main results that we prove are stated in the following theorems.

THEOREM A. Suppose that A(t)# 0 and does not change sign. Then the following
hold.

(a) The sum of multiplicities of all limit cycles of (2) is at most 3.

(b) Table 1 shows a more precise distribution of the limit cycles (2) when A(t)=0
(the case A(t) =0 has associated the table obtained reversing the inequalities for c and d ).

Theorem A(a), as we said before, is already known. The new contribution consists

of the additional information given in Table 1. The proof of the results stated in this
table will use ideas similar to those of [7].

THEOREM B. Assume B(t)# 0 and does not change sign. Then the following hold :

(a) The sum of multiplicities of all limit cycles of (2) is at most 3.

(b) Table 2 shows a more precise distribution of the limit cycles of (2) when B(t)=0
(the case B(t)=0 has associated the table obtained reversing the inequalities for c).

TABLE 1
Maximum number of limit cycles of equation (2) when A(t)=0. Here ¢ =Ll) C(t)dt, d =Ll) B(t) el o ds gy

c<0 d<o0 d=0 d>0 d<0 d=0 d>0

Maximum number of limit cycles 1 1 0 0 2 0 0
in the half-strip x> 0 taking
into account their multiplicity

Multiplicity of the limit cycle 1 2 3 2 1 1 1
x=0
Maximum number of limit cycles 1 0 0 1 0 0 2

in the half-strip x <0 taking
into account their multiplicity

Theorem B improves Proposition 2.3 of [17]. Its proof also uses the ideas utilized
in the proof of Theorem A plus some geometrical results associated with the change
of coordinates x > —x.

The results of these theorems are the best ones in the following sense: The maximum
number of limit cycles stated in the two tables are realizable for Abel equations when
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either A or B does not change sign. It is enough to consider A(t), B(t), and C(t)
constant functions.

Table 2 could be improved by introducing a new parameter (similar to the
parameter d in Table 1) that would give us a maximum number of limit cycles such
that their sum in the whole strip was always at most 3. Unfortunately, we have not
found this parameter.

TABLE 2
Maximum number of limit cycles of equation (2) when B(t)=0. Here c = I(l) C(t) dt.

c<0 c=0 c>0
Maximum number of limit cycles in the half-strip x > 0 taking 2 1 1
into account their multiplicity
Multiplicity of the limit cycle x =0 1 2 1
Maximum number of limit cycles in the half-strip x <0 taking 1 1 2
into account their multiplicity
The sum of the multiplicities is at most 3 3 3

Similar results to those of Theorems A and B are not possible when we consider
that C(t) does not change sign. In fact, the example of an Abel equation with an
arbitrary number of limit cycles, which we mentioned before, can be constructed with
C(t) a constant function, as was shown in [12]. That example is of the form

%= ef (1)x*+ a(t)x*+ 6x,
where |5] is small, a(#) is a polynomial of degree 1, and f(¢) is a polynomial of degree
2n, and it can have at least n+3 limit cycles for suitable a and f.

In fact if we find a bound on the number of limit cycles of (2) with C(¢) a constant
function in terms of A and B, we could give a bound on the number of limit cycles
that a quadratic system has. Theorems A and B can be used in any way to study the
limit cycles of planar polynomial vector fields with homogeneous nonlinearities. We
consider two-dimensional autonomous systems of differential equations

(3) Xx=Ax—y+P,(x,y), y=x+iy+Q.(xy),
where P, and Q, are real homogeneous polynomials of degree n=2. These systems
for arbitrary n =2 have been studied in [2]-[5], [17]. When n =2 we have a subclass
of quadratic systems which has been studied in [7], [8], [12]. System (3) with P,(x, y) =
(ax+by)R,_i(x,y) and Q,(x,y)=(cx+dy)R,_,(x, y), where R,_, is a homogeneous
polynomial of degree n—1, has been studied in [6], [9]-[11].
System (3) in polar coordinates can be written in the form

(4) F=Ar+r'f(0),  6=1+r""g(6),
with

f(8)=cos 6P,(cos 6, sin 8) +sin 0Q,(cos 6, sin 9),

g(0) =cos 6Q,(cos 0, sin §) —sin 6P,(cos 6, sin 9).

