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Abstract. We consider differential systems in the plane defined by the sum of two homogeneous
vector fields. We assume that the origin is a degenerate singular point for these differential systems.
We characterize when the singular point is of focus—centre type in a generic case. The problem
of its local stability is also considered. We compute the first generalized Lyapunov constant when
some non-degeneracy conditions are assumed.
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1. Introduction

One of the classical problems in the qualitative theory of planar analytic differential systems is
the study of the local phase portrait at the singularities to characterize when a singular point is
of focus—centre type. Recall that a singular point is said to hecnis—centre typiit is either
a focus or a centre. In what follows, this problem will be calledft®is—centre probleror
themonodromy problemOf course, if the linear part of the singular point is non-degenerate
(i.e. its determinant does not vanish) the characterization is well known. The problem has
also been solved when the linear part is degenerate but not identically zero, see [2, 3]. Hence
the main difficulties in solving the focus—centre problem appear when the singular point has
an identically zero linear part. On the other hand, once we know that a singular point is
of focus—centre type, one comes across another classical problem, usually catiedttee
problemor thestability problemthat is of distinguishing a centre from a focus. The Lyapunov—
Poincaé theory was developed to solve this problem in the case where the singular point is
non-degenerate, see [23, 28]. If the singular point has a nilpotent linear part, there are some
results on the centre problem, see [27], but if the singular point has a zero linear part then there
are very few results on the centre problem.

In this paper we study the focus—centre and centre problems for systems of the form

-)-C = P(x’y) = Pm(xa)’)+PM(xa)’)
y=0,y) = 0un,y)+Ou(x,y)

whereP, andQ; are homogeneous polynomials of degteke € {m, M}, 1 < m < M, P and
Q are coprime, and the dot denotes a derivative with respectThat is, these systems are
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defined to be the sum of two homogeneous vector fighscase where (1) is a homogeneous
system (i.e. eitheP,, = Q,, = 0 or Py, = Qy = 0) is already well understood, see [7, 20]
and also [14], and we do not consider it here, although all our results apply in this case.

The polynomial systems with a non-degenerate linear part and homogeneous nonlinearities
are included in the family of systems (1). There are many papers dealing with the focus—centre
problem and the centre problem for these systems, see [4,9, 11, 16-18, 21, 30-32]. Also for
the degenerate case, cyclicity is studied for some classes of systems in [12, 13]. Among other
questions, the number of limit cycles for systems defined by the sum gfitasi-homogeneous
vector fields is studied in [15]. These systems are a generalization of systems (1). Finally,
the centre—focus problem is studied in [5, 6], for certain degenerate singular points without
characteristic directions, see also section 3.1.

In section 2, we give necessary conditions in order that a system (1) has a focus or a centre
at the origin and also sufficient conditions in a generic case.

We denoteP,(0) = P(cosd, sind) and Q,(0) = Q,(cosh, sind) with k € {m, M}.
Consider system (1), and take polar coordinaiRst), given by the change of variables
R? = x?+ y2 and® = arctar(y/x). After a rescaling of time given bysddr = R"~1, we
have (again denoting the derivative with respeact by a dot),

R=R [cosO P, () +SiN0Q,,(0) + R~ (COSO Py () +SiNO Q1 (6))]

) 2
6 = 0S8 Q,,(0) — SINA P, (6) + RM~™ (cosH 0 (0) — SinO Py (). @

We say that = 6, is acharacteristic directiorfor the origin of system (1) if co®, Q,,(6,) —
sind, P,,(0,) = 0.

We introduce the following two conditions.

We say that system (1) satisfies condition (a) if there exists a neighbourafdde origin
of system (1) such tha& (x, y) = xQ(x,y) — yP(x,y) # 0forall (x,y) e U\ {(0, 0)}. If
system (1) satisfies condition (a), we will denote the sig@ of, y) for all (x, y) € U\ {(0, 0)}
by sigrn;(©).

We say that system (1) satisfies condition (b) if either it has no characteristic directions,
or else if all characteristic directions are isolated ando,) = 0,,(6,) = 0 for every
characteristic directiof,.

Let 61, 0, ..., 6, be the characteristic directions associated with system (1). For all

= 1,...,k, we seta; = cosf;, b; = sinb;, «; = F(Pa(l,2)| _, andp; =

J
%%(Qﬁl(l, 2))|._o» Where

P/(1,2) =a;Py(aj —bjz,bj+a;z) +b;Q,(a; —bjz,bj +a;z)
and
Q5 (1,z) = —bjPy(a; —b;z,b; +a;z) +a;Qnla; —bjz,b; +a;z).

A vector fieldX = (P, (x,y) + Py (x, ), On(x,y) + Qu(x, y)) belongs to clas§ if
either there are no characteristic directions, or else if for every characteristic dirégtion
j=1,...,kwe havax]? + ﬂf # 0. ltis clear that this is a generic condition inside our family.

At the end of section 2.2 we prove our main result about the centre—focus problem. This
result characterizes the monodromy condition for a generic set of systems (1).

Theorem A (Focus—centre condition).Let X’ be the vector field associated with system (1).
Then the following statements hold.

(i) Ifthe origin of (1) is a focus—centre then conditions (a) and (b) are satisfiedyaisddd.
Furthermore, if system (1) has characteristic directions, theis also odd.
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(ii) Assume thatt € G. Then the origin of system (1) is a focus—centre if and only if the
system satisfies conditions (a) and (b), and that for every characteristic dire€tjon
signy(©) ((2+M —m)a; — 28;) < Oforall j =1,... k.

~ Note that expressed in polar coordinai@, ¢), system (1) satisfie$R(R, 6 + 7),
O(R,0+m)) = (R(R,0),0(R, 0)). Hence in theorem A we only need to check the genericity
conditionoejz. + ﬂ]? # 0, and the monodromy condition sig®) ((2+M — m)a; —2B,;) <0

for those characteristic directiofig € [0, ).

The main tool in the proof of this result is the blow-up technique (see [8] for a brief
geometric description).

The problem to decide whether a degenerate singular point of focus—centre type is either
a centre or a focus is very complicated in comparison to the case of non-degenerate singular
points. If the degenerate singular point has no characteristic directions and system (1) satisfies
the focus—centre condition then it is possible to obtain necessary conditions in order that the
origin of system (1) be a centre, one may also study its stability using the method developed
by Lyapunov and Poincarin [23, 28], respectively. However, if there exist characteristic
directions, then no general methods are known.

In [26], Medvedeva gives the first terify of the return map for any monodromic singular
point of an analytic system. As far as we know, this result is the latest in a series of papers
on this subject [10, 25, 26]. To apply her result, it is necessary to do all the blow-ups to
desingularize the point, in order to decide whether it is monodromic, and then to cokpute
For the family of considered systems (1), our approach can be considered as a different and
shorter method. Shorter because we present an algebraic condition to ensure that the singular
point is monodromic. We also give an explicit expression Wy which is effective in the
sense that it is not necessary to make the blow-ups to obtain it. Our approach uses a kind
of generalized blow-up which is the key to shortening the desingularization process. At the
end of this process one obtains that the monodromic points have elementary saddle nodes
(see sections 2.2 or 3.3 for an explicit example). We note that Dumortier in [19] and also
Medvedeva in [25, 26] prove that with the usual blow-up process, monodromic points just give
rise to hyperbolic or elementary degenerate saddles at the end of the desingularization process.

In section 3 we deal with the problem of determining the stability of the origin of system
(1) when it is monodromic.

In subsection 3.1 we give the first generalized Lyapunov constants if there are no
characteristic directions, while in subsection 3.2, we investigate the general case. To state
the main result of this section, we need the following definitions.

If the origin of system (1) is monodromic then we defineieirn mapIl(x), forx > 0
small enough, to be the first coordinate of the first cut with the positia®is, of the solution
of (1) with initial condition(x, 0).

