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Abstract. We consider differential systems in the plane defined by the sum of two homogeneous
vector fields. We assume that the origin is a degenerate singular point for these differential systems.
We characterize when the singular point is of focus–centre type in a generic case. The problem
of its local stability is also considered. We compute the first generalized Lyapunov constant when
some non-degeneracy conditions are assumed.
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1. Introduction

One of the classical problems in the qualitative theory of planar analytic differential systems is
the study of the local phase portrait at the singularities to characterize when a singular point is
of focus–centre type. Recall that a singular point is said to be offocus–centre typeif it is either
a focus or a centre. In what follows, this problem will be called thefocus–centre problemor
themonodromy problem. Of course, if the linear part of the singular point is non-degenerate
(i.e. its determinant does not vanish) the characterization is well known. The problem has
also been solved when the linear part is degenerate but not identically zero, see [2, 3]. Hence
the main difficulties in solving the focus–centre problem appear when the singular point has
an identically zero linear part. On the other hand, once we know that a singular point is
of focus–centre type, one comes across another classical problem, usually called thecentre
problemor thestability problem, that is of distinguishing a centre from a focus. The Lyapunov–
Poincaŕe theory was developed to solve this problem in the case where the singular point is
non-degenerate, see [23, 28]. If the singular point has a nilpotent linear part, there are some
results on the centre problem, see [27], but if the singular point has a zero linear part then there
are very few results on the centre problem.

In this paper we study the focus–centre and centre problems for systems of the form

ẋ = P(x, y) = Pm(x, y) + PM(x, y)

ẏ = Q(x, y) = Qm(x, y) +QM(x, y)
(1)

wherePk andQk are homogeneous polynomials of degreek, k ∈ {m,M}, 16 m < M,P and
Q are coprime, and the dot denotes a derivative with respect tot . That is, these systems are
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defined to be the sum of two homogeneous vector fields. The case where (1) is a homogeneous
system (i.e. eitherPm ≡ Qm ≡ 0 orPM ≡ QM ≡ 0) is already well understood, see [7, 20]
and also [14], and we do not consider it here, although all our results apply in this case.

The polynomial systems with a non-degenerate linear part and homogeneous nonlinearities
are included in the family of systems (1). There are many papers dealing with the focus–centre
problem and the centre problem for these systems, see [4, 9, 11, 16–18, 21, 30–32]. Also for
the degenerate case, cyclicity is studied for some classes of systems in [12, 13]. Among other
questions, the number of limit cycles for systems defined by the sum of twoquasi-homogeneous
vector fields is studied in [15]. These systems are a generalization of systems (1). Finally,
the centre–focus problem is studied in [5, 6], for certain degenerate singular points without
characteristic directions, see also section 3.1.

In section 2, we give necessary conditions in order that a system (1) has a focus or a centre
at the origin and also sufficient conditions in a generic case.

We denotePk(θ) = Pk(cosθ, sinθ) andQk(θ) = Qk(cosθ, sinθ) with k ∈ {m,M}.
Consider system (1), and take polar coordinates(R, θ), given by the change of variables
R2 = x2 + y2 andθ = arctan(y/x). After a rescaling of time given by ds/dt = Rm−1, we
have (again denoting the derivative with respect tos by a dot),

Ṙ = R [cosθPm(θ) + sinθQm(θ) +RM−m (cosθPM(θ) + sinθQM(θ))
]

θ̇ = cosθQm(θ)− sinθPm(θ) +RM−m (cosθQM(θ)− sinθPM(θ)).
(2)

We say thatθ = θ∗ is acharacteristic directionfor the origin of system (1) if cosθ∗Qm(θ∗)−
sinθ∗ Pm(θ∗) = 0.

We introduce the following two conditions.
We say that system (1) satisfies condition (a) if there exists a neighbourhoodU of the origin

of system (1) such that2(x, y) = xQ(x, y) − yP (x, y) 6= 0 for all (x, y) ∈ U \ {(0, 0)}. If
system (1) satisfies condition (a), we will denote the sign of2(x, y) for all (x, y) ∈ U \{(0, 0)}
by signE0(2).

We say that system (1) satisfies condition (b) if either it has no characteristic directions,
or else if all characteristic directions are isolated andPm(θ∗) = Qm(θ∗) = 0 for every
characteristic directionθ∗.

Let θ1, θ2, . . . , θk be the characteristic directions associated with system (1). For all
j = 1, . . . , k, we setaj = cosθj , bj = sinθj , αj = d

dz

(
P
j
m(1, z)

)∣∣
z=0 and βj =

1
2

d2

dz2

(
Q
j
m(1, z)

)∣∣
z=0, where

P jm(1, z) = ajPm(aj − bjz, bj + ajz) + bjQm(aj − bjz, bj + ajz)

and

Qj
m(1, z) = −bjPm(aj − bjz, bj + ajz) + ajQm(aj − bjz, bj + ajz).

A vector fieldX = (Pm(x, y) + PM(x, y),Qm(x, y) +QM(x, y)) belongs to classG if
either there are no characteristic directions, or else if for every characteristic directionθj ,
j = 1, . . . , k we haveα2

j +β2
j 6= 0. It is clear that this is a generic condition inside our family.

At the end of section 2.2 we prove our main result about the centre–focus problem. This
result characterizes the monodromy condition for a generic set of systems (1).

Theorem A (Focus–centre condition).LetX be the vector field associated with system (1).
Then the following statements hold.

(i) If the origin of (1) is a focus–centre then conditions (a) and (b) are satisfied, andm is odd.
Furthermore, if system (1) has characteristic directions, thenM is also odd.
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(ii) Assume thatX ∈ G. Then the origin of system (1) is a focus–centre if and only if the
system satisfies conditions (a) and (b), and that for every characteristic directionθj ,
signE0(2)

(
(2 +M −m)αj − 2βj

)
6 0 for all j = 1, . . . , k.

Note that expressed in polar coordinates(R, θ), system (1) satisfies(Ṙ(R, θ + π),
θ̇ (R, θ +π)) = (Ṙ(R, θ), θ̇(R, θ)). Hence in theorem A we only need to check the genericity
conditionα2

j + β2
j 6= 0, and the monodromy condition signE0(2) ((2 +M −m)αj − 2βj ) 6 0

for those characteristic directionsθj ∈ [0, π).
The main tool in the proof of this result is the blow-up technique (see [8] for a brief

geometric description).
The problem to decide whether a degenerate singular point of focus–centre type is either

a centre or a focus is very complicated in comparison to the case of non-degenerate singular
points. If the degenerate singular point has no characteristic directions and system (1) satisfies
the focus–centre condition then it is possible to obtain necessary conditions in order that the
origin of system (1) be a centre, one may also study its stability using the method developed
by Lyapunov and Poincaré in [23, 28], respectively. However, if there exist characteristic
directions, then no general methods are known.

In [26], Medvedeva gives the first termV1 of the return map for any monodromic singular
point of an analytic system. As far as we know, this result is the latest in a series of papers
on this subject [10, 25, 26]. To apply her result, it is necessary to do all the blow-ups to
desingularize the point, in order to decide whether it is monodromic, and then to computeV1.
For the family of considered systems (1), our approach can be considered as a different and
shorter method. Shorter because we present an algebraic condition to ensure that the singular
point is monodromic. We also give an explicit expression forV1, which is effective in the
sense that it is not necessary to make the blow-ups to obtain it. Our approach uses a kind
of generalized blow-up which is the key to shortening the desingularization process. At the
end of this process one obtains that the monodromic points have elementary saddle nodes
(see sections 2.2 or 3.3 for an explicit example). We note that Dumortier in [19] and also
Medvedeva in [25, 26] prove that with the usual blow-up process, monodromic points just give
rise to hyperbolic or elementary degenerate saddles at the end of the desingularization process.

In section 3 we deal with the problem of determining the stability of the origin of system
(1) when it is monodromic.

In subsection 3.1 we give the first generalized Lyapunov constants if there are no
characteristic directions, while in subsection 3.2, we investigate the general case. To state
the main result of this section, we need the following definitions.

If the origin of system (1) is monodromic then we define thereturn map5(x), for x > 0
small enough, to be the first coordinate of the first cut with the positivex-axis, of the solution
of (1) with initial condition(x, 0).

Given a functionf , continuous on [0, 2π ] \ {θ1, θ1, . . . , θk}, we define theCauchy global
principal valueof

∫ 2π
0 f (θ) dθ , to be the following limit (if it exists):

GPV

{∫ 2π

0
f (θ) dθ

}
:= lim

ε→0

∫
Iε

f (θ) dθ

whereIε =
(
R \ ∪kj=1(θj − ε, θj + ε)

)
mod([0, 2π)).

Theorem B. Let X ∈ G. Suppose that the origin of system (1) (associated withX ) is a
focus–centre, and thatβj − αj 6= 0 for all j = 1, . . . , k. Then,

(i) GPV
∫ 2π

0

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

exists.



702 A Gasull et al

(ii) The return map associated with the origin has the form5(x0) = V1x0 + o(x0), where

V1 = exp

{
signE0(2)GPV

∫ 2π

0

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

}
.

The numberV1 is called thegeneralized first Lyapunov constant. Note that if there are no
characteristic directions, then

V1 = exp

{
signE0(2)

∫ 2π

0

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

}
see also section 3.1.

The condition thatβj−αj 6= 0 for allj = 1, . . . , k, implies that at the end of a sequence of
blow-ups at the origin (the process is described in subsection 2.2) all singular points appearing in
the desingularized vector field are either hyperbolic saddles, or elementary degenerate saddle
nodes (an elementary degenerate point is a singular point such that its linear part has non-
vanishing trace and vanishing determinant) which are in some nice geometric display, so we
can compute the transition map associated with their hyperbolic sectors. In fact, the proof of
the above theorem uses the knowledge of the coefficient of the leading terms of the transition
maps associated with a hyperbolic sector of a hyperbolic saddle or an elementary degenerate
point. The study of this coefficient and the description of the transition map of the flow in a
neighbourhood of a characteristic direction is carried out in subsection 3.2.1, and is a key point
for the proof of the results of this paper.