It is known that the periodic orbits surrounding the origin of system (4) do not
intersect the curve # =0 (see the Appendix of [4]). Therefore, these periodic orbits
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can be studied by making the transformation introduced by Cherkas[5], T(r, 8) =(p, 0),
where

(5) p=r""1/(1+r"""g(6)).
In the new coordinates (p, ), system (4) becomes the following Abel equation
d
(6) 5= A©)p*+B(0)p™+(n~1)p,

where A=(n—1)g(Ag—f), and B=(n—1)(f—2Ag)—g'.

In short, by studying all the periodic solutions p(8) of (6) we study all the periodic
solutions of system (3) surrounding the origin. Then by using Theorems A and B we
can prove the following result.

THEOREM C. (a) Suppose that either A or B does not change sign, B0, and A% 0.
Then system (3) has at most two limit cycles surrounding the origin.

(b) If either A=0 or B=0 system (3) has at most one limit cycle surrounding the
origin.

Examples of system (3) with the maximum number of limit cycles given in the
above theorem are given in [2], [3], [9]. For a more detailed study of the number of
limit cycles of system (3), see Propositions 7-9 of § 4.

Note that if B# 0 in (6), then it changes sign when n is even.

The rest of the paper is organized in the following way. In § 2 we state some
auxiliary results that we will need in the proofs of Theorems A and B, which are given
in § 3. Lastly, the cases A=0, B=0, and the proof of Theorem C are found in § 4.

2. Preliminary results. We will need the following results.
ProProsITION 1 (see [15]). If h(y) is the return map associated with the differential
equation dx/dt =S(x,t), 0=t=1, then

(a) h'(y)=exp J

95 (x(t,y), 1) di,
0 0X

t

(b) h'(y)= h'(y)“ Gty D exp {f

W)\
@ mm=ro)3(£2)

+J’0‘g(x(t,y), t) exp {2 L’z_f(x(&y), s) ds} dt],

where x(t, y) denotes the solution of the differential equation such that x(0, y) = y.
LEMMA 2. The first derivative of the return map associated with a periodic orbit x(t)

of (2) is

Z—:(x(s, ¥),s) ds} dt],

exp J’l C(t)dt ifx(t)=0,

0
or

exp [ - Jl {B(t)x(t)+2C(1)} dt] =exp J'l [A(t)x*(t)— C(t)]dt if x(t)#0.

0 0

Proof. For any periodic orbit x(¢) we know from Proposition 1 that the first
derivative of the return map is

exp (J‘l (BAx*(t)+2Bx(t)+ C) dt),

0
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so if x(t) =0, the lemma follows. If x(¢)5 0 then from (2) we know that
x'(1)
x(1)

and integrating between zero and 1 we obtain

= Ax*(t)+ Bx(t)+ C,

(7) 0=J (Ax?(t)+ Bx(1)+ C) dt.

Hence, by multiplying (7) by —3 or —2 and adding it to Ll) (3AX*(t)+2Bx(t)+ C) dt,
the lemma follows. O

LEMMA 3. It is not restrictive in the study of the number of limit cycles of (2) to
consider —B instead of B, or —A and —C instead of A and C, respectively.

Proof. By using one of the following three changes of variables, (x, t) > (—x, t),
(x,t)>(x,1—1t), or (x, t)>(—x, 1—t), the lemma follows. O

LeEMMA 4. Solutions of (2) in the region x>0 (respectively, x <0) can be studied
in the region y=x">>0 as solutions of the differential equation (8) (respectively, (9)).

®) Y 2A( 2By -2C (),
©) Y A +2B(y 20y,

The proof follows easily.

LEMMA 5. Assume that B(t) = 0 and does not vanish identically. If x(t) is a periodic
orbit of (2), then the flow of (2) in the strip [0, 1] xR moves upward across the curve
(t, —x(1)).