Given a functionf, continuous on [027] \ {61, 01, . . ., 6;}, we define th&Cauchy global
principal valueof fOZ” f(6)do, to be the following limit (if it exists):

21
GPV{ ) d9} = Iim/f(@) do
0 e—0 I,

wherel, = (R \ u’;zl(ej —¢&,0; +¢)) mod([0, 2)).
Theorem B. Let X € G. Suppose that the origin of system (1) (associated withHs a
focus—centre, and that; — «; # Oforall j =1,..., k. Then,
2 P + 1
() GPV/ Cosf P, (0) +sinb Q,,(0)
0

. do
c0s9 0,,(0) — SiNO P, ()

exists.
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(il) The return map associated with the origin has the fdiitxog) = Vixo + 0(xo), where

2 H
cosH P,,(6) +sinb Q,,(0) " }

Vi = exp{Sigrb@) GPV/O cost Q,,(0) — sinf P, ()

The numbeiV; is called thegeneralized first Lyapunov constaiote that if there are no
characteristic directions, then

) | 2T COSH P, (0) +SiN6 0, ()
Vi= exp{Slgrb(O) fo cos9 Q,,(8) — SinO P, (0) d@}

see also section 3.1.

The conditionthag; —«; # Oforall j =1, ..., k, implies that at the end of a sequence of
blow-ups atthe origin (the process is described in subsection 2.2) all singular points appearingin
the desingularized vector field are either hyperbolic saddles, or elementary degenerate saddle
nodes (an elementary degenerate point is a singular point such that its linear part has non-
vanishing trace and vanishing determinant) which are in some nice geometric display, so we
can compute the transition map associated with their hyperbolic sectors. In fact, the proof of
the above theorem uses the knowledge of the coefficient of the leading terms of the transition
maps associated with a hyperbolic sector of a hyperbolic saddle or an elementary degenerate
point. The study of this coefficient and the description of the transition map of the flow in a
neighbourhood of a characteristic direction is carried out in subsection 3.2.1, and is a key point
for the proof of the results of this paper.

If B; —a; =0, forsomej € {1, ..., k}, then elementary degenerate saddles appear at the
end of the desingularization process. In this case, we have a partial result, that will be proved
in subsection 3.2.3. In particular, we show that

Proposition C. Let X € G. Suppose that the origin of system (1) is a focus—centre. Suppose
that there are only two opposite characteristic directigisandé;, (i.e. 9, = 6;, + 7) such
that B;, — o, = 0, for k = 1, 2. Then the return map associated with the origin has the form
IT(xg) = xo *+ O(xo).

Let us remark that under the hypotheses of proposition C, the number

27.[ .
GPVf Coso P, (0) + S|h9Qm(9)
o €0s9Q0,,(6)—sinfP,(O)

is not always zero, as may be seen in example 2 of subsection 3.3. Hence under the hypotheses
of proposition C, the expression fdf given in theorem B is not valid.

We think that the methods developed in this paper can be applied in a more general context,
for instance, to monodromic singular points of an analytic vector field, in such a way that at the
end of the desingularization process, the only kind of singular points that appear are hyperbolic
saddles.

2. Focus—centre conditions for systems defined by the sum of two homogeneous vector
fields

In the next two subsections we give the key points to prove theorem A.
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2.1. Necessary conditions

Proposition 1. If system (1) has a focus—centre at the origin, then system (2) satisfies
conditions (a) and (b).

Proof. Suppose that system (1) has a focus or a centre at the origin. After the change of
variablesr = RM—", system (2) becomes

F=a@)r+b®)r?

. 3
0=cO)+d@O)r ®)

where
a®) = (M — m)(COSO P,, () + SinH 0,,(6))
b(0) = (M — m)(cosf Py (0) + Sin6 Q0 (9))
c(0) =c0s9Q,,(0) —sind P,,(0)
d(0) = cosd Oy (6) — SiNO Py ().

Observe thab for system (3) is non-vanishing fer > 0 small enough, if and only i for
system (2) is non-vanishing fa > 0 small enough. Therefore, we will study system (3).

Let p, = (0, 6,) be a singular point of system (3). 8@,) = 0, ands, is a characteristic
direction. First we will see that(9) is not identically zero, that i, is an isolated singular
point onr = 0. Suppose that(9) = 0 for all 6 € [0, 27), then after the reparametrization
dr/ds = r (again denoting the derivative with respecttby a dot), system (3) can be written
as

F=a@®)+b®)r

0 =d(©). @
Note tha¥ is not identically zero for > 0 (otherwise the flow would be radial in contradiction
with the fact that (4) has a focus—centre at the origin). Heliégis not identically zero. Note
also that the fact tha®,,(¢) and Q,,(8) = 0 are not both identically zero implies that9)
is also not identically zero. Then= 0 is not invariant for system (4), and this implies that
system (1) cannot have a focus or a centre at the origin because it would have an infinite number
of orbits starting or ending at the origin. Hence, we have provedithat isolated onr = 0.
Furthermore, we want to stress th#@p) does not change its sign in a neighbourhood,of
We assume without loss of generality théd) = 0],_0 > Oforallo e [0, 27r).

The differential matrix of the vector field defined by (3) at the pgintis given by

a(0y) 0

d©,) ) |
Sincec(#) > O for all 6 € [0, 27), we have that'(6,) = 0. Note that ifa(6,) # 0 then
P+ is an elementary degenerate singular point, and by the theorem of classification of this
type of critical point (see [3])p. is either a topological saddle, or a topological node, or a
saddle node with orbits starting or endinggatwith » > 0. This last situation contradicts

the assumption that the origin is a focus—centre. Heriée = c(6,) = 0, and consequently
0.00,) = P,(0,) = 0. Therefore, it is already proved that system (1) satisfies condition (b).
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Now we will see that the singular poings, 6.) of system (3), are isolated inside the set
of points where® = 0. Note first that(6,) # 0, because otherwise the ray= 6, would be
invariant for system (3). The curve i&? for whiché = 0 is given by

{ c(0)
ry =

~36); 0 < [0, 27) andd (0) # o}.

If d(0,) < O0then
0l9—p, r~0 = rd(0,) < O.

Thereforef is negative over the ray = 6,. This fact, jointly with the fact thaf|,_o > O,
prevents the existence of a return map in a neighbourhood of the origin, which contradicts the
hypothesis that the origin is a monodromic point. Therefdké,) > 0, and consequently
there existg > 0, such that/(9) > 0 whené € (6, — ¢, 6, +¢). Then, since(¥) > 0

and we are looking for solutiond = 0 with r > 0, the curved = 0 is not defined for

0 € (0, —¢,0, +¢e)\ {6,}. Hence the point0, 0,) is isolated inside the set of points of the
curved = 0 and so we have proved thatloes not vanish in a punctured neighbourhood of
the origin. In short, system (1) satisfies condition (a). d

Proposition 2. If system (1) has a focus—centre at the origin, theis odd. If we also assume
that (1) has some characteristic direction, théhalso has to be odd.

Proof. Consider system (3), and suppose thas even, the (6) = cosd Q,, () —sinéd P, (0)
must have a root with odd multiplicity, becausec(9) is a homogeneous trigonometric
polynomial of odd degree: + 1 (remember that in the previous proposition we have seen
that if the origin is a focus—centre thépmust be an isolated root of9)). Soc(6) changes its
sign at,., and thereforé|,—_o = ¢(0) changesits sign at= 6,. This contradicts proposition 1.
Hence,n must be odd.

Assume now thafl, is some characteristic direction aid is even. Then from (2) we
find that

Olig=0,) = RM™™ (COSH Q11 (8) — SINO Py (0)) = —O(9—p,+x)-

This last equality is in contradiction with proposition 1 because it implies that condition (a) is
not satisfied. O

2.2. Sufficient conditions in a generic case

Conditions (a) and (b) are not sufficient conditions to conclude that (1) has a focus—centre at
the origin. To see this consider the following system:

x=y (ax2 +bxy + cyz) 5)
V= y% (o +by) +x°.