If βj −αj = 0, for somej ∈ {1, . . . , k}, then elementary degenerate saddles appear at the
end of the desingularization process. In this case, we have a partial result, that will be proved
in subsection 3.2.3. In particular, we show that

Proposition C. LetX ∈ G. Suppose that the origin of system (1) is a focus–centre. Suppose
that there are only two opposite characteristic directionsθi1 andθi2 (i.e. θi2 = θi1 + π ) such
thatβik − αik = 0, for k = 1, 2. Then the return map associated with the origin has the form
5(x0) = x0 + o(x0).

Let us remark that under the hypotheses of proposition C, the number

GPV
∫ 2π

0

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

is not always zero, as may be seen in example 2 of subsection 3.3. Hence under the hypotheses
of proposition C, the expression forV1 given in theorem B is not valid.

We think that the methods developed in this paper can be applied in a more general context,
for instance, to monodromic singular points of an analytic vector field, in such a way that at the
end of the desingularization process, the only kind of singular points that appear are hyperbolic
saddles.

2. Focus–centre conditions for systems defined by the sum of two homogeneous vector
fields

In the next two subsections we give the key points to prove theorem A.
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2.1. Necessary conditions

Proposition 1. If system (1) has a focus–centre at the origin, then system (2) satisfies
conditions (a) and (b).

Proof. Suppose that system (1) has a focus or a centre at the origin. After the change of
variablesr = RM−m, system (2) becomes

ṙ = a(θ) r + b(θ) r2

θ̇ = c(θ) + d(θ) r
(3)

where

a(θ) = (M −m)(cosθPm(θ) + sinθQm(θ))

b(θ) = (M −m)(cosθPM(θ) + sinθQM(θ))

c(θ) = cosθQm(θ)− sinθPm(θ)

d(θ) = cosθQM(θ)− sinθPM(θ).

Observe thaṫθ for system (3) is non-vanishing forr > 0 small enough, if and only iḟθ for
system (2) is non-vanishing forR > 0 small enough. Therefore, we will study system (3).

Letp∗ = (0, θ∗) be a singular point of system (3). Soc(θ∗) = 0, andθ∗ is a characteristic
direction. First we will see thatc(θ) is not identically zero, that isp∗ is an isolated singular
point onr = 0. Suppose thatc(θ) = 0 for all θ ∈ [0, 2π), then after the reparametrization
dτ/ds = r (again denoting the derivative with respect toτ by a dot), system (3) can be written
as

ṙ = a(θ) + b(θ) r

θ̇ = d(θ). (4)

Note thatθ̇ is not identically zero forr > 0 (otherwise the flow would be radial in contradiction
with the fact that (4) has a focus–centre at the origin). Henced(θ) is not identically zero. Note
also that the fact thatPm(θ) andQm(θ) = 0 are not both identically zero implies thata(θ)
is also not identically zero. Thenr = 0 is not invariant for system (4), and this implies that
system (1) cannot have a focus or a centre at the origin because it would have an infinite number
of orbits starting or ending at the origin. Hence, we have proved thatp∗ is isolated onr = 0.
Furthermore, we want to stress thatc(θ) does not change its sign in a neighbourhood ofθ∗.
We assume without loss of generality thatc(θ) = θ̇ |r=0 > 0 for all θ ∈ [0, 2π).

The differential matrix of the vector field defined by (3) at the pointp∗, is given by(
a(θ∗) 0

d(θ∗) c′(θ∗)

)
.

Sincec(θ) > 0 for all θ ∈ [0, 2π), we have thatc′(θ∗) = 0. Note that ifa(θ∗) 6= 0 then
p∗ is an elementary degenerate singular point, and by the theorem of classification of this
type of critical point (see [3]),p∗ is either a topological saddle, or a topological node, or a
saddle node with orbits starting or ending atp∗ with r > 0. This last situation contradicts
the assumption that the origin is a focus–centre. Hencea(θ∗) = c(θ∗) = 0, and consequently
Qm(θ∗) = Pm(θ∗) = 0. Therefore, it is already proved that system (1) satisfies condition (b).
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Now we will see that the singular points(0, θ∗) of system (3), are isolated inside the set
of points whereθ̇ = 0. Note first thatd(θ∗) 6= 0, because otherwise the rayθ = θ∗ would be
invariant for system (3). The curve inR2 for which θ̇ = 0 is given by{

r = − c(θ)
d(θ)
; θ ∈ [0, 2π) andd(θ) 6= 0

}
.

If d(θ∗) < 0 then

θ̇ |θ=θ∗,r>0 = rd(θ∗) < 0.

Therefore,θ̇ is negative over the rayθ = θ∗. This fact, jointly with the fact thaṫθ |r=0 > 0,
prevents the existence of a return map in a neighbourhood of the origin, which contradicts the
hypothesis that the origin is a monodromic point. Therefore,d(θ∗) > 0, and consequently
there existsε > 0, such thatd(θ) > 0 whenθ ∈ (θ∗ − ε, θ∗ + ε). Then, sincec(θ) > 0
and we are looking for solutionṡθ = 0 with r > 0, the curveθ̇ = 0 is not defined for
θ ∈ (θ∗ − ε, θ∗ + ε) \ {θ∗}. Hence the point(0, θ∗) is isolated inside the set of points of the
curveθ̇ = 0 and so we have proved thatθ̇ does not vanish in a punctured neighbourhood of
the origin. In short, system (1) satisfies condition (a). �

Proposition 2. If system (1) has a focus–centre at the origin, thenm is odd. If we also assume
that (1) has some characteristic direction, thenM also has to be odd.

Proof. Consider system (3), and suppose thatm is even, thenc(θ) = cosθQm(θ)−sinθPm(θ)
must have a root with odd multiplicityθ∗ becausec(θ) is a homogeneous trigonometric
polynomial of odd degreem + 1 (remember that in the previous proposition we have seen
that if the origin is a focus–centre thenθ∗ must be an isolated root ofc(θ)). Soc(θ) changes its
sign atθ∗, and thereforėθ |r=0 = c(θ) changes its sign atθ = θ∗. This contradicts proposition 1.
Hence,m must be odd.

Assume now thatθ∗ is some characteristic direction andM is even. Then from (2) we
find that

θ̇ |{θ=θ∗} = RM−m (cosθQM(θ)− sinθPM(θ)) = −θ̇ |{θ=θ∗+π}.
This last equality is in contradiction with proposition 1 because it implies that condition (a) is
not satisfied. �

2.2. Sufficient conditions in a generic case

Conditions (a) and (b) are not sufficient conditions to conclude that (1) has a focus–centre at
the origin. To see this consider the following system:

ẋ = y (αx2 + bxy + cy2
)

ẏ = y2 (αx + by) + x5.
(5)

A simple computation shows that in polar coordinates(R, θ), θ̇ = −c sin4 θ +R2 cos6 θ ; hence
the characteristic directions are given by{y = 0}, and then condition (b) holds trivially. If
we takec < 0, then condition (a) also holds. However, if we takeα > 0 the origin is not a
monodromic point, since it has nodal sectors. This fact can be proved by using the blow-up
technique, and can be checked from the computations done in lemma 3.

To obtain sufficient conditions first we will suppose thatθ = 0 is a characteristic direction
and, by using the blowing-up method, we will establish sufficient conditions to ensure that
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there are no characteristic orbits approaching or leaving the origin in the directionθ = 0. Since
systems of type (1) are preserved under rotations we will use the results obtained in the case
θ = 0, to obtain sufficient conditions for the non-existence of characteristic orbits approaching
or leaving any characteristic direction of the origin of a system of type (1).

Lemma 3. Assume thatθ = 0 is a characteristic direction of the origin of system (1), and
denote by

α = lim
z→0

Pm(1, z)

z
= d

dz
Pm(1, z)|z=0

and

β = lim
z→0

Qm(1, z)

z2
= 1

2

d2

dz2
Qm(1, z)|z=0.

Then ifα2 + β2 6= 0 there are no characteristic orbits approaching or tending to the origin in
the directionθ = 0 if and only if the following conditions hold:

(i) 2(R, θ) := cosθQm(θ) − sinθPm(θ) + RM−m (cosθQM(θ)− sinθPM(θ)) 6= 0, for
(R, θ) ∈ {(0, R̄] × (− arctan(δ), arctan(δ))} \ {(0, 0)}, for δ > 0 and R̄ > 0 small
enough,

(ii) Pm(θ)|θ=0 = 0 andQm(θ)|θ=0 = 0 and
(iii) signδ(2) ((2 +M −m)α − 2β) 6 0

wheresignδ(2) = sign(2(R, θ)), in {(0, R̄] × (− arctan(δ), arctan(δ))} \ {(0, 0)}.

Proof. To prove the above result we will use the blow-up technique. The successive blow-
ups that we will perform in what follows are displayed in figures 3 and 4. The condition
α2 +β2 6= 0 implies that the blow-ups described below are enough to completely desingularize
the singularity.

Conditions (i) and (ii) are necessary to ensure that there are no characteristic orbits tending
or leaving the origin in the directionθ = 0. This can be proved by using the same arguments
as in the proof of proposition 1. In the proof of the sufficiency of the three conditions, we will
see that condition (iii) is also necessary.

Assume that (i)–(iii) hold and, without loss of generality, that signδ(2) = 1. Hence
condition (iii) can be written as(2 +M −m)α − 2β 6 0.