Proof. If x(t) is a periodic orbit of (2), then x'(¢) = Ax>(¢)+ Bx*(t) + Cx(t). Hence
the tangent of the curve (¢, —x(t)) has the direction (1, —Ax>(¢) — Bx*(t) — Cx(t)). Since
we know that the vector field given by (2) at the point (¢, —x(t))is (1, —Ax>(¢) + Bx*(t) —
Cx(t)), the lemma follows. 0

3. Proof of Theorems A and B.

Proof of Theorem A. By Lemma 3 we can assume that A(f)=0. Since for (2)
(8°S/8x*)(t, x) =6A(t) =0, from Proposition 1 we know that h”(x)=0 for all x for
which h is defined. So, by Rolle’s theorem, the maximum number of limit cycles of
(2) taking into account their multiplicities is three.

To show that Table 1 is right we use more information about h. From Proposition
1 and Lemmas 2 and 3 we have h(0)=0, h'(0)=expc, h"(0)=2dh’(0), where c=

fo C (1) dt and
d= Jl B(t) exp {Jt C(s) ds} dt.

1

(10) h'(x(0)) = exp J (A(t)x*(t)— C(t)) dt when x(0)#0.

0

Furthermore

Assume now that ¢ <0. Then from (10) for any fixed point x # 0 of h, h'(x)>1, and
Table 1 follows.

Consider the case ¢ = 0. In this case we can assume that d =0, since the case d <0
follows from this one and Lemma 3. We define H(x):= h(x) — x. For H we know that
H(0)=0, H(0)=e°—1=0, and H"(0) =2de‘ =z 0. Now we are going to prove that
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there are no limit cycles in the half-strip x> 0. Assume that x = x, gives the initial
condition for the closest positive periodic solution to x=0. Then H'(x,) =0 because
x=0 is unstable. Hence from Rolle’s theorem there exists y, 0 <y <x, such that
H'(y)=0 and H"(y)=0. Note that conditions H"(0)=0 and H"(y) =0 with 0<y are
in contradiction with the fact H"(x) = h"(x)> 0. The rest of Table 1 follows from part
(a) except when ¢>0 and d =0, in the half-strip x <0. Lemma 3 reduces this last case
to the same case but in the half-strip x> 0. O

Proof of Theorem B. From Lemma 4 we have that (2) is equivalent to either (8)
or (9). By Lemma 3 we can take B of suitable sign, so that in the y coordinates the
return map satisfies

' 1 t
=222 [ sy e || B0 200} ar-o.
0 0
Hence, by Rolle’s theorem, we have proved that the sum of the multiplicities of the
limit cycles of (2) in any half-strip, x>0, or x <0, is at most 2.

To show the final result we have to consider more information about the stability
and relative position of the possible limit cycles.

Again by Lemma 3 it is not restrictive to consider ¢=0 and B=0. From Lemma
2 we have that for any initial condition x, of a periodic orbit of (2) in the half-strip
x>0, h'(x,) =exp (—j(l) (Bxo(t) dt+2C(t)) dt) <1. Hence there is at most one limit
cycle in this region. If ¢ =0 the study in the half-strip x <0 follows in the same way.

So in order to finish the proof of this theorem it only remains to show that the
maximum number of limit cycles in the whole strip is three, taking into account their
multiplicities.

We consider the case ¢>0; the case ¢ =0 follows in a similar way. Assume that
there is a limit cycle with initial condition x,>0 and two limit cycles (or a double
one) with initial conditions 0> x; = x,. Assume that x; > x,. The case x; = x, follows
by using the same kind of arguments. From the results proved until now we know that
the three limit cycles are hyperbolic and we know also their stabilities. So since the
origin is a repellor limit cycle, we have by Lemma 5 that x,> |x,| > |x,|, because x, has
to be different from |x,| and |x,| and if x, < |x,| then another positive limit cycle would
exist between x, and |x,|. But, again by Lemma 5, between —x, and x, system (2)
would have another limit cycle and this is not possible. So, either the limit cycle with
initial condition x, or the limit cycle with initial condition x, does not exist. 0

4. Cases A=0, B=0, and proof of Theorem C. When either A=0 or B=0, (2)
is of Bernoulli type, and it is well known how to integrate it. Hence in these cases we
can know exactly the trajectories of all periodic solutions. Their initial conditions are
given in the following lemma.