A simple computation shows that in polar coordinatst), 8 = —c sin* 6+ R2 co$ 6; hence
the characteristic directions are given gy = 0}, and then condition (b) holds trivially. If
we takec < 0, then condition (a) also holds. However, if we take- 0 the origin is not a
monodromic point, since it has nodal sectors. This fact can be proved by using the blow-up
technigue, and can be checked from the computations done in lemma 3.

To obtain sufficient conditions first we will suppose that 0 is a characteristic direction
and, by using the blowing-up method, we will establish sufficient conditions to ensure that
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there are no characteristic orbits approaching or leaving the origin in the diréctiah Since
systems of type (1) are preserved under rotations we will use the results obtained in the case
6 = 0, to obtain sufficient conditions for the non-existence of characteristic orbits approaching
or leaving any characteristic direction of the origin of a system of type (1).

Lemma 3. Assume tha®# = O is a characteristic direction of the origin of system (1), and
denote by

o Pn@z)  d
o _il—rpo B = d—ZPm(l, 2)|z=0
and
L 0uln) 1
B= !'TOZ—Z = Ed_zsz(l’ 2)|z=0.

Then ifa? + g2 # 0 there are no characteristic orbits approaching or tending to the origin in
the directiond = 0 if and only if the following conditions hold:

(i) ©(R.0) = c0S0Q,,(0) — SINO P, (0) + RM~" (COSO Q1 (0) — SiN6 Py (9)) # O, for
(R,0) € {(0, R] x (—arctand), arctar(s))} \ {(0,0)}, for§ > 0and R > 0 small
enough,

(i) Pn(®)l9=o =0andQ,,(6)|s—0 = 0 and

(iii) signy(®) (2+M —m)a —28) <0

wheresign;(®) = sign(®(R, 0)), in {(0, R] x (— arctan(8), arctar(5))} \ {(0, 0)}.

Proof. To prove the above result we will use the blow-up technique. The successive blow-
ups that we will perform in what follows are displayed in figures 3 and 4. The condition
a?+ B2 = 0implies that the blow-ups described below are enough to completely desingularize
the singularity.

Conditions (i) and (ii) are necessary to ensure that there are no characteristic orbits tending
or leaving the origin in the directioft = 0. This can be proved by using the same arguments
as in the proof of proposition 1. In the proof of the sufficiency of the three conditions, we will
see that condition (iii) is also necessary.

Assume that (i)—(iii) hold and, without loss of generality, that §i@ = 1. Hence
condition (iii) can be written a& + M — m)a — 28 < 0.

Consider system (1). Condition (ii) implies thét,(1,0) = P,(1,0) = 0. Since we
have taken sigfit®) = 1, from condition (i) we have that(z) := Q,,(1,z) —zPn(1,2) 20
for z € (=4, 8). Hence the first non-vanishing derivative Bfat the origin is of even order,
this means that'(0) = F’(0) = 0 andF”(0) = 8 — « > 0, and therefore.o (P, (1,2)) > 1
and o (0, (1, 2)) > 2 (whereug denotes the multiplicity at = 0). Also we have that
0Ou(1,0) > 0. Sety = Qy(1,0).

We make the following change of variablés z) = (x¥~™, y/x). This is not a global
change of coordinates iR? \ (0, 0), but it is a good change do > 0}. Anyway, the results
obtained are also valid fdi < O} since equation (2) satisfi¢R(R, 0 + ), 0(R,0 + 1)) =
(R(R,0),0(R,0)). After a rescaling we obtain

uw=ku(P,(1,z)+uPy(l,z))

6
2=0n(1,2) — 2Py (L, 2) +u(QOu(l,2) — 2Py (1, 2)) ©
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wherek = M — m. We concentrate our attention on the singularity giver:ny) = (0, 0)
which is the singular point of (6) which comes from the directign= 0}. The differential
matrix of (6) associated wittu, z) = (0, O) is given by

0 0_00
ou@,0 0/) \y o)

This singularity is a nilpotent and, to desingularize it, we must continue the blow-up process.
Now consider system (6) and the changez) = (u/z,z). We obtain, after a
reparametrization of the time,

b= ((1 +OPu(L2) — %LZ) +0 (2L +h) Py (L 2) — O (L, z)))
2=0m(1,2) —zP,(L,2) +vz(Om(1, 2) — zPu (1, 2)).

Note that sinceo(Q,,(1, z)) > 2 the above equation is well defined. Sin@g (1, 0) # 0,
the only singular point op = 0 is (v, z) = (0, 0) and its linear part is identically zero. Now
we have to consider the other direction. Again taking the system (6), and the new change
(u, p) = (u, z/u). We obtain
u = ku (P,(1, pu) +uPy (1, pu))
On(l, pu) (8)
u

()

p=—-pQ+k)Py(1, pu) + pu(L+k) Py (1, pu) + Qu (1, pu).

Observe that there are no singular points:oa 0. Hence in this directiofu, z) = (0, 0) has
been desingularized.
Now consider system (7) and take the change of coorditates = (v/z, z). We obtain

P,(1,z2) _2 0n(1,2)
z 2

w=w<(2+k)

. 0u(L2)

P CACE)
Z

+w@@2+k)Py(l,2) —20u(1, Z)))
)
—P,(1,2)+wz(QOu, z) — 2Py (1, 2)).

Note that the regiofix > 0} for system (1) has been transformed into the regiore 0}.
The dynamicsin the regidmw < 0} is virtual, in the sense that it does not appear in coordinates
(x,y). Whenz = 0 we have

w0 = w ((2+k)a — 28 — 2y w)
.Z|z=0 =0.
Then the singular points or = 0 are (w;,00 = (0,0), and (w;,0 =
(+k)a —2B)/2y,0). If 2+k)a—28 = 0, there is just one singular poifit;, 0) = (0, 0).
Now we consider the other direction and we make the following change of coordinates
(v, q¢) = (v, z/v). We obtain the system

b= (L+k) P (L qv) — 229 420141 Py, ) — 00O (L qv)
av (10)

g =—q+k) vg?(2 +k) Py (1, qu) +2 +240m(, qu).

Note that the regiorfx > 0} for system (1) has been transformed into the redipr> 0}.
Again the dynamics in the regidg < 0} is virtual. Whenv = 0 we have

Pm(lv C]v) _ Qm(lv 5]”)
v v2

i)lv:O =0

qli=0=¢q (=2 +k)a+2B)q +y).
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Then the singular points an= 0 are(0, ¢1) = (0, 0), and(0, ¢2) = (0, 2y /[(2 +k)a — 28])
(again if (2 +k)a — 28 = 0, there is just one singular poi(@, ¢1) = (0, 0)).

Note that the eigenvalues of the differential matrix of the vector field associated with
system (9) at the poirw1, 0) = (0, 0) are(2 +k)a — 28 andp — «. The eigenvalues of the
differential matrix of the field associated with system (10) at the p@ing;) = (0, 0) are—y
and 2. Now we distinguish the following cases.

(@) 2+k)a —28 # 0andB —a > 0. Consider first the inequalit2 +k)a — 28 < 0. Inthis
situation we obtaiw,, 0) € {w < 0} and (0, ¢2) € {¢ < 0}, and hence these singular
points of systems (9) and (10), respectively, are not relevant for studying the presence of
characteristic orbits. Then the singular poitts, 0) and(0, ¢1) are hyperbolic saddles
with the separatrices in the coordinate axes, and these separatrices do not correspond to
characteristic orbits tending to or leaving the origin in the syst&min the direction
6 =0.

When(2+k)a — 28 > 0 the critical pointw,, 0) is a hyperbolic node and hence there are

infinitely many orbits tending to the origin of systefh). Therefore, (iii) is a necessary

condition.

(b) B—a=0.If B—a=0thenr = (2+k)a — 28 # 0. Now we write system (9) in the
following form:

w = w(P1(z) + wda(2))

7 =W1(2) + wWa(z).
Reparametrizing the system in order to apply the classification theorem of this type of
critical point (see [4]) we obtain

.1
2= (Y1(2) +wi(2)) = X(z, w)

W = % (P1(2) + wd2(2)) = w+ Y (z, w).