Consider system (1). Condition (ii) implies thatQm(1, 0) = Pm(1, 0) = 0. Since we
have taken signδ(2) = 1, from condition (i) we have thatF(z) := Qm(1, z)− zPm(1, z) > 0
for z ∈ (−δ, δ). Hence the first non-vanishing derivative ofF at the origin is of even order,
this means thatF(0) = F ′(0) = 0 andF ′′(0) = β − α > 0, and thereforeµ0 (Pm(1, z)) > 1
andµ0 (Qm(1, z)) > 2 (whereµ0 denotes the multiplicity atz = 0). Also we have that
QM(1, 0) > 0. Setγ = QM(1, 0).

We make the following change of variables(u, z) = (xM−m, y/x). This is not a global
change of coordinates inR2 \ (0, 0), but it is a good change on{x > 0}. Anyway, the results
obtained are also valid for{x < 0} since equation (2) satisfies(Ṙ(R, θ + π), θ̇(R, θ + π)) =
(Ṙ(R, θ), θ̇(R, θ)). After a rescaling we obtain

u̇ = ku (Pm(1, z) + uPM(1, z))

ż = Qm(1, z)− zPm(1, z) + u (QM(1, z)− zPM(1, z))
(6)
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wherek = M − m. We concentrate our attention on the singularity given by(u, z) = (0, 0)
which is the singular point of (6) which comes from the direction{θ = 0}. The differential
matrix of (6) associated with(u, z) = (0, 0) is given by(

0 0

QM(1, 0) 0

)
=
(

0 0

γ 0

)
.

This singularity is a nilpotent and, to desingularize it, we must continue the blow-up process.
Now consider system (6) and the change(v, z) = (u/z, z). We obtain, after a

reparametrization of the time,

v̇ = v
(
(1 + k)Pm(1, z)− Qm(1, z)

z
+ v (z(1 + k)PM(1, z)−QM(1, z))

)
ż = Qm(1, z)− zPm(1, z) + vz (QM(1, z)− zPM(1, z)).

(7)

Note that sinceµ0(Qm(1, z)) > 2 the above equation is well defined. SinceQM(1, 0) 6= 0,
the only singular point onz = 0 is (v, z) = (0, 0) and its linear part is identically zero. Now
we have to consider the other direction. Again taking the system (6), and the new change
(u, p) = (u, z/u). We obtain

u̇ = ku (Pm(1, pu) + uPM(1, pu))

ṗ = −p(1 + k)Pm(1, pu) +
Qm(1, pu)

u
− pu(1 + k)PM(1, pu) +QM(1, pu).

(8)

Observe that there are no singular points onu = 0. Hence in this direction(u, z) = (0, 0) has
been desingularized.

Now consider system (7) and take the change of coordinates(w, z) = (v/z, z). We obtain

ẇ = w
(
(2 + k)

Pm(1, z)

z
− 2

Qm(1, z)

z2
+w (z(2 + k)PM(1, z)− 2QM(1, z))

)
ż = Qm(1, z)

z
− Pm(1, z) +wz (QM(1, z)− zPM(1, z)).

(9)

Note that the region{x > 0} for system (1) has been transformed into the region{w > 0}.
The dynamics in the region{w 6 0} is virtual, in the sense that it does not appear in coordinates
(x, y). Whenz = 0 we have

ẇ|z=0 = w ((2 + k)α − 2β − 2γw)

ż|z=0 = 0.

Then the singular points onz = 0 are (w1, 0) = (0, 0), and (w2, 0) =
(((2 + k)α − 2β)/2γ , 0). If (2+k)α−2β = 0, there is just one singular point(w1, 0) = (0, 0).

Now we consider the other direction and we make the following change of coordinates
(v, q) = (v, z/v). We obtain the system

v̇ = (1 + k)Pm(1, qv)− Qm(1, qv)

qv
+ v2q(1 + k)PM(1, qv)− vQM(1, qv)

q̇ = −q(2 + k)
Pm(1, qv)

v
− vq2(2 + k)PM(1, qv) + 2

Qm(1, qv)

v2
+ 2qQM(1, qv).

(10)

Note that the region{x > 0} for system (1) has been transformed into the region{q > 0}.
Again the dynamics in the region{q 6 0} is virtual. Whenv = 0 we have

v̇|v=0 = 0

q̇|v=0 = q ((−(2 + k)α + 2β) q + γ ).
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Then the singular points onv = 0 are(0, q1) = (0, 0), and(0, q2) = (0, 2γ /[(2 + k)α − 2β])
(again if(2 + k)α − 2β = 0, there is just one singular point(0, q1) = (0, 0)).

Note that the eigenvalues of the differential matrix of the vector field associated with
system (9) at the point(w1, 0) = (0, 0) are(2 + k)α − 2β andβ − α. The eigenvalues of the
differential matrix of the field associated with system (10) at the point(0, q1) = (0, 0) are−γ
and 2γ . Now we distinguish the following cases.

(a) (2 +k)α−2β 6= 0 andβ−α > 0. Consider first the inequality(2 +k)α−2β < 0. In this
situation we obtain(w2, 0) ∈ {w < 0} and(0, q2) ∈ {q < 0}, and hence these singular
points of systems (9) and (10), respectively, are not relevant for studying the presence of
characteristic orbits. Then the singular points(w1, 0) and(0, q1) are hyperbolic saddles
with the separatrices in the coordinate axes, and these separatrices do not correspond to
characteristic orbits tending to or leaving the origin in the system(1) in the direction
θ = 0.
When(2+k)α−2β > 0 the critical point(w1, 0) is a hyperbolic node and hence there are
infinitely many orbits tending to the origin of system(1). Therefore, (iii) is a necessary
condition.

(b) β − α = 0. If β − α = 0 thenλ = (2 + k)α − 2β 6= 0. Now we write system (9) in the
following form:

ẇ = w(81(z) +w82(z))

ż = 91(z) +w92(z).

Reparametrizing the system in order to apply the classification theorem of this type of
critical point (see [4]) we obtain

ż = 1

λ
(91(z) +w92(z)) = X(z,w)

ẇ = w

λ
(81(z) +w82(z)) = w + Y (z,w).

Note that81(0) = λ 6= 0. Then the only solution ofw + Y (z,w) = 0 passing through
(0, 0) isw = 0. Now observe thatF(z) = z91(z) > 0. LetF (2n)(z) > 0 be the first non-
vanishing derivative (note that we have seen above that the first non-vanishing derivative
at zero ofF is of even order). It is easy to prove by induction that

F (2n)(z) = 2n9(2n−1)
1 (z) + z9(2n)(z)|z=0 = 2n9(2n−1)

1 (0) > 0.

Hence9(2n−1)
1 (0) > 0 is the first non-vanishing derivative of91. Therefore,

X(z, 0) = 1

λ(2n− 1)!
9
(2n−1)
1 (0)z2n−1 + · · ·

and applying the classification theorem stated in [4] we have that ifλ > 0 then the singular
point is a node and ifλ < 0 then the point is a topological saddle.

(c) (2 + k)α − 2β = 0. Note that condition (c) implies thatµ = β − α = kα/2 > 0. Now
we write system (9) in the following form:

ẇ = w (81(z) +w82(z))

ż = 91(z) +w92(z) = µz + · · · .
Doing a reparametrization as in case (b) we obtain

ẇ = w

µ
(81(z) +w82(z)) = X(w, z)

ż = 1

µ
(91(z) +w92(z)) = z + Y (w, z).
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Taking into account that(1/µ)(91(z)+w92(z)) = (z/µ)(ψ1(z)+wψ2(z))whereψ1(0) =
µ, it follows that the only solution ofz+Y (z,w) = 0 passing through(0, 0) isz = 0. Then
X(w, 0) = (w/µ) (81(0) +w82(0)) = (−2QM(1, 0)/µ)w2 = −2(γ /µ)w2, where
−2γ /µ < 0 becauseγ > 0 andµ > 0. Applying again the classification theorem stated
in [4] we have that the singular point is a saddle node, with the nodal sectors on{w < 0},
the centre-manifoldWc in thew-axis, and thez-axis being the other separatrix. Hence
there are no orbits tending to or leaving the singular point in{w > 0}, and therefore there
are no characteristic orbits of system (1) tending to or leaving the origin in the direction
{θ = 0}. �

We want to stress that in the case thatµ0 (Pm(1, z)) > 1 andµ0 (Qm(1, z)) > 2, i.e. when
α2 +β2 = 0, it is possible to continue the desingularization process, but this is not done in this
work.

Using lemma 3 we can give sufficient conditions for the origin of system (1) to be a
singularity of focus–centre type. We denote byθ1, θ2, . . . , θk the characteristic directions
associated with system (1). For allj = 1, . . . , k recall that

aj = cosθj bj = sinθj

αj = d

dz

(
P jm(1, z)

)∣∣
z=0 Qm(1, z) = 1

2

d2

dz2

(
Qj
m(z)

)∣∣
z=0

where

P jm(1, z) = ajPm(aj − bjz, bj + ajz) + bjQm(aj − bjz, bj + ajz)

and

Qj
m(1, z) = −bjPm(aj − bjz, bj + ajz) + ajQm(aj − bjz, bj + ajz).

Recall also that a vector fieldX = (Pm(x, y) + PM(x, y),Qm(x, y) +QM(x, y)) belongs to
the classG if for all j = 1, . . . , k we haveα2

j + β2
j 6= 0.

Proposition 4. Let X be a vector field of classG. If the system associated withX satisfies
conditions (a) and (b), andsignE0(2)

(
(2 +M −m)αj − 2βj

)
6 0, for all j = 1, . . . , k, then

the origin is a focus–centre.