LEMMA 6. Set

c=[,C(t)dt, d=[yB(t)exp{f,C(s)ds}ds, d'=2[;A(t)exp{2][;C(s)ds}dr
Then the following hold.
(@) If A=0 and c=d =0 all trajectories of (2) in a neighbourhood of x=0 are
periodic.
(b) If A=0 and |c|+|d|#0, (2) has at most two periodic solutions. Furthermore,
these solutions are the solutions with initial conditions

c

1—e

x(0=0,  x(0)="——=,

defined for all t between zero and 1.
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(¢) If B=0 and c=d'=0, all trajectories of (2) in a neighbourhood of x=0 are
periodic.

(d) If B=0 and |c|+|d'|#0, equation (2) has at most three closed solutions.
Furthermore, these solutions are the solutions with initial condition,

x(0)=0,  x(0)= /1 ‘d‘;’zc,

defined for all t between zero and 1.

The proof follows by direct computations.

Before applying Theorems A and B and the above result on the Abel equation
(6) associated with system (3), we state some elementary results that can be found in
[3] and [4]. Note that for the Abel equation (6) associated with (3) we are interested
in 2sr-periodic solutions. It is not difficult to translate all our results to this case. It is
enough to consider instead of @ the new parameter ¢:= 6/2.

(R1) In the region >0 the flow of system (3) is diffeomorphic (preserving the
orientation) to the flow of the Abel equation (6) contained in the half-cylinder R,
defined by 0=p <1/g(0) where this last inequality only works when g(6)>0; see
Fig. 1.

(R2) In the region 6 <0 the flow of system (3) is diffeomorphic (reversing
the orientation) to the flow of (6) contained in the region R,={p <0}N{p<1/g(0)
when g(6) <0}; see Fig. 1.

P
P p p
p=1/g
R{
R
/// /
p=0 p=0
p=1/g
?;
0=0 0=27 6 =0 0=27 6=0 0=27

F1G. 1. Some examples of regions R, and R, on the cylinder (p, ).

(R3) A periodic orbit of system (3) surrounding the origin is a periodic orbit of
the Abel equation (6) contained in R, or R,, and vice versa. Moreover, a periodic
orbit can be contained in R, only if g is negative.

(R4) For the values of 6 such that g does not vanish, the curve p =1/g is formed
by solutions of the Abel equation (6).

(R5) If g does not vanish then the curve p=1/g is a periodic solution of the
Abel equation (6).

(R6) The curve p =1/g for the Abel equation (6) corresponds to the equator of
the Poincaré sphere of system (3) without the critical points.

(R7) Transformation T given in (5) sends the subsets § =0 to p =00, r=0 to
p=0,and r=0top=1/g
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(R8) If n is even and p(0) is a solution of (6) then —p(0+ =) is also a solution
of (6).

PropoSITION 7. Set d=[" (n—-1)(f—2Ag)—g') " V°do, and d'=
227 (n—1)g(Ag —f) eX""V* do; then the following hold.

(a) IfA\g—f=0(so A=0) and
(1) A =0, then the origin of system (3) is a center.

(2) A #0, then system (3) has no limit cycles surrounding the origin.

(b) Ifg=0 (so A=0) and
(1) A=d =0, then the origin of system (3) is a center.

(2) either A =0 andd # 0 or A # 0, then system (3) has at most one limit cycle surrounding
the origin. Furthermore, if this limit cycle exists its initial condition is p(0)=
(1 _e/\(n—1)2‘rr)/d‘

(¢) If (n=1)(f—-2Ag)—g'=0 and
(1) A =0, then the origin of system (3) is a center.

(2) A #0, then system (3) has at most one limit cycle surrounding the origin. Furthermore
if this limit cycle exists its initial condition is p(0) = —sign (g(0))V(1—e*(»~D4m)/q’
and coincides with the function p(0)=—1/g(0).