Note that®;(0) = A # 0. Then the only solution ofy + Y (z, w) = 0 passing through

(0, 0) isw = 0. Now observe thaF (z) = zW1(z) > 0. Let F@)(z) > 0 be the first non-
vanishing derivative (note that we have seen above that the first non-vanishing derivative
at zero ofF is of even order). It is easy to prove by induction that

F® () = 220 V() + 20@(2)| .o = 2002V (0) > 0.

Hence\lf{z’”l) (0) > 0 is the first non-vanishing derivative &f;. Therefore,
1
X 0) = \I,(Zn—l) 0 2nfl+ .
.0 P! O)z
and applying the classification theorem stated in [4] we have thatiD then the singular
point is a node and £ < 0 then the point is a topological saddle.
(c) (2+k)a — 28 = 0. Note that condition (c) implies that = § — « = ka/2 > 0. Now

we write system (9) in the following form:

w=w (P1(2) + wd2(z))

2=Wi(2) +wW(z) =z +---.
Doing a reparametrization as in case (b) we obtain

b = % (@1(2) + wd2(2)) = X (w, 2)

7= % (W1(2) + wW2(2)) =z +Y(w, 2).
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Taking into accountthatl/ ) (W1(z)+wW2(2)) = (z/p) (Y1(2)+wi2(z)) wherey1 (0) =

u, itfollows that the only solution af+Y (z, w) = 0 passing throug(D, 0) isz = 0. Then
X(w,0) = (w/p) (@1(0) +wd2(0)) = (—2Qu(L,0)/wyw? = —2(y/ww?, where
—2y/u < 0 becauser > 0 andu > 0. Applying again the classification theorem stated
in [4] we have that the singular point is a saddle node, with the nodal sectéus ar0},

the centre-manifoldv¢ in the w-axis, and the-axis being the other separatrix. Hence
there are no orbits tending to or leaving the singular poiftin- 0}, and therefore there

are no characteristic orbits of system (1) tending to or leaving the origin in the direction
{6 =0). O

We want to stress that in the case thai{( P, (1, z)) > 1 anduo (9, (1, 2)) > 2,i.e.when
a?+p? = 0, itis possible to continue the desingularization process, but this is not done in this
work.

Using lemma 3 we can give sufficient conditions for the origin of system (1) to be a

singularity of focus—centre type. We denote fay6,, ..., 6; the characteristic directions
associated with system (1). For al= 1, ..., k recall that

a; = CosY; b; = sing;

d . 1d? )

o= (P, 0l a=3575(010)]
where

P/(1,2) =a;Py(a; —bjz,b; +a;z) +b;Qu(a; —bjz,b; +a;z)
and

Q5 (1,z) = —bjPy(a; —b;z,b; +a;z) +a;Qnla; —bjz,b; +a;z).

Recall also that a vector fieldd = (P, (x, y) + Py (x,y), On(x,y) + Qu(x, y)) belongs to
the clasgjif forall j = 1,..., k we haveu? + g7 # 0.

Proposition 4. Let X be a vector field of clas§. If the system associated with satisfies
conditions (a) and (b), andigry(®) ((2+M —m)a; — 28;) <0, forall j =1,...,k, then
the origin is a focus—centre.

Proof. For every characteristic directiah, after a rotation of angle = —6; system (1) is
written (in the new coordinate, v)) as

u=ajP,(aju—bjv,bju+a;v)+b;Q,(aju—bjv,bju+a;v)

+a‘,~PM(aju — ij, bjl/l +a_iv) +ijM(aju — ij, b_ju +ajv) (11)
V= —bij(aju — ij, bju +ajv) +anm(aju — ij,bju +ajv)
—bjPy(aju —bjv,bju+ajv)+a;Qyaju—>bjv,bju+a;v)

wherea; andb; have been defined above. This system has a characteristic directiea@
Applying lemma 3 to system (11) we have that it has no orbits starting or ending at the origin
in the direction{fv = 0}. This direction corresponds to the directigh= 6;} for system (1).
Hence the orbits in this neighbourhood rotate around the origin, and the origin is a monodromic
singular point. O

Proof of theorem A. Follows straightforwardly from propositions 1 and 4. a
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3. On the stability of the origin

3.1. Systems without characteristic directions

In the case where a critical point of an analytic system (degenerate or not) has no characteristic
directions, the study of its stability can be done by using a straightforward generalization of
the Lyapunov—Poincartheory. The main difficulties that appear are of computational type
(see, for instance, [5] or [6]). In this subsection we compute the first generalized Lyapunov
constant for this type of critical point. The expression that we obtain is similar to that given in
theorem B for family (1).

Consider an analytic system which in polar coordinates is written as

F= i a; () r

i=k+1
. 0 .
0= Z ci(0) r
i=k

wherec,(6) does not vanish (i.e. the origin has no characteristic directions). It also can be
written as

12)

% - — Dien @i (O)r! _ak1(0)
W= S(r,0) = S a@r @)

From this equation we easily obtain the following result.

r+0@r?). (13)

Proposition 5. If the origin of the system (12) has no characteristic directions, then the return
mapIl(x) associated with it has the form

I . . { : /2” ai+1(6) }
(x0) = Vixg + 0(xg) where V; = exp{sign(c,(9)) do;.
0

cr(6)
From this proposition and expression (2) of system (1) we have the following corollary.

Corollary 6. Assume that the origin of system (1) has no characteristic directions. Then the
return map associated with the origin has the fdhixg) = Vixo + 0(xo), where,

2 .
V1= exp{sign(cos@Qm(e) - siner(G))/ G056 P (6) + SINY Py (6) 0}
0

€c0s9Q,,(0) — sind P,,(0)

3.2. Systems with characteristic directions

As far as we know in the presence of characteristic directions a general method to decide the
stability of the origin when it is monodromic is not known. The main difficulty in this case is
that the return map is no longer differentiable. However, it has been proved that the leading
term of this map is linear. This result due to I'yvashenko and stated without proof in [1], is
proved in the work of Medvedeva [24]. We want to comment that from our approach we also
re-obtain this result for the particular family (1).

3.2.1. Preliminary results. We start by obtaining an expression of the transition map of the
flow associated with anisolated characteristic direction under some non-degeneracy conditions.
These conditions ensure that the singular points appearing at the end of the blow-up process
described in section 2.2 are either hyperbolic saddles or elementary degenerate saddle nodes.
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Givena; = cosf; andb; = sind;, whered; is a characteristic direction of system (1) we
introduce the following notation fdre {m, M}:

Plj(u, v)=a;jP(aju—>bjv,bju+a;jv)+b;Q(aju—>bjv,bju+a;v)
Qlj(u, v) =—bjP(aju—bjv,bju+ajv)+a;Q;(aju—>bjv,bju+ajv).
For short we writeP/ (9) = P/ (cosf, sin6) and Q] (6) = Q] (cost, sind). Recall that

2

d . dz .
oj = d—ZP,f,(l, 2)|z=0 Bi= d—zzQ',’n(l, 2)|z=0-

Lemma 7. Consider a system of type (1) having an isolated characteristic direction at
{6 = 6;}. Assume that the following conditions hold:

(i) ©;(R,0) = cosd Q;,(8) — sind P (6) + RM~™(cosd Q},(6) — sind P},(9)) # O, for
(R,0) € {(0, R] x [— arctar(e), arctar(e)]} \ {(0,0)}, for e > 0 and R > 0 small
enough. Denote hy; the sign of®; (R, #) in this set.

(i) Pin(0)lo=0 = 0and 0, (8)lg=0 = 0.

(i) a7 +p%#0andp —a #0
(lV) S ((2 +k)Olj — 2,(3/) < 0, wherek = M — m.