Proof. For every characteristic directionθj , after a rotation of angleϕ = −θj system (1) is
written (in the new coordinates(u, v)) as

u̇ = ajPm(aju− bjv, bju + ajv) + bjQm(aju− bjv, bju + ajv)

+ajPM(aju− bjv, bju + ajv) + bjQM(aju− bjv, bju + ajv)

v̇ = −bjPm(aju− bjv, bju + ajv) + ajQm(aju− bjv, bju + ajv)

−bjPM(aju− bjv, bju + ajv) + ajQM(aju− bjv, bju + ajv)

(11)

whereaj andbj have been defined above. This system has a characteristic direction inv = 0.
Applying lemma 3 to system (11) we have that it has no orbits starting or ending at the origin
in the direction{v = 0}. This direction corresponds to the direction{θ = θj } for system (1).
Hence the orbits in this neighbourhood rotate around the origin, and the origin is a monodromic
singular point. �

Proof of theorem A. Follows straightforwardly from propositions 1 and 4. �



The focus–centre problem for a type of degenerate system 709

3. On the stability of the origin

3.1. Systems without characteristic directions

In the case where a critical point of an analytic system (degenerate or not) has no characteristic
directions, the study of its stability can be done by using a straightforward generalization of
the Lyapunov–Poincaré theory. The main difficulties that appear are of computational type
(see, for instance, [5] or [6]). In this subsection we compute the first generalized Lyapunov
constant for this type of critical point. The expression that we obtain is similar to that given in
theorem B for family (1).

Consider an analytic system which in polar coordinates is written as

ṙ =
∞∑

i=k+1

ai(θ) r
i

θ̇ =
∞∑
i=k

ci(θ) r
i

(12)

whereck(θ) does not vanish (i.e. the origin has no characteristic directions). It also can be
written as

dr

dθ
= S(r, θ) =

∑∞
i=k+1 ai(θ) r

i∑∞
i=k ci(θ) ri

= ak+1(θ)

ck(θ)
r + O(r2). (13)

From this equation we easily obtain the following result.

Proposition 5. If the origin of the system (12) has no characteristic directions, then the return
map5(x) associated with it has the form

5(x0) = V1x0 + o(x0) where V1 = exp

{
sign(ck(θ))

∫ 2π

0

ak+1(θ)

ck(θ)
dθ

}
.

From this proposition and expression (2) of system (1) we have the following corollary.

Corollary 6. Assume that the origin of system (1) has no characteristic directions. Then the
return map associated with the origin has the form5(x0) = V1x0 + o(x0), where,

V1 = exp

{
sign(cosθQm(θ)− sinθPm(θ))

∫ 2π

0

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

}
.

3.2. Systems with characteristic directions

As far as we know in the presence of characteristic directions a general method to decide the
stability of the origin when it is monodromic is not known. The main difficulty in this case is
that the return map is no longer differentiable. However, it has been proved that the leading
term of this map is linear. This result due to Il’yashenko and stated without proof in [1], is
proved in the work of Medvedeva [24]. We want to comment that from our approach we also
re-obtain this result for the particular family (1).

3.2.1. Preliminary results. We start by obtaining an expression of the transition map of the
flow associated with an isolated characteristic direction under some non-degeneracy conditions.
These conditions ensure that the singular points appearing at the end of the blow-up process
described in section 2.2 are either hyperbolic saddles or elementary degenerate saddle nodes.
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Givenaj = cosθj andbj = sinθj , whereθj is a characteristic direction of system (1) we
introduce the following notation forl ∈ {m,M}:

P
j

l (u, v) = ajPl(aju− bjv, bju + ajv) + bjQl(aju− bjv, bju + ajv)

Q
j

l (u, v) = −bjPl(aju− bjv, bju + ajv) + ajQl(aju− bjv, bju + ajv).

For short we writeP jl (θ) = P jl (cosθ, sinθ) andQj

l (θ) = Qj

l (cosθ, sinθ). Recall that

αj = d

dz
P jm(1, z)|z=0 βj = d2

dz2
Qj
m(1, z)|z=0.

Lemma 7. Consider a system of type (1) having an isolated characteristic direction at
{θ = θj }. Assume that the following conditions hold:

(i) 2j(R, θ) := cosθQj
m(θ) − sinθP jm(θ) + RM−m

(
cosθQj

M(θ) − sinθP jM(θ)
) 6= 0, for

(R, θ) ∈ {(0, R̄] × [− arctan(ε), arctan(ε)]} \ {(0, 0)}, for ε > 0 and R̄ > 0 small
enough. Denote bysj the sign of2j(R, θ) in this set.

(ii) P jm(θ)|θ=0 = 0 andQj
m(θ)|θ=0 = 0.

(iii) α2
j + β2

j 6= 0 andβ − α 6= 0
(iv) sj

(
(2 + k) αj − 2βj

)
6 0, wherek = M −m.

Let (R, θ) denote a point represented in polar coordinates. Denote by1ε
j the transition

map of the flow for system (1) from{θ = θj − sj arctan(ε)} to {θ = θj + sj arctan(ε)}. Then

1ε
j (R0) = Dε

jR0 + o(R0)

where

Dε
j =



exp

{∫ ε

−ε

P
j
m(1, z)

Q
j
m(1, z)− zP jm(1, z)

−
(

αj

βj − αj

)
1

z
dz

}
if (2 + k)αj − 2βj 6= 0

exp

{
1

M −m
∫ ε

−ε

(2 +M −m)zP jm(1, z)− 2Qj
m(1, z)

zQ
j
m(1, z)− z2P

j
m(1, z)

dz

}
if (2 + k)αj − 2βj = 0.

Conditions (ii) and (iv) ensure that the integral appearing in the expression ofDε
j is non-

singular in a neighbourhood ofz = 0. Condition (iii) also ensures that the blow-ups used in
section 2.2 are enough to desingularize{θ = θj }. When(2 + k)αj − 2βj 6= 0 all the singular
points arising from{θ = θj } at the end of the blow-up process are hyperbolic saddles (see
section 2.2). When(2 + k)αj − 2βj = 0 all the singular points arising from{θ = θj } at the
end of the desingularization process are hyperbolic saddles or elementary degenerate saddle
nodes.

To prove lemma 7 we need to study the composition of the transition maps associated
with three simpler situations: an absence of critical points, a hyperbolic sector of a hyperbolic
saddle and a hyperbolic sector of a degenerate elementary singular point. We study the latter
two situations in the following two lemmas.

Lemma 8. Consider system

ẋ = −x(a + f (x, y)) = P(x, y)
ẏ = y(b + g(x, y)) = Q(x, y)

(14)
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Figure 1. Transition maps in a neighbourhood of a hyperbolic saddle.

wheref and g begin with first-order terms, and,a and b are positive. Letσε,δ(y) be the
transition map of the flow from{x = ε} to {y = δ}, whereε and δ are positive and small
enough (see figure 1), then

σε,δ(y) = A(ε, δ)ya/b + o(ya/b) with A(ε, δ) = ε

δa/b

exp{F(δ)}
exp{(a/b)G(ε)}

where

F(δ) =
∫ δ

0

(
P(x, y)

xQ(x, y)

) ∣∣∣∣
x=0

+
a

by
dy

and

G(ε) =
∫ ε

0

(
Q(x, y)

yP (x, y)

) ∣∣∣∣
y=0

+
b

ax
dx.

Proof. It is well known (see section 3.4 and [22]) thatσε,δ(y) = A(ε, δ)ya/b + o(ya/b), that is,
σε,δ is a semiregular map (see definition 12) with a leading term of orderya/b. Let us denote by
T1 andT2 the regular transition maps from{x = η} to {x = ε} and from{y = δ} to {y = ω},
respectively, withη > ε andω > δ (see figure 1). We can write them as

T1(y) = C1(η, ε)y + · · · T2(x) = C2(δ, ω)x + · · ·
(we setC1 = C1(η, ε) andC2 = C2(η, ε)). Using the first-order variational equations to
computeC1 andC2, we obtain

C1 = exp

{∫ ε

η

∂

∂y

(
− y(b + g(x, y))

x(a + f (x, y))

) ∣∣∣∣
y=0

dx

}

C2 = exp

{∫ ω

δ

∂

∂x

(
−x(a + f (x, y))

y(b + g(x, y))

) ∣∣∣∣
x=0

dy

}
.
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A straightforward computation gives

C1 =
(
ε

η

)−b/a exp{G(ε)}
exp{G(η)}

whereG(x) = ∫ x0 G̃(t) dt andG̃(x) = (Q(x, y)/yP (x, y))|y=0 + b/ax.
Analogously, we obtain

C2 =
(
δ

ω

)a/b exp{F(ω)}
exp{F(δ)}

whereF(y) = ∫ y0 F̃ (t) dt andF̃ (y) = (P (x, y)/xQ(x, y))|x=0 + a/by.
Sinceσε,ω(y) = T2 ◦ σε,δ(y) and ση,δ(y) = σε,δ ◦ T1(y) (see figure 1), by making

computations we have that

A(ε, ω) = C2A(ε, δ) A(η, δ) = Ca/b1 A(ε, δ)

which gives

A(ε, ω) =
(
δ

ω

)a/b exp{F(ω)}
exp{F(δ)} A(ε, δ) (15)

A(η, δ) = η

ε

exp{(a/b)G(ε)}
exp{(a/b)G(η)}A(ε, δ). (16)

Now we claim thatA(ε, ω) = P(ε)Q(ω) for some functionsP andQ. From equation (15)
we have

A(ε, ω) = exp{F(ω)}
ωa/b

δa/b

exp{F(δ)}A(ε, δ). (17)

Set Q(ω) := exp{F(ω)}/ωa/b. Then A(ε, ω) = Q(ω)h(ε, δ), where h(ε, δ) =
(δa/b/exp{F(δ)}) A(ε, δ). SinceA(ε, ω) does not depend onδ we conclude thath(ε, δ) does
not depend onδ, hence we can defineP(ε) := h(ε, δ). From equation (16) we have

P(η)Q(δ) = exp{(a/b)G(ε)}
ε

ω

exp{(a/b)G(ω)}P(ε)Q(δ).