Proof. Note that for (6) ¢ =A(n—1)27. Hence in order to finish the proof of this
proposition it suffices to show that the possible periodic solutions of (6) that Lemma
6 gives do not produce periodic orbits of system (3) except in the cases in which the
origin is a center and in cases (b2) and (c2). Consider Case (a). In this case f= Ag. So

2w
d= —J ((n—1)Ag+g") '™ dg

0
=—g(6) """ = g(0)(1— "7V,

Hence, by Lemma 6, the initial condition (different from zero) that gives us a possible
limit cycle when A #0 is

l_e)\(n~l)27-r 3 1
g(0)(1—e*"727)  g(0)’

Consequently, from (R6), case (a) follows. Case (b) follows, from Lemma 6, in a way

similar to case (a). In case (c), again from Lemma 6, and with calculations similar to

those in case (a), we have that the initial conditions that could give periodic orbits of

(3) are x(0) ==+1/g(0). So from (R6), the proposition is proved. a
ProrosiTION 8. (a) If A(0)#0, A(6) does not change sign and n is even, system

(3) has at most one limit cycle surrounding the origin. Furthermore, it can exist only if

¢ sign (A(6)) <O0.

(b) Assume A#0, A(6)=0, and that n is odd; then the following hold.

(1) If g(6)=0 then the number of limit cycles of system (3) surrounding the origin is at
most the number appearing in the first row of Table 1, according to the signs of ¢
and d. Furthermore, the limit cycles turn in the sense 6 > 0.

(2) Ifg(0)>0 forall 6 € [0, 2], then the number of limit cycles of system (3) surrounding
the origin is at most the number appearing in the first row of Table 1 minus 1,
according to the signs of ¢ and d. Furthermore, they turn in the sense 6 > 0.

(3) Ifg(8)<0 for all 0€[0,27] system (3) has at most one limit cycle surrounding the
origin. It can exist only if c <0 and then it turns in the sense 6 >0 or if ¢>0 and
d <0 and then it turns in the sense 6 <0.

The value c is equal to A(n—1)2a and d is given in Proposition 7. If A(8) =0 we have

similar results by reversing the inequalities for ¢ and d.

x(0)=




LIMIT CYCLES FOR A CLASS OF ABEL EQUATIONS 1243

Proof. (a) The proof follows from Table 1 and results (R1), (R2), (R3), and (R8).

(b) The proof follows from Table 1 and results from (R1) to (R7). See also Fig. 1.
Note that the case A(6) =0 can be obtained from case A(8) =0 by using Lemma 3. |
Most results of the two above propositions are already proved in [3].

PrROPOSITION 9. Assume that B(6)#0 and B(0)=0 (hence n is odd). Then the
following hold.

(a) If g(6)=0 then the number of limit cycles of system (3) surrounding the origin
is at most the number appearing in the first row of Table 2, according to the sign of c.
Furthermore, the limit cycles turn in the sense 6> 0.

(b) If g(0)>0 for all 0€[0,27], then the number of limit cycles of system (3)
surrounding the origin is at most the number appearing in the first row of Table 2 minus
1, according to the sign of c. Furthermore, they turn in the sense 6> 0.

(c) Ifg(0)<0 forall 6 €[0,27] system (3) has at most one limit cycle surrounding
the origin. It can exist only if ¢ <0 and then it turns in the sense 0 >0 or if ¢>0 and
d <0 and then it turns in the sense 6 <0.

The value c is equal to A(n—1)2a. If B(0) =0 we have similar results by reversing the
inequalities for c.

The proof of this proposition follows in a way similar to the proof of Proposition 8.

From Propositions 7-9 we obtain Theorem C.

Remark. Theorems A and B can also be applied to more general differential
equations (not necessarily polynomial). It is enough that we can find a system of
differential equations such that there exists-a change of variables (usually polar
coordinates) that transforms it into (2). So, for instance, we can apply Theorems A
and B to a subclass of planar vector fields X (v) = Cv+ h(v)Dv, studied in [9], where
C and D are 2Xx2 matrices, h a smooth homogeneous function, when the functions
A(0) or B(0) associated with this differential equation do not change sign.
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