Let (R, 0) denote a point represented in polar coordinates. Denotapyhe transition
map of the flow for system (1) froffr = 6; — s; arctar(e)} to {¢ = 0; +s; arctar(e)}. Then

A% (Ro) = D Ro + 0(Ro)

where
. j .
ol [ HGD (w3,
— Om(Lz) —zPn(l,z) \Bj—a;/z
D if (2 +k)05j — 2,3/ #0
i~ . _ j o
exp 1 / 2+M 'm)ZPm(l, 2) ' 20m(1,2) dz
M—-mJ_ 20m(1,2) — 22P5 (1, 2)

if (2+k)0[j—2,3120

Conditions (i) and (iv) ensure that the integral appearing in the expressibfi isfnon-
singular in a neighbourhood af= 0. Condition (iii) also ensures that the blow-ups used in
section 2.2 are enough to desingularige= 0;}. When(2 +k)a; — 28, # 0 all the singular
points arising from{¢ = 6;} at the end of the blow-up process are hyperbolic saddles (see
section 2.2). Wheri2 +k)a; — 28; = 0 all the singular points arising frof@ = 6} at the
end of the desingularization process are hyperbolic saddles or elementary degenerate saddle
nodes.

To prove lemma 7 we need to study the composition of the transition maps associated
with three simpler situations: an absence of critical points, a hyperbolic sector of a hyperbolic
saddle and a hyperbolic sector of a degenerate elementary singular point. We study the latter
two situations in the following two lemmas.

Lemma 8. Consider system
x=—x(a+ f(x,y) = P(x,y)

. (14)
y=yb+gkx,y)=0(x,y)
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Figure 1. Transition maps in a neighbourhood of a hyperbolic saddle.

where f and g begin with first-order terms, and; and b are positive. Leb, s(y) be the

transition map of the flow fronix = ¢} to {y = &}, wheree andé are positive and small
enough (see figure 1), then

£ exp{F (§)}
sa/b expl(a/b)G (e))

0e5(y) = A(e, 8)y*/" + o(y"/?) with A(e, 8) =

where

8/ P(x,y) ) a
Foy= [ (LX) 24
©) fo<xQ<x,y> o by
G(e) =f€ <M> LA
o \YPx,y) /|, ax

Proof. Itis well known (see section 3.4 and [22]) that;(y) = A(e, §)y*/® + o(y*/?), that is,
0.5 is a semiregular map (see definition 12) with a leading term of ortlér Let us denote by
T, andT; the regular transition maps frofm = 5} to {x = ¢} and from{y = §} to {y = w},
respectively, withy > ¢ andw > § (see figure 1). We can write them as

and

Ii(y) = Ci(n, &)y +--- I(x) = C2(8, w)x + - -

(we setCy; = Ci(n,e) andCy, = Ca(n, €)). Using the first-order variational equations to
computeC; andC,, we obtain
dx
y=0

£ y(b+g(x,y))>
Cy = I AR A
' exp{/n ay( x(@* f(xy)
dy}.
x=0

- © 9 [ x@*fEy)
Cz_exp{/a ax( y(b+g(x,y>>>
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A straightforward computation gives

—b/a
C1— (8) exp{G(s)}

n exp(G(n)}

whereG(x) = [ G (1) dr andG (x) = (Q(x, )/yP(x, y))| =0 + b/ax.
Analogously, we obtain
o <§>“/b exp{F(w)}
2" \w) explF©))

whereF (y) = [3 F()dr andF(y) = (P(x, y)/xQ(x, ¥))|e=0 + a/by.
Sinceo; »(y) = T2 0 0.5(y) and o, 5(y) = 0.5 o T1(y) (see figure 1), by making
computations we have that

Ale, ) = CoA(g, §) A, 8) = C" Ae, 8)

which gives
8 \’? exp(F (w)}
A, 8) = UWA(E’ 8). (16)

~ e expl(a/b)G(n)}
Now we claim thatA (¢, w) = P(¢) Q(w) for some functions? and Q. From equation (15)
we have
a/b
Ale, @) = expF(w)} &
b exp(F(8)}

Set Q(w) = expF(w)}/w¥’. Then A(s,w) = Q(w)h(s,8), where h(e,8) =

(897 Jexp{F (8)}) A(e, 8). SinceA(e, w) does not depend ahwe conclude thak (e, §) does

not depend oid, hence we can definR(e) := h(e, §). From equation (16) we have
expl(a/b)G(e)} w

P Q@) = - expi(a/b)G (@) P(e)Q(5).

A(e, §). (17)

Again it can be easily deduced that

P(e) =K ¢

exp{(a/b)G(e)}
whereK is a constant. Hence
Ae.8) = K- SPEO)) (18)

sa/b expl(a/b)G(e)}’

Now we prove thak = 1. By means of a local'-smooth change of coordinates given
by

u = q)l(x,y) =X(l+q)l(-x9 y))

(19)
v =ga(x, y) = y(1 +Pa(x, y)
where®; and®, vanish at(0, 0), system (14) is transformed into the system
U= —au
(20)

v=>bv
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in a neighbourhood of the origin (see [29]). Since system (20) has a first integral given by
ubv® = h, then the original system has the first integral:

H(x,y) = ¢f(x,y) g5 (x.y) =h
and then, the integral curves of (14) are given by
XL+ Da(x, y) ¥ (L + Po(x, ) = h.

Evaluating the integral iiie, y) and(x, §), two points on the integral curvg (x, y) = h, we
have

XL+ D1(x,8))" 59 (L+ Da(x, §)" = "(L+P1(e, ) y* (L + Dae, )" (21)

From equation (18) we obtain

e exp(F(8)}
8/b expl(a/b)G ()}

Substituting equation (22) into equation (21), using thé&) = G(0) = 0, and®;(0, 0) =

®,(0, 0) = 0, we have that (we omit the tedious but straightforward computatifAs): 1.

So we have proved that

x= y/P+ oy ). (22)

& exp{F (§)}

P ]
84/b expl(a/b)G ()}

A(e, 8) =

In the following lemma we study the transition map associated with a hyperbolic sector
of a degenerate elementary singular point.
Lemma 9. Consider the system
).C = _x(a+f(-xs )’)) = P(-xv )7)
. (23)
y=ygx,y)=0(x,y)

where f and g begin with first-order terms, ang(0, y) = by* + o(y*), a andb positive. Let
oe.s(y) be the transition map of the flow fro = ¢} to {y = §} (wheree ands are positive
and small enough), ang . (x) be the transition map frorfly = 8} to {x = ¢} (see figure 2),
then

kb
0e5(y) = fo (A(e)y* +0(y")) where A(e) = — exp—kF (2)}

being
Fe) = / (—Q(x’ ) ) dx
o \YP(x,y)/ |,—0
and
exp{—1/x} if x#0
o { 0 it x=0.
Moreover,

75.0(x) = h(fg(x))
whereh(x) = B(e)x¥* + o(x¥*) and B(e) = (kb/a)~Y* exp{F (¢)}.
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Yy=w— Y=w—
T3
Y= 06— y=06-—
O¢,6 Ts,e
T
Tr=¢€ =1 Tr =€ r=mn
Case a>0,b>0 Case a<0,b<0

Figure 2. Transition maps in a hyperbolic sector of an elementary degenerate singular point.

Proof. It is well known thato, s is a flat semiregular map (see section 3.4 and [22]) that can
be written aso, 5(y) = fo(A(e, )y* + o(y*)). Consider now; andw such that; > ¢ and

o > §. Let us denote by; and 7>, the regular transition maps frofw = 5} to {x = ¢} and
from {y = §} to {y = w}, respectively. We can write them as

TIi(y) = Ca(n, &)y +--- Tr(x) = C2(8, w)x + - -+
(we setC; = Ci(n, ) andC, = C2(8, w)). Using the first-order variational equations we
obtain

Cl = exp / i <_M> dx }.

p 0y \ x@a+ f(x, )/ |20

Since

9 <_ yg(x. y) ) _ 0,y

dy \ x(a+ f(x,y)/) l,mo YPOX,¥) |20
we obtain

_ exp(F )
YT explF(p)

Observe that, s = 0,5 o T1 (see figure 2). So, we have that

fo(A(m, 8)y* +0(")) = fo(CLA(e, 8)y* +0(y"))

(24)

and hence

A(n.8) = C1(n, &)" A(e. 8). (25)
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On the other hand (see again figure 2), sifige o, 5 = o, ,,, We obtain
Tz 0 fo(A(e, §)Y* +0(")) = fo(A(e, w)y* +0(")).