Again it can be easily deduced that

P(ε) = K ε

exp{(a/b)G(ε)}
whereK is a constant. Hence

A(ε, δ) = K ε

δa/b

exp{F(δ)}
exp{(a/b)G(ε)} . (18)

Now we prove thatK = 1. By means of a localC1-smooth change of coordinates given
by

u = ϕ1(x, y) = x(1 +81(x, y))

v = ϕ2(x, y) = y(1 +82(x, y))
(19)

where81 and82 vanish at(0, 0), system (14) is transformed into the system

u̇ = −au
v̇ = bv

(20)
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in a neighbourhood of the origin (see [29]). Since system (20) has a first integral given by
ubva = h, then the original system has the first integral:

H(x, y) = ϕb1(x, y) ϕa2(x, y) = h
and then, the integral curves of (14) are given by

xb(1 +81(x, y))
b ya(1 +82(x, y))

a = h.
Evaluating the integral in(ε, y) and(x, δ), two points on the integral curveH(x, y) = h, we
have

xb(1 +81(x, δ))
b δa(1 +82(x, δ))

a = εb(1 +81(ε, y))
b ya(1 +82(ε, y))

a. (21)

From equation (18) we obtain

x = K ε

δa/b

exp{F(δ)}
exp{(a/b)G(ε)}y

a/b + o(ya/b). (22)

Substituting equation (22) into equation (21), using thatF(0) = G(0) = 0, and81(0, 0) =
82(0, 0) = 0, we have that (we omit the tedious but straightforward computations)Kb = 1.
So we have proved that

A(ε, δ) = ε

δa/b

exp{F(δ)}
exp{(a/b)G(ε)} . �

In the following lemma we study the transition map associated with a hyperbolic sector
of a degenerate elementary singular point.

Lemma 9. Consider the system

ẋ = −x(a + f (x, y)) = P(x, y)
ẏ = yg(x, y) = Q(x, y)

(23)

wheref andg begin with first-order terms, andg(0, y) = byk + o(yk), a andb positive. Let
σε,δ(y) be the transition map of the flow from{x = ε} to {y = δ} (whereε andδ are positive
and small enough), andτδ,ε(x) be the transition map from{y = δ} to {x = ε} (see figure 2),
then

σε,δ(y) = f0
(
A(ε)yk + o(yk)

)
where A(ε) = kb

a
exp{−kF (ε)}

being

F(ε) =
∫ ε

0

(
Q(x, y)

yP (x, y)

) ∣∣∣∣
y=0

dx

and

f0 =
{

exp{−1/x} if x 6= 0

0 if x = 0.

Moreover,

τδ,ε(x) = h
(
f −1

0 (x)
)

whereh(x̄) = B(ε)x̄1/k + o(x̄1/k) andB(ε) = (kb/a)−1/k exp{F(ε)}.
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Figure 2. Transition maps in a hyperbolic sector of an elementary degenerate singular point.

Proof. It is well known thatσε,δ is a flat semiregular map (see section 3.4 and [22]) that can
be written asσε,δ(y) = f0

(
A(ε, δ)yk + o(yk)

)
. Consider nowη andω such thatη > ε and

ω > δ. Let us denote byT1 andT2 the regular transition maps from{x = η} to {x = ε} and
from {y = δ} to {y = ω}, respectively. We can write them as

T1(y) = C1(η, ε)y + · · · T2(x) = C2(δ, ω)x + · · ·
(we setC1 = C1(η, ε) andC2 = C2(δ, ω)). Using the first-order variational equations we
obtain

C1 = exp

{∫ ε

η

∂

∂y

(
− yg(x, y)

x(a + f (x, y))

) ∣∣∣∣
y=0

dx

}
.

Since

∂

∂y

(
− yg(x, y)

x(a + f (x, y))

) ∣∣∣∣
y=0

= Q(x, y)

yP (x, y)

∣∣∣∣
y=0

we obtain

C1 = exp{F(ε)}
exp{F(η)} . (24)

Observe thatση,δ = σε,δ ◦ T1 (see figure 2). So, we have that

f0
(
A(η, δ)yk + o(yk)

) = f0
(
Ck1A(ε, δ)y

k + o(yk)
)

and hence

A(η, δ) = C1(η, ε)
kA(ε, δ). (25)
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On the other hand (see again figure 2), sinceT2 ◦ σε,δ = σε,ω, we obtain

T2 ◦ f0
(
A(ε, δ)yk + o(yk)

) = f0
(
A(ε, ω)yk + o(yk)

)
.

From the above equality we obtain thatf −1
0 ◦T2 ◦f0

(
A(ε, δ)yk + o(yk)

) = A(ε, ω)yk + o(yk).
Applying lemma 14 of the appendix, we obtain

A(ε, δ)yk + o(yk) = A(ε, ω)yk + o(yk)

and as a consequenceA(ε, δ) = A(ε, ω). Therefore,A(ε, δ) does not depend on the second
argument. Then from equation (25),A(η) = C1(η, ε)

kA(ε), and from (24) we obtain

A(ε) = C exp{−kF (ε)}. (26)

It is well known (see again section 3.4 and [22]) thatτδ,ε(x) = h
(
f −1

0 (x)
)
, where

h(x̄) = B(δ, ε)x̄1/k + o(x̄1/k). Sinceτδ,ε ◦ δε,δ is the identity map, we obtain

B(ε, δ)

( −1

ln(f0(A(ε)xk + o(xk)))

)1/k

+ o(x) = B(ε, δ)A(ε)1/kx + o(x) = x

which implies thatB(ε, δ) = B(ε) andB(ε) = A(ε)−1/k. HenceB(ε) = C−1/k exp{F(ε)}.
To finish the proof we only have to computeC. We claim thatC = kb/a. Indeed, by

means of a localC∞ change of coordinates given by

u = ϕ1(x, y) = x(1 +81(x, y))

v = ϕ2(x, y) = y(1 +82(x, y))
(27)

where81 and82 vanish at(0, 0), system (23) is transformed into Dulac’s normal form

u̇ = −au
v̇ = vk+1(b + cvk)

(28)

in a neighbourhood of the origin (see [22]). Its integral curves are given by

u

(
(b + cvk)1/k

v

)ac/b2

exp

{
− 1

(kb/a) vk

}
= h.

It can be checked that the above expression can be written as

u exp

{
− 1

(kb/a) vk + o(vk)

}
= h

that is,

uf0

((
kb

a

)
vk + o(vk)

)
= h.

Hence the level curves of system (23) are

x(1 +81(x, y))f0

((
kb

a

)
yk(1 +82(x, y))

k + o(yk(1 +82(x, y))
k)

)
= h.

Evaluating the integral curve of levelh in (ε, y) and(x, δ), and using that by equation (26),
x = f0

(
C exp{−kF (ε)}yk + o(yk)

)
, a tedious computation gives that:

f0
(
C exp{−kF (ε)}yk + o(yk)

) = f0

((
kb

a

)
(1 +82(ε,0))y

k + o(yk)

)
.
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Hence

C exp{−kF (ε)}yk + o(yk) = kb

a
(1 +82(ε,0))y

k + o(yk)

and sinceF(0) = 0 and82(0, 0) = 0, we have thatC = kb/a, as we wanted to prove. �

Proof of lemma 7. Without loss of generality we can assume thatsj = 1. Since the class of
systems that we consider is closed by rotations, we prove the lemma assuming thatθj = 0.
We putα = αj , β = βj , Pm = P jm, Qm = Qj

m and1ε
0 = 1ε

j . The map1ε
0 is well defined

since lemma 3 ensures that there are no orbits tending to or leaving the origin of system
(1) in the direction{θ = 0}. Following the steps of desingularization used in section 2.2,
under the hypothesis assumed, the characteristic direction given by{θ = 0} corresponds to
the singular point(u0, z0) = (0, 0) of system (6) which unfolds at the end of the process of
desingularization (systems (9) and (10)) in four singular points{p′1, p′2, p2, p1} (see figure 4).
A study of the blow-up gives that(
−((2 + k)α − 2β) 0

0 −(β − α)

)
and

(
(2 + k)α − 2β 0

0 β − α

)

are the differential matrices of the corresponding vector fields at the pointsp′1 and p1,
respectively. This follows from the fact that the vector field in a neighbourhood ofp′1 is
given by a time inversion of system (9), and the vector field in a neighbourhood ofp1 is given
by system (9). Also we have that(

γ 0

0 −2γ

)
and

(
−γ 0

0 2γ

)

are the differential matrices of the corresponding vector fields associated with system (10) at
the pointsp′2 andp2, respectively, whereγ = QM(1, 0).

Assume now that the condition((2 +M −m)α − 2β) < 0 is satisfied. We can write

1ε
0 = σ1 ◦ ϕ1 ◦ σ2 ◦ ϕ2 ◦ σ ′2 ◦ ϕ′1 ◦ σ ′1 (29)

whereσ ′1 is the transition map associated with the hyperbolic sectorp′1 computed from{z = −ε}
to {w = µ} (whereε andµ are positive and small enough) in the coordinates of system (9). The
mapσ1 is the transition map associated with the hyperbolic sectorp1 computed from{w = µ}
to {z = ε} in the coordinates of system (9). The mapσ ′2 is the transition map associated with
the hyperbolic sectorp′2 computed from{q = µ} to {v = −δ} (whereδ is positive and small
enough) in the coordinates of system (10). Lastly,σ2 is the transition map associated with the
hyperbolic sectorp2 computed from{v = δ} to {q = µ} in the coordinates of system (10).

All the above maps are not differentiable but semiregular maps (see definition 12 in
section 3.4), whose leading term can be expressed as follows:

σ ′1(x̄) = ax̄α1 + o(x̄α1)

σ ′2(x̄) = bx̄β1 + o(x̄β1)

σ2(x̄) = cx̄1/β1 + o(x̄1/β1)

σ1(x̄) = dx̄1/α1 + o(x̄1/α1)
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Figure 3. Blow-up of the characteristic direction{θ = 0} in local coordinates.
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Figure 4. Blow-up of the characteristic direction{θ = 0}.

where

α1 = − β − α
(2 + k)α − 2β

β1 = 2γ

γ
= 2

a = a(ε, µ)
b = b(µ, δ)
c = c(µ, δ)
d = d(µ, δ)

are non-zero coefficients that will be computed below. In equation (29)ϕ′1 denotes the regular
map from a neighbourhood ofp′1 to a neighbourhood ofp′2, ϕ2 denotes the regular map from
a neighbourhood ofp′2 to a neighbourhood ofp2, andϕ1 denotes the regular map from a
neighbourhood ofp2 to a neighbourhood ofp1. Sinceϕ′1, ϕ1 andϕ2 are regular maps, we can
write them as

ϕ′1(x̄) = δ′1x̄ + o(x̄)

ϕ2(x̄) = δ2x̄ + o(x̄)

ϕ1(x̄) = δ1x̄ + o(x̄)

whereδ′1, δ1 andδ2 are positive coefficients, also depending onε, δ andµ.
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To complete the proof of the lemma we have to compute the leading term of the composition
of these maps (see equation (29)). Firstly, we computeδ2, δ′1 andδ′1, by integrating the first-
order variational equations.

Computation ofδ2. To computeδ2 we consider system (6). For this system the characteristic
direction{θ = 0} corresponds to the singular point(u, z) = (0, 0). We will compute the first
polar blow-up obtaining the new system (30). The mapϕ2 can be considered as the transition
map from{z = −(1/δ)u} to {z = (1/δ)u}, for δ > 0 small enough, given above. Henceδ2 can
be obtained by integrating the first-order variational equations of the system (30) associated
with the orbit{r = 0} from {θ0 = arctan(−1/δ)} to {θf = arctan(1/δ)}. Next we explain the
above procedure.

Taking the change of coordinates given by(u, z) = (r cosθ, r sinθ), system (6) is written
as

ṙ = γ cosθ sinθ r + O(r2)

θ̇ = γ cos2 θ + O(r).
(30)

The first-order variational equation of system (30) associated with the orbit{r = 0} is:

dr̄

dθ
= tanθ r̄.

By separation of variables and integrating the first term fromr̄0 to r̄f (note thatϕ2(r) =
r̄f r + O(r2), and then̄rf = δ2), and the second term fromθ0 to θf , we have∫ r̄f

r̄0

dr̄

r̄
=
∫ θf

θ0

tanθ dθ

which gives

ln

(
r̄f

r̄0

)
= ln

(
cos(arctan(−1/δ))

cos(arctan(1/δ))

)
= ln(1) = 0

(note that̄r0 = 1), hencērf = δ2 = 1. This means thatϕ2 is the identity at first order.

Computation ofδ′1 and δ1. To computeδ′1 and δ1 we work with the coordinates(w, z)
corresponding to system (9). The mapϕ′1 is the transition map from{w = µ} to {w = 1/µ},
forµ > 0 small enough, given above. Henceδ′1 can be obtained from the first-order variational
equations of the system obtained after a time inversion of system (9), associated with the orbit
{z = 0}. The mapϕ1 is the transition map from{w = 1/µ} to {w = µ} and hence is the
inverse ofϕ′1. Therefore,δ′1 · δ1 = 1. A tedious computation gives

δ′1 = exp

{∫ 1/µ

µ

M(w) dw

}
and hence

δ1 = exp

{∫ µ

1/µ
M(w) dw

}
where

M(w) = (β − α) +wγ

w((2 + k)α − 2β)
.
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If we denoteτ1 = σ ′2 ◦ ϕ′1 ◦ σ ′1 and τ2 = σ1 ◦ ϕ1 ◦ σ2, then1ε
0 = τ2 ◦ ϕ2 ◦ τ1. In

what follows we will computeτ1 andτ2. We will use the following notation:(a, b)(n), where
n ∈ {1, 2, 3, 4, 4′}, means a point expressed in the coordinates(x, y) of system (1) ifn = 1,
expressed in coordinates(u, z) of system (6) ifn = 2, in coordinates(v, z) of (7) if n = 3,
in coordinates(w, z) of system (9) ifn = 4, and in coordinates(v, q) of (10) if n = 4′ (see
again figure 3).

Computation ofτ1. We start with a point(u0, z0)
(2) = (u0,−ε)(2). Following the notation

introduced above we have

τ1
(
(u0,−ε)(2)

) = τ1

((
−u0

ε
,−ε

)(3))
= τ1

((
u0

ε2
,−ε

)(4))
= σ ′2 ◦ ϕ′1 ◦ σ ′1

((
u0

ε2
,−ε

)(4))
= σ ′2 ◦ ϕ′1

((
µ, aε−2α1u

α1
0 + o(uα1

0 )
)(4))

= σ ′2
((

1

µ
, δ′1aε

−2α1u
α1
0 + o(uα1

0 )

)(4))

= σ ′2
((

1

µ
δ′1aε

−2α1u
α1
0 + o(uα1

0 ), δ
′
1aε
−2α1u

α1
0 + o(uα1

0 )

)(3))

= σ ′2
((

1

µ
δ′1aε

−2α1u
α1
0 + o(uα1

0 ), µ

)(4′))
= (−δ, bµ−β1(δ′1)

β1aβ1ε−2α1β1u
α1β1
0 + o

(
u
α1β1
0

))(4′)
= (−δ,−δbµ−β1(δ′1)

β1aβ1ε−2α1β1u
α1β1
0 + o(uα1β1

0 )
)(3)

= (δ2bµ−β1(δ′1)
β1aβ1ε−2α1β1u

α1β1
0 + o(uα1β1

0 ),

−δbµ−β1(δ′1)
β1aβ1ε−2α1β1u

α1β1
0 + o(uα1β1

0 )
)(2)
.

Finally, we can writeτ1 as

τ1
(
(u0,−ε)(2)

) = (δAuα1β1
0 + o(uα1β1

0 ),−Auα1β1
0 + o(uα1β1

0 ))(2)

whereA = δbµ−β1(δ′1)
β1aβ1ε−2α1β1.

Computation ofτ2. We start with a point(u0, z0)
(2) = (u0, u0/δ)

(2). Following the notation
introduced above we obtain

τ2

((
u0,

1

δ
u0

)(2))
= τ2

((
δ,

1

δ
u0

)(3))
= τ2

((
δ,

1

δ2
u0

)(4′))

= σ1 ◦ ϕ1 ◦ σ2

((
δ,

1

δ2
u0

)(4′))
= σ1 ◦ ϕ1

(
(cδ−2/β1u

1/β1
0 + o(u1/β1

0 ), µ)(4
′))

= σ1 ◦ ϕ1
((
cδ−2/β1u

1/β1
0 + o(u1/β1

0 ), µcδ−2/β1u
1/β1
0 + o(u1/β1

0 )
)(3))

= σ1 ◦ ϕ1

((
1

µ
,µcδ−2/β1u

1/β1
0 + o

(
u

1/β1
0

))(4))
= σ1

((
µ, δ1µcδ

−2/β1u
1/β1
0 + o

(
u

1/β1
0

))(4))
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= (dδ1/α1
1 µ1/α1c1/α1δ−2/(α1β1)u

1/(α1β1)

0 + o
(
u

1/(α1β1)

0

)
, ε
)(4)

= (εdδ1/α1
1 µ1/α1c1/α1δ−2/(α1β1)u

1/(α1β1)

0 + o
(
u

1/(α1β1)

0

)
, ε
)(3)

= (ε2dδ
1/α1
1 µ1/α1c1/α1δ−2/(α1β1)u

1/(α1β1)

0 + o
(
u

1/(α1β1)

0

)
, ε
)(2)
.

Finally, we can writeτ2 as

τ2

((
u0,

1

δ
u0

)(2))
= (Bu1/(α1β1)

0 + o
(
u

1/(α1β1)

0

)
, ε
)(2)

whereB = ε2dδ
1/α1
1 µ1/α1c1/α1δ−2/(α1β1).

Computation of1ε
0. SetD = Bδ1/(α1β1)A1/(α1β1). Then we have that

1ε
0

(
(u0,−ε)(2)

) = τ2 ◦ ϕ2 ◦ τ1
(
(u0,−ε)(2)

) = (Du0 + o(u0), ε)
(2).

Hence, since(u, z)(2) = ( k
√
u, z k
√
u)(1), (wherek = M −m) we obtain

1ε
0

(
( k
√
u0,−ε k

√
u0)

(1)
) = ( k

√
Du0, ε

k
√
Du0)

(1).

Therefore, in the usual polar coordinates, the transition from the ray{θ = −arctan(ε)} to
the ray{θ = + arctan(ε)} can be written as

1ε
0(R0) = k

√
DR0 + o(R0) (31)

(and thenDε
0 = k
√
D). A simple calculation gives thatD = a1/α1b1/(α1β1)c1/α1d(δ1δ

′
1)

1/α1,
Sinceδ1δ

′
1 = 1, we obtain

D = a1/α1b1/(α1β1)c1/α1d. (32)

Finally, to end the proof of the lemma we have to computea, b, c andd. To do these
computations we use lemma 8.