From the above equality we obtain th&t' o Tx o fo(A(e, 8)y* +0(y¥)) = A(e, w)y* +0(y%).
Applying lemma 14 of the appendix, we obtain

A(e, 8)y* +0(*) = A(e, w)y* + o(y*)

and as a consequendée, §) = A(e, w). Therefore,A(e, §) does not depend on the second
argument. Then from equation (2%)(n) = C1(n, )X A(e), and from (24) we obtain

A(e) = C exp{—kF(¢)}. (26)

It is well known (see again section 3.4 and [22]) that(x) = h(f; *(x)), where
h(x) = B(8, e)x¥* + o(x¥/%). Sincer;, o 8, 4 is the identity map, we obtain
-1
In(fo(A(e)xk + 0(xk)))
which implies thatB(e, §) = B(e) andB(g) = A(s)~Y*. HenceB(e) = C~Y* exp{F (¢)}.

To finish the proof we only have to compute We claim thatC = kb/a. Indeed, by
means of a local*™ change of coordinates given by

1/k
B(e, ) < ) +0(x) = B(e, ) A(e)Y*x + o(x) = x

u=g@ix,y) =x1+d1(x, y))
v =g2(x,y) = y(1+Pa(x, y))

(27)

where®; and®, vanish at(0, 0), system (23) is transformed into Dulac’s normal form
U= —au

b = VKB + cvb) (28)

in a neighbourhood of the origin (see [22]). Its integral curves are given by

(b + coby e\ 1)
() ool

It can be checked that the above expression can be written as

1
“ exp{_ (kbja) oF + (o) } =h

uf0<<];—b)vk + O(Uk)> = h.

Hence the level curves of system (23) are

that is,

kb
x(L+®1(x, ) fo ((;) YL+ Do(x, y)* + 0oy (1 + Pa(x, y))k)> = h.

Evaluating the integral curve of levglin (¢, y) and(x, 8), and using that by equation (26),
x = fo(Cexp{—kF(e)}y* +0(y")), a tedious computation gives that:

kb
fo (Cexpi—kF()}y* +0(y")) = fo ((;) (1+ (e, 0)yk + o(yk)>.
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Hence
k k kb k k
Cexpl—kF(g)}y" +0(y") = ;(1 + (e, 0)y" +0(y")

and sincer' (0) = 0 and®,(0, 0) = 0, we have tha€ = kb/a, as we wanted to prove. O

Proof of lemma 7. Without loss of generality we can assume that 1. Since the class of
systems that we consider is closed by rotations, we prove the lemma assumifigthat

We pute = o, 8 = Bj, Pu = Pi, Qu = O andA§ = A%. The mapAj is well defined

since lemma 3 ensures that there are no orbits tending to or leaving the origin of system
(1) in the direction{¢ = 0}. Following the steps of desingularization used in section 2.2,
under the hypothesis assumed, the characteristic direction givéh By0} corresponds to

the singular pointug, zo) = (0, 0) of system (6) which unfolds at the end of the process of
desingularization (systems (9) and (10)) in four singular pdipis p,. p2, p1} (see figure 4).

A study of the blow-up gives that

( —((2+k)a — 28) 0 ) < 2+ka—28 O )
and
0 —(B—) 0 B—«

are the differential matrices of the corresponding vector fields at the ppinend py,
respectively. This follows from the fact that the vector field in a neighbourhoog,; a§
given by a time inversion of system (9), and the vector field in a neighbourhopdisiven
by system (9). Also we have that

y O -y 0
and
0 —2y 0 2%

are the differential matrices of the corresponding vector fields associated with system (10) at
the pointsp;, and p,, respectively, wherg = Q(1, 0).
Assume now that the conditiaii2 + M — m) @ — 28) < 0 is satisfied. We can write

Af=010¢910020¢200,0¢;00] (29)

whereo; is the transition map associated with the hyperbolic sggtoomputed fronfz = —¢}
to{w = u} (wheres andu are positive and small enough) in the coordinates of system (9). The
mapo is the transition map associated with the hyperbolic sggt@omputed fron{w = u}
to {z = ¢} in the coordinates of system (9). The majpis the transition map associated with
the hyperbolic sectop, computed from{g = u} to {v = -8} (whereé is positive and small
enough) in the coordinates of system (10). Lastis the transition map associated with the
hyperbolic sectop, computed fron{v = §} to {g = u} in the coordinates of system (10).

All the above maps are not differentiable but semiregular maps (see definition 12 in
section 3.4), whose leading term can be expressed as follows:

01(X) = ax® + o(x*)
05(%X) = bi + o(x™)
02(%) = cx/Pr + o(x1/Pr)

o1(X) = dxl/ + o(x /o)
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(1) Yy y=cx (2) z
z =&
1
z=3su
Aj ©2
T u
Z=—z-u
z=-—¢
y:—€$
_ M—m
(u,2) =(x ’ZI—J_)
(3) z
z =&
v=4§
v
Z2=pv
=6
B 2= 1o
zZ = &

(w,2) =(2,2) (v,q) =(v, %)

Figure 3. Blow-up of the characteristic directigd = 0} in local coordinates.
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Figure 4. Blow-up of the characteristic directidd = 0}.

where
___ Bmx

M= T 2+ha — 28

2
p="L=2

12
a=a(s, n)
b=b(u,?)
c=c(u,9d)
d=d(u,?9)

are non-zero coefficients that will be computed below. In equationg28gnotes the regular

map from a neighbourhood ¢f; to a neighbourhood o5, ¢» denotes the regular map from
a neighbourhood op, to a neighbourhood op,, and¢, denotes the regular map from a
neighbourhood op; to a neighbourhood gf;. Sincey;, 91 andy, are regular maps, we can
write them as

P1(F) = 81F +0(F)
¢2(¥) = 827 + O(X)
¢1(F) = 8,7 +0(3)

whered;, 81 ands, are positive coefficients, also dependingsos and .
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To complete the proof of the lemma we have to compute the leading term of the composition
of these maps (see equation (29)). Firstly, we compté] ands’, by integrating the first-
order variational equations.

Computation 08,. To compute’, we consider system (6). For this system the characteristic
direction{# = 0} corresponds to the singular poi@t, z) = (0, 0). We will compute the first
polar blow-up obtaining the new system (30). The mpagan be considered as the transition
map from{z = —(1/8)u} to{z = (1/8)u}, for§ > 0 small enough, given above. Herfeecan
be obtained by integrating the first-order variational equations of the system (30) associated
with the orbit{r = O} from {6y = arctar(—1/6)} to {#; = arctar(1/8)}. Next we explain the
above procedure.
Taking the change of coordinates given(byz) = (r cosé, r sind), system (6) is written
as
i =y cost sind r + O(r?
=Y (r9) (30)
6 =y cosh+0(r).
The first-order variational equation of system (30) associated with the{erbit0} is:
dr =tanfr
d@ = r.

By separation of variables and integrating the first term fignto 7, (note thatp,(r) =
7rr +0O(r?), and therr; = §;), and the second term froég to 6, we have

ff d— 9f
/ Tr = / tan6 do
o T o

n <f_f> —n <cos(arctar(—1/8))) —In(1) = 0
7o cos(arctar(1/6))

which gives

(note thatrg = 1), hence’r = 8, = 1. This means that, is the identity at first order.