Computation ofa andd. Consider system (9). Applying lemma 8 we obtain that

a = −ε
µα1

exp{G(µ)}
exp{α1F(−ε)} and d = µ

ε1/α1

exp{F(ε)}
exp{(1/α1)G(µ)}

where

α1 = − β − α
(2 + k)α − 2β

G(µ) =
∫ µ

0

(
Q4(w, z)

zP4(w, z)

) ∣∣∣∣
z=0

+
α1

w
dw

and

F(ε) =
∫ ε

0

(
P4(w, z)

wQ4(w, z)

) ∣∣∣∣
w=0

+
1

α1z
dz.
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Computation ofb andc. Consider system (10). Again, applying lemma 8 we have

b = µ

(−δ)β1

exp{J (−δ)}
exp{β1H(µ)} and c = δ

µ1/β1

exp{H(µ)}
exp{(1/β1)J (δ)}

whereβ1 = 2,

J (δ) =
∫ δ

0

(
Q4′(v, q)

qP4′(v, q)

) ∣∣∣∣
q=0

+
β1

v
dv =

∫ δ

0

(−2

v
+
β1

v

)
dv = 0

and

H(µ) =
∫ µ

0

(
P4′(v, q)

vQ4′(v, q)

) ∣∣∣∣
v=0

+
1

β1q
dq.

Taking into account equation (32), a computation gives

D = a1/α1b1/(α1β1)c1/α1d = exp{F(ε)− F(−ε)}. (33)

Finally, we obtain the expression ofF . Note that(
P4(w, z)

wQ4(w, z)

) ∣∣∣∣
w=0

+
1

α1z
= −2

z
+ k

Pm(1, z)

Qm(1, z)− zPm(1, z) +
1

α1z

= k Pm(1, z)

Qm(1, z)− zPm(1, z) − k
α

β − α
1

z
.

Therefore,

F(ε)− F(−ε) = (M −m)
∫ ε

−ε

Pm(1, z)

Qm(1, z)− zPm(1, z) −
α

β − α
1

z
dz

and from equation (33) we obtain that

D = exp

{
(M −m)

∫ ε

−ε

Pm(1, z)

Qm(1, z)− zPm(1, z) −
α

β − α
1

z
dz

}
.

Then, from (31), we have that

Dε
0 = exp

{∫ ε

−ε

Pm(1, z)

Qm(1, z)− zPm(1, z) −
α

β − α
1

z
dz

}
.

Assume now that((2 +M −m)α − 2β) = 0. In this casep′1 andp1 are elementary
degenerate saddle nodes with the hyperbolic sectors located in the region{w > 0} in
coordinates(w, z)of system (9), see figure 3. Note thatσ ′1 is again the transition map associated
with the hyperbolic sectorp′1 computed from{z = −ε} to {w = µ} (whereε andµ are positive
and small enough) in the coordinates of system (9), whileσ1 is the transition map associated
with the hyperbolic sectorp1 computed from{w = µ} to {z = ε} in the coordinates of system
(9). From lemma 9 we have that

σ ′1(x̄) = f0
(
axλ + o(xλ)

)
σ1(x̄) = h

(
f −1

0 (x)
)

whereh(x) = bx1/λ + o(x1/λ), a andb are non-vanishing coefficients that will be computed
below. The valueλ is not relevant for our purposes.
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Let ϕ denote the semiregular transition map from a neighbourhood ofp′1 to a
neighbourhood ofp1. From lemma 14 (see section 3.4), we have

1ε
0((u0,−ε)(2)) =

(
b

( −1

ln(ϕ ◦ f0(au
λ
0 + o(uλ0)))

)1/λ

+ o(u0), ε

)(2)
= (ba1/λu0 + o(u0), ε

)(2)
.

In the usual polar coordinates, the transition from the ray{θ = − arctan(ε)} to the ray
{θ = arctan(ε)} can be written as

1ε
0(R0) = k

√
Du0 + o(u0)

whereD = ba1/λ. Applying again lemma 9 we have that

a = C exp{−λM(−ε)}
b = C−1/λ exp{M(ε)}

where

M(x) =
∫ x

0

(
P4(w, z)

wQ4(w, z)

) ∣∣∣∣
w=0

dz =
∫ x

0

(2 +M −m)zPm(1, z)− 2Qm(1, z)

zQm(1, z)− z2Pm(1, z)
dz.

Hence

Dε
0 = exp

{
1

M −m
∫ ε

−ε

(2 +M −m)zPm(1, z)− 2Qm(1, z)

zQm(1, z)− z2Pm(1, z)
dz

}
. �

3.2.2. Proof of theorem B. Let θ1, . . . , θk be the characteristic directions of system (1).
Observe that is not restrictive to assume that{θ = 0} is not a characteristic direction. Letε > 0
be small enough such thatSε andIε are well defined. Integrating the first-order variational
equations of system (2) associated with the orbit{R = 0}, we have that the transition mapT εj
from {θ = θj + ε} to {θ = θj+1− ε} (which is regular) is given by

T εj (R0) = exp

{∫ θj+1−ε

θj+ε

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

}
R0 + o(R0).

Also let T ε0 be the regular transition map from{θ = 0} to {θ = θ1 − ε}, andT εk be the
regular transition from{θ = θk + ε} to {θ = 2π}.

Setε̄ = tan(ε). Since5 = T εk ◦1ε̄
k ◦ T εk−1 · · · T ε2 ◦1ε̄

2 ◦ T ε1 ◦1ε̄
1 ◦ T ε0 , is a composition

of regular and semiregular maps with non-vanishing linear leading terms, by lemma 14 of
section 3.4, we can write5(x) = V1x + o(x), whereV1 is the product of the principal terms
of the maps1ε

j andT εj , for j = 1, . . . , k. Therefore, for allε > 0 small enough, we obtain

V1 =
(

k∏
j=1

Dε̄
j

)
exp

{∫
Iε

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

}
. (34)

By lemma 7 the integrals appearing in eachDε̄
j are non-singular, hence limε→0D

ε̄
j = 1.

By takingε→ 0 in equation (34), we have that the GPV exists and

V1 = exp

{
GPV

∫ 2π

0

cosθPm(θ) + sinθQm(θ)

cosθQm(θ)− sinθPm(θ)
dθ

}
. �
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3.2.3. Proof of proposition C. Firstly, we outline the main difficulties in computingV1 in
the case that more than two opposite characteristic directions satisfying(2 + k)αj − 2βj < 0
andβj − αj = 0 appear in the desingularization process. Unfortunately, in that case we do
not have an analogue of lemma 7, and we have to consider the problem from a point of view
different from that used in the proof of theorem B.

Let {j1, j2, . . . , jn, jn+1, . . . , j2n} denote the indices of the characteristic directions for
which (2 + k)αji − 2βji < 0 andβji − αji = 0. For the sake of simplicity we will use the
notationθ̄i = θji (note that for eachk = 1, . . . , n, θ̄k ∈ [0, π) and θ̄k+n = θ̄k + π ). As can
be seen in section 2.2, eachθ̄i at the end of the desingularization process unfolds into four
singular points{p′1,i , p′2,i , p2,i , p1,i} such thatp′2,i andp2,i are hyperbolic saddles andp′1,i and
p1,i are elementary degenerate saddles.

Let ρi denote the transition map of the flow from a neighbourhood ofp1,i to a
neighbourhoodp′1,i+1, which is semiregular or regular (depending on whether or not there
are characteristic directions betweenθ̄i andθ̄i+1) with a non-vanishing linear leading term. Let
Ti(x̄) = ti x̄ +o(x̄) denote the transition map from a neighbourhood ofp′1,i to a neighbourhood
p1,i . Denote by(h′i ◦f −1

0 ) the (vertical semiregular) map associated with the hyperbolic sector
of p′1,i , with

h′i (x̄) = bi x̄1/ki + o(x̄1/ki ) (35)

and by(f0 ◦hi) the (flat semiregular) map associated with the hyperbolic sector ofp1,i , where

hi(x̄) = ai x̄ki + o(x̄ki ). (36)

Note that the fact that the systems of type (1) expressed in polar coordinates(R, θ) satisfy
(Ṙ(R, θ + π), θ̇(R, θ + π)) = (Ṙ(R, θ), θ̇(R, θ)), implies thatki = ki+n, ai = ai+n and
bi = bi+n for all i ∈ {1, . . . , n}. Note also that from lemma 14 we have (in the local coordinates
of system (9))

h′i+1 ◦ f −1
0 ◦ ρi ◦ f0 ◦ hi(x̄) = bi+1a

1/ki+1
i x̄ + o(x̄).

Taking this fact into account, and since

5 = T1 ◦
(
h′1 ◦ f −1

0 ◦ ρ2n ◦ f0 ◦ h2n
) ◦ · · · ◦ T3 ◦

(
h′3 ◦ f −1

0 ◦ ρ2 ◦ f0 ◦ h2
)

◦T2 ◦
(
h′2 ◦ f −1

0 ◦ ρ1 ◦ f0 ◦ h1
)

applying inductively lemma 14 we have that

V1 =
(
t1b1a

1/k1
2n t2n · · · t3b3a

1/k3
2 t2b2a

1/k2
1

)1/(M−m)
.

Using the above remark we obtain

V1 =
(
bn+1a

1/kn+1
n tn · · · t3b3a

1/k3
2 t2b2a

1/k2
1 t1

)2/(M−m)
. (37)

As we will see below, eachtk can be easily computed, but to compute the number
5n
j=1bj+1a

1/kj+1

j , it is necessary to obtain the normal form of the vector field in a neighbourhood
of the pointsp′j+1 andpj for eachj = 1, . . . , n. This is the main difficulty in having an
explicit expression ofV1 analogous to that which appears in theorem B, in the case under
study. However, ifn = 1, there are only two (opposite) characteristic directions,V1 can be
easily computed explicitly from equation (37). This is the situation stated in proposition C.
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Proof of proposition C. Without loss of generality we can takēθ1 = 0. From equation (37)
we have

V1 =
(
b2a

1/k2
1 t1

)2/(M−m)

but as noted aboveb2 = b1 andk2 = k1. To computea1, b1 andδ1 we will use the coordinates
of (w, z) of system (9). We claim thatb1a

1/k1
1 = 1.