Computation ofs; and é;. To computes; and §1 we work with the coordinatesw, z)
corresponding to system (9). The mgpis the transition map fronfw = u} to {w = 1/u},

for u > 0 small enough, given above. Herfgean be obtained from the first-order variational
equations of the system obtained after a time inversion of system (9), associated with the orbit
{z = 0}. The mapy; is the transition map frompw = 1/u} to {w = u} and hence is the
inverse ofy]. Thereforep; - 81 = 1. A tedious computation gives

/n
8 = exp{ M (w) dw}
"
and hence
"
81 = exp{ M (w) dw}
1u
where

(B —a)+wy

Mw) = (@ via—28)
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If we denoter; = 050 ¢] oo; andt, = 010 @1 0 09, thenAf = Lo gy 011, In
what follows we will computer; andr,. We will use the following notation(a, )™, where
n € {1,2,3,4,4}, means a point expressed in the coordinétes) of system (1) ifn = 1,
expressed in coordinatés, z) of system (6) if= = 2, in coordinategv, z) of (7) if n = 3,
in coordinatesw, z) of system (9) ifn = 4, and in coordinate&, ¢) of (10) if n = 4 (see
again figure 3).

Computation ofr;.  We start with a pointug, z0)® = (ug, —e)@. Following the notation
introduced above we have

@ uo 3 uo (@] uo @
i ! /
T1 ((Mo, —£) ) =T1((—?,—8> > =751<<8_27_8) ) =020‘P1°‘71<<8—2,—€> )

— 02/ OQO&((M,QS Zal +O( a1))(4))

1 (4)
= aé((; Sjae ™2 ugt + o(udt )> )

1 3
= ‘7§<<— ’1a8_2°‘1u°‘1 +0(ug"), 61a8_2"‘1u°‘1 +0(ug" )) )
m

1 )
Gé((;5ias‘2“1u“l+o(uo> u) )

— (_5’ bu*ﬁl(8/1)/51(1/31872&1/31[431/31 +0(ug1ﬂ1))(4')

= (=8, —8bu P18y raPre 2Py 4 o(ueFr))®
= (8% P (8 PraPre 2Py + o(ug™),
—5bu_ﬂl(51)ﬂ1aﬁ18_2“1ﬁ1ugl‘31 + O(uglﬂl))(2).
Finally, we can writer; as
11 ((uo, —£)?) = (BAUG” + oul™h), — Aul™ + o(ug’))@
whereA = sbu=P1(8;)Prabre—2nh1,

Computation of,. We start with a pointug, z0)® = (uo, uo/8)®. Following the notation
introduced above we obtain

1 \@ 1 \® 1 @)

o (o ) )=o) =)
1 @)
010901062<< 82”0) )

— 1 1 /
= o101 ((c8~Prug™ + oug™), W®)

= a10¢1((c8™ 2/f51u1/ﬁ1 + O(ul/ﬁl) nes” Z/ﬂlul/ﬂl +o(ul/ﬁ1))(3))

4
_010(p1<< N 2//31”(1)/;91_‘_0(“3//31)) )

= o1 (1. S12c8 2Pl 4 o(ul/P)) @)
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(dai/ailul/mcl/al572/(a1/31)ué/(0t1ﬁ1) + O(ué/(alﬂl)) ’ 8)(4)

— (gd(si-/al’ul/alcl/otl872/(111}31)“3/(‘11/31) + O(ué/(alﬁl)) i 8)(3)

- 2
— (82d81-/l¥1M1/a1C1/a18 2/(a1ﬁ1)ué/<a1ﬂ1> + o(ué/(alﬁl))’ 8)( )

Finally, we can writer, as

1 (2
‘L’2<<u0, Euo) ) — (Bué/(alﬁl) + O(u(])-/(allsl))’ 8)(2)

whereB = 52d8i/°‘1Ml/“lcl/mS_Z/(“lﬁl) .

Computation ofA). SetD = Bs§Y/(@h) A1/ (@b Then we have that
Af ((uo, —&)?) = 120 @2 0 71 (w0, —£)?) = (Dug + o(uo), £)?.
Hence, sincéu, 7)? = (Vu, z&/u)®, (wherek = M — m) we obtain

A ((Yuo, —eu)?) = (v/Duo, &5/ Duo)™®.

Therefore, in the usual polar coordinates, the transition from th@ray — arctar(e)} to
the ray{0 = +arctar{e)} can be written as

A5(Ro) = v/ DRy + 0(Ro) (31)

(and thenD§ = /D). A simple calculation gives thab = a/«p @b cYerg(s,8,)Ye,
Sinced 8] = 1, we obtain

D= al/albl/(alﬁl)cl/ald. (32)

Finally, to end the proof of the lemma we have to computg, ¢ andd. To do these
computations we use lemma 8.

Computation ofz andd. Consider system (9). Applying lemma 8 we obtain that

_ e enGwl o u eplFE)
et explar F(—¢)} el exp{(1/a1) G ()}
where
_ B—«
M= T 2 e — 28
[ Qa(w.2) o
G _/0 <ZP4(w,z)) Z=o+ w du
and
Fe) = / <M> A
0o \wQs4(w,2)/ |,—0 o1z
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Computation ob andc. Consider system (10). Again, applying lemma 8 we have

woexpld(=9)) 5 expH(w)

= d =
CoOmexppiHGm) 0 T LR expl(1/B0) T 6)
whereg; = 2,
5 S s
1(5):/ <M> +ﬁdv:/ <_2+ﬁ>d,):o
o \gPy(v,q) g=0 U 0 v v
and
(O Py(v.g) ) 1
H = - —dg.
) /o (va,q) o Prad

Taking into account equation (32), a computation gives
D = aYapt @b leg — exp(F(e) — F(—¢)). (33)

Finally, we obtain the expression #%. Note that

( Py(w, z) ) 1 _§+k P,(1,2) L
wQa(w,2) /) |,-0 12 2z Ow(l,2)—zPn(l,2) oz
P,(1,z2) Y 1
0n(1,2) —zP,(1, 2) B—az
Therefore,
Fe)— F(—e) = (M —m) [ Pn(d,2) « 1y

e On(L2)—zP,(1.7) B—az

and from equation (33) we obtain that

& Pm(l,Z) B o l_d }
e On(l,2)—2zP,(1,2) B—-az ¢

D= exp{(M —m)

Then, from (31), we have that

e Pm(l,Z) B o l_d }
0wl —2Py(L2) P-az

Assume now that(2 +M —m)a — 28) = 0. In this casep; and p; are elementary
degenerate saddle nodes with the hyperbolic sectors located in the fegion 0} in
coordinategw, z) of system (9), see figure 3. Note tlglis again the transition map associated
with the hyperbolic sectgy; computed fronfz = —¢} to {w = u} (wheres andu are positive
and small enough) in the coordinates of system (9), whils the transition map associated
with the hyperbolic sectgp; computed from{w = u} to {z = ¢} in the coordinates of system
(9). From lemma 9 we have that

01(X) = fo(ax* +o(x*))
o1(¥) = h(fg(x))

whereh(x) = bx'/* + o(x**), a andb are non-vanishing coefficients that will be computed
below. The value. is not relevant for our purposes.

Dy = exp{
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Let ¢ denote the semiregular transition map from a neighbourhoogoto a
neighbourhood op;. From lemma 14 (see section 3.4), we have

- 1 kA
& —)@y) =
Rollie ~ = (b (In(qo o fola + o(ué,)))) oo 8)

= (bal/kuo + 0(ug), 8)(2).

In the usual polar coordinates, the transition from the{tay= — arctari)} to the ray
{6 = arctan(¢)} can be written as

A§(Ro) = /Dug + 0(uo)

@

whereD = ba'/*. Applying again lemma 9 we have that
a=Cexp(—AM(—e¢)}
b= C Y exp(M(e)}

where
* P4(w Z) *@2+M—-m)zP,(1,2) —20,,(1,2)
M(x) = dz.
IUQ4('LU Z) ZQm(l’ Z) - Zsz(lv Z)
Hence
1 £ 2+M —m)zP,(1,2) —20,,(1, Z) }
D§ = ex ) O
0 p{M—m _e ZQm(l Z)_Z Pm(l Z) Z
3.2.2. Proof of theorem B. Let 64, ..., 6; be the characteristic directions of system (1).