We use the same notation as in the proof of lemma 9 in section 3.2.1, and we use the
same transversal sections. From this lemma we have thata1 = a1(δ) = C exp{−k1F(δ)} and
b1 = b1(δ) = C1/k1 exp{F(δ)}, whereC is a constant and

F(w) =
∫ (

Q4(w, z)

zP4(w, z)

) ∣∣∣∣
z=0

dw =
∫

γ

k1α − 2γw
dw = − 1

2 ln |k1α − 2γw| +K

where, as usual,γ = QM(1, 0), andK is a constant. Hence

a1(δ) = C
(√
k1α − 2γ δ

)k1

and b1(δ) = C−1/k1

(√
k1α − 2γ δ

)−1

and thenb1(δ) a1(δ)
1/k1 = 1. Hence the claim is proved.

Computation oft1. An easy computation shows that

T1
(
(µ, zo)

(4)
) = ϕ1 ◦ σ2 ◦ ϕ2 ◦ σ ′2 ◦ ϕ′1

(
(µ, zo)

(4)
) = ϕ1 ◦ σ2 ◦ ϕ2 ◦ σ ′2

((
1

µ
, δ′1zo

)(4))

= ϕ1 ◦ σ2 ◦ ϕ2 ◦ σ ′2
((

1

µ
δ′1zo, δ

′
1zo

)(3))

= ϕ1 ◦ σ2 ◦ ϕ2 ◦ σ ′2
((

1

µ
δ′1zo, µ

)(4′))
= ϕ1 ◦ σ2 ◦ ϕ2

(
(−δ, bµ−β1(δ′1zo)

β1)(4
′))

= ϕ1 ◦ σ2
(
(δ, bµ−β1(δ′1zo)

β1)(4
′)) = ϕ1

(
(cb1/β1µ−1δ′1zo, µ)

(4′))
= ϕ1

(
(cb1/β1µ−1δ′1zo, cb

1/β1δ′1zo)
(3)
) = ϕ1

((
1

µ
, cb1/β1δ′1zo

)(4))
= (µ, cb1/β1δ1δ

′
1zo)

(4) = (µ, cb1/β1zo)
(4).

The valuesb andc are computed in the proof of lemma 7 (in section 3.2.1), and they
satisfycb1/β1 = −1.

Hence, settingx0 = k

√
µz2

0, andy0 = z0
k

√
µz2

0, we have

T1
(
(x0, y0)

(1)
) = (µ,−z0)

(4)T1
(
(µ, z0)

(4)
) = (µ,−z0)

(4) = (x0,−y0)
(1)

which implies thatt1 = 1. Therefore,V1 = 1. �
Note that all the coefficientsti that appear in equation (37) can be computed in the same

way as in the proof of proposition C, giving thatti = 1 for i = 1, . . . ,2n. Thus, we obtain the
following result.
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Proposition 10. Assume thatX belongs to the classG. Suppose that the origin of system (1)
(associated withX ) is a focus–centre, and there exist{θ̄1, . . . , θ̄2n} characteristic directions
such thatβik − αik = 0 for k = 1, . . . ,2n. Then the return map associated with the origin has
the form5(x0) = V1x0 + o(x0), where

V1 = 5n
i=1

(
bi+1a

1/ki+1
i

)2/(M−m)

andai andbi+1 are defined in expressions (35) and (36).

3.3. Examples

Example 1. Consider the system

ẋ = P(x, y) = y(x2 + xy − y2)

ẏ = Q(x, y) = y2(2x + y) + x5
(38)

which can be written in polar coordinates(R, θ) as

Ṙ = R(cos3 θ sinθ + cos2 θ sin2 θ + cosθ sin3 θ + sin4 θ +R2 sinθ cos5 θ)

θ̇ = sin2 θ +R2 cos6 θ.
(39)

Its origin has two characteristic directions given by{θ1 = 0}and{θ2 = π}. As explained in
the introduction we only need to verify the focus–centre conditions for{θ1 = 0}. Condition (a)
is fulfilled becausexQ(x, y) − yP (x, y) = y2(x2 + y2) + x6 > 0, except at the origin. Also
condition (b) is verified trivially becauseP3(θi) = Q3(θi) = 0 for i = 1, 2, and finally

α1 = d

dz
Pm(1, z)|z=0 = d

dz

(
z(1 + z− z2)

) ∣∣
z=0 = 1

β1 = 1

2

d2

dz2
Qm(1, z)|z=0 = 1

2

d2

dz2

(
z2(2 + z)

) ∣∣
z=0 = 2.

Note thatα2 = α1, β2 = β1, henceα2
1 + β2

1 = α2
2 + β2

2 = 5 6= 0, and then the system
belongs to classG. Since(2 +M −m)α1− 2β1 = (2 +M −m)α2− 2β2 = 0, by theorem A,
system (38) is a focus–centre. Recall that each characteristic directionθi with i = 1, 2, at the
end of the desingularization process unfolds into four singular points{p′1, p′2, p2, p1} where
p′1 andp1 are elementary degenerate saddle nodes, andp′2 andp2 are hyperbolic saddles.
From theorem B, the Poincaré return map can be written as5(x0) = V1x0 + o(x0), where

V1 = exp

{
GPV

∫ 2π

0

cos3 θ sinθ + cos2 θ sin2 θ + cosθ sin3 θ + sin4 θ

sin2 θ
dθ

}

= exp

{
GPV

∫ 2π

0

(
cos3 θ

sinθ
+ cosθ sinθ + 1

)
dθ

}
= exp{2π}.

Hence the origin is a repulsive focus.

Example 2. Consider the system

ẋ = P(x, y) = y(αx2 + bxy + cy2)

ẏ = Q(x, y) = y2(αx + by) + x5
(40)

with α < 0 andc < 0. In polar coordinates(R, θ), system (40) is written as

Ṙ = R(α cos3 θ sinθ + (c + α) cosθ sin3 θ + b sin2 θ +R2 sinθ cos5 θ)

θ̇ = −c sin4 θ +R2 cos6 θ.
(41)



The focus–centre problem for a type of degenerate system 727

Its origin has two characteristic directions given by{θ1 = 0} and{θ2 = π}. As in the previous
example we just need to verify the focus–centre conditions for{θ1 = 0}. Condition (a)
is verified sincexQ(x, y) − yP (x, y) = −cy4 + x6 > 0, except at the origin. Also
condition (b) is trivially verified sinceP3(θi) = Q3(θi) = 0 for i = 1, 2, and finally as
α1 = α2 = β1 = β2 = α < 0, α2

1 + β2
1 = α2

2 + β2
2 = α 6= 0, hence the system is of classG.

Since(2 +M −m)α1− 2β1 = (2 +M −m)α2− 2β2 = 2α < 0, by theorem A, system (40) is
a focus–centre.

From proposition C, the Poincaré return map can be written as5(x0) = x0 + o(x0). On
the other hand, an easy computation gives

GPV
∫ 2π

0

α cos3 θ sinθ + (c + α) cosθ sin3 θ + b sin2 θ

−c sin4 θ
dθ

= lim
ε→0+

−4b

c

cosε

sinε
= sign(b)∞.

Hence we have shown that in the hypothesis of proposition C, the expression ofV1 given
in theorem B is not valid for studying the stability of the origin.
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Appendix

It is well known, from the Bendixon–Dumortier theory (see [22] for instance), that by means
of finitely many blow-ups a real analytic vector field given in a neighbourhood of a real
isolated singular point on the plane can be carried into an analytic field of directions given
in a neighbourhood of a union of glued-in projective lines and having only finitely many
singular points, each of them elementary and different from a focus or a centre (a brief
geometric description of the method can be found in [8]). This result enables us to turn
the singular monodromic point into a polycycle having at the vertices singular points each of
them elementary (hyperbolic or degenerate elementary), and having the same associated return
map. A polycycle having all its singular points elementary (that is, its linearizations have at
least one non-zero eigenvalue) is called elementary.

We briefly recall some concepts and results (see again [22] for more details).

Definition 11. A Dulac series is a formal series of the form

D(x) = cxµ0 +
∞∑
j=1

Pj (ln(x))x
µj

wherec > 0, 0< µ0 < · · · < µj < · · · , µj →∞, and thePj are polynomials.

Definition 12. A germ of a mappingf : (R+, 0) −→ (R+, 0) is said to be semiregular if it
can be expanded into an asymptotic Dulac series, that is for anyN there exists a partial sum
S of the above series such thatf (x)− S(x) = o(xN). The coefficientc of the above series is
called the principal term.

Semiregular mappings are relevant because the transition map of a hyperbolic sector associated
with a hyperbolic saddle is not in general differentiable (regular), but it is semiregular (see
lemma 2 in section 0.2 of [22]). Moreover, it can be proved that the germs of semiregular
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mappings form a group. In particular, the composition of semiregular mappings is also
semiregular. As usual we denote

f0 =
{

exp{−1/x} if x 6= 0

0 if x = 0.

Definition 13.

(i) A germ of a mappingf : (R+, 0) −→ (R+, 0) is said to be flat semiregular iff −1
0 ◦ f is

semiregular.
(ii) A germ of a mappingf : (R+, 0) −→ (R+, 0) is said to be vertical semiregular if its

inverse is the germ of a flat semiregular germ.

The transition map of a hyperbolic sector associated with a degenerate elementary singular
point is either a flat semiregular map or a vertical semiregular map.

The following are well known results (see again [22]).

Lemma 14. Let m,m′, h be semiregular maps such thath(x) = cxµ + o(xµ),m(x) =
axλ + o(xλ), andm′(x) = bx1/λ + o(x1/λ). Setσ = f0 ◦m, andσ ′ = m′ ◦ f −1

0 . Then

(i) h ◦m(x) = caµxλµ + o(xλµ);
(ii) σ ′ ◦ h ◦ σ(x) = (ba1/λ/µ1/λ)x + o(x).
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in der umgebung eines singulären punktesMath. Z.43271–320
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