Observe that is not restrictive to assume {at 0} is not a characteristic direction. Let- 0

be small enough such that and I, are well defined. Integrating the first-order variational
equations of system (2) associated with the ofRit= 0}, we have that the transition mafy
from {6 = 6; + ¢} to {# = 6,1 — ¢} (which is regular) is given by

6i1=¢ cosh P, (0) + SiN6 0, (6)
— R Ro).
J ( O) exp{\/(;jﬂ‘ cosf Qm (9) - Sin@Pm (9) % ot O( 0)

Also let 7§ be the regular transition map frofd = 0} to {§ = 61 — ¢}, andT; be the
regular transition from¢ = 6; + ¢} to {0 = 2r}.

Seté = tan(e). Sincell = Tf o AL o T¢ -+ T5 o A§ o Tf o A} o T¢, is a composition
of regular and semiregular maps with non-vanishing linear leading terms, by lemma 14 of
section 3.4, we can writBl (x) = Vix + 0(x), whereV; is the product of the principal terms

of the mapsA? and77, for j =1, ..., k. Therefore, for alk > 0 small enough, we obtain
k .
. cosf P, (6) +sinb Q,,(0)
1= D% e dot. 34
1 (Hl ,) Xp{/,ﬁ c0s00,,(0) — SN0 P, @) } (34)

By lemma 7 the integrals appearing in ed@ﬁ are non-singular, hence limg D§ =1
By takinge — 0 in equation (34), we have that the GPV exists and

27[ .
V= exp{GPV/ €055 Py (6) + SING 0,y (0) de}
o COSOQ,(0) — SiNG P, (6)
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3.2.3. Proof of proposition C. Firstly, we outline the main difficulties in computirig in

the case that more than two opposite characteristic directions satigB/ink)a; — 28, < 0

andg; — «; = 0 appear in the desingularization process. Unfortunately, in that case we do
not have an analogue of lemma 7, and we have to consider the problem from a point of view
different from that used in the proof of theorem B.

Let {j1, jo, ... Ju, Ju+1s - - - » J2u} denote the indices of the characteristic directions for
which (2 +k)a;, — 28;, < 0 andB;, — «;, = 0. For the sake of simplicity we will use the
notationd; = 0;, (note that for eaclh = 1,...,n, 6, € [0, 7) andbs, = O + ). As can

be seen in section 2.2, eaghat the end of the desingularization process unfolds into four
singular pointgp ;, p5;, p2.i, p1.i} such thap; ; andp,; are hyperbolic saddles apg ; and
p1; are elementary degenerate saddles. '

Let p; denote the transition map of the flow from a neighbourhoodpeof to a
neighbourhoody; ;,,, which is semiregular or regular (depending on whether or not there
are characteristic directions betwegandd,.1) with a non-vanishing linear leading term. Let
T;(x) = ;x +0(x) denote the transition map from a neighbourhoogpfto a neighbourhood
p1,i- Denote by(h; o fo‘l) the (vertical semiregular) map associated with the hyperbolic sector
of p ;, with

(%) = bixY% + o(xt/k) (35)
and by( fo o ;) the (flat semiregular) map associated with the hyperbolic seciorofvhere
hi(X) = a;x% + o(xh). (36)

Note that the fact that the systems of type (1) expressed in polar coordiates satisfy
(R(R,60 +m),0(R,0 +m)) = (R(R,0),0(R, 0)), implies thatk; = k;+,, a; = a;+, and
b; = bi, foralli € {1, ..., n}. Note also that from lemma 14 we have (in the local coordinates
of system (9))

his1 0 foto pio foo hi(¥) = bina; "% + 0(X).

i
Taking this fact into account, and since
I = Tlo(h’lofoflopgnofoohzn)o~~~oT;;o(héofO*lopzofoohz)

oTy 0 (h/z o f071 opio foo hl)
applying inductively lemma 14 we have that

1/(M—
V]_ = (l‘lbla%’ékltzn . t3bga;/k3t2b2ai/k2) /( m).

Using the above remark we obtain

2/(M—m)

. 1k 1/k
Vi = (bn+1a,}/k” R M l3b3(12/ 3t2b2a1/ 21‘1) (37)

As we will see below, eacl, can be easily computed, but to compute the number

Hf}zlbﬁla}/k’“, itis necessary to obtain the normal form of the vector field in a neighbourhood
of the pointsp’,; and p; for eachj = 1,...,n. This is the main difficulty in having an
explicit expression of; analogous to that which appears in theorem B, in the case under
study. However, if: = 1, there are only two (opposite) characteristic directidiscan be

easily computed explicitly from equation (37). This is the situation stated in proposition C.
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Proof of proposition C. Without loss of generality we can take = 0. From equation (37)
we have
2/(M—m)
Vi = (bza]]:/kzl1>

but as noted above = b, andk, = k;. To computez,, b; ands; we will use the coordinates
of (w, z) of system (9). We claim thata;"* = 1.
We use the same notation as in the proof of lemma 9 in section 3.2.1, and we use the
same transversal sections. From this lemma we haveihata; (§) = C exp{—k1F ()} and
b1 = b1(8) = CY* exp{F (8)}, whereC is a constant and

o = [ (20
zPs(w, 2)
where, as usua}; = Qy (1, 0), andK is a constant. Hence

a(8) = C (M)k and  by(8) =C Yk (\//m)f

and therb;(8) a1(8)% = 1. Hence the claim is proved.

14 1
dw= | ———dw=—-s5Inlkia — 2 +K
v fkla_zyw w=—3In ko — 2yw|

1

Computation of;.  An easy computation shows that

@
T1((n. 20)®) = 1002092005 0 91 (1. 20)™) = 10020020 0;3((;, &zo) )

1 3
= (ploazogozoaé((ﬁﬁ/lzo,ylzo) )

1 @)
=¢1oazowzoaé((;b‘1zmu> )

= p10 020 @2((—8, b P (812,)P) @)

= ¢1002((8, b P (812,)")®) = @1 ((cb™Pr 1728 2,, 1)™)

1 4
= (pl((cbl/ﬂl,u_lylzo, cbl/ﬂ18/110)(3)) = (pl((;, Cbl/ﬁl(?i&;) >

= (1, b7818120) = (u, cbPiz,)@.
The valuesh andc¢ are computed in the proof of lemma 7 (in section 3.2.1), and they
satisfychPr = —1.
Hence, settingo =,/ Mzg, andyo = zg,) uzé, we have

T1 ((x0, y0)P) = (1, —20) T2 (1, 20)?) = (11, —20)® = (x0, —y0)?

which implies that; = 1. ThereforeV; = 1. O

Note that all the coefficients that appear in equation (37) can be computed in the same
way as in the proof of proposition C, giving that= 1 fori = 1, ..., 2n. Thus, we obtain the
following result.
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Proposition 10. Assume thak’ belongs to the clas§. Suppose that the origin of system (1)
(associated witht) is a focus—centre, and there exi8t, ..., 6,,} characteristic directions
suchthatg;, —«;, = 0fork =1, ..., 2n. Then the return map associated with the origin has
the formIT(xg) = Vixg + 0(xp), where

2/(M—m)
1 ki+
V]_ = H?:l (b,-+1ai/ 1)

anda; andb, ., are defined in expressions (35) and (36).
3.3. Examples

Example 1. Consider the system

x = P(x,y) = y(x? +xy — y?)

. (38)
¥ =0, y) =y +y) +x°

which can be written in polar coordinaté®, 6) as

R = R(COS 6 sind + cof 6 sinf 6 + cost sin° @ + sin'* 6 + R? sind cos 0) (39)

6 = sinf 6 + R%cog 9.

Its origin has two characteristic directions given{gy = 0} and{6, = =}. Asexplainedin
the introduction we only need to verify the focus—centre condition@fcee 0}. Condition (a)
is fulfilled because Q(x, y) — yP(x, y) = y?(x? + y?) + x5 > 0, except at the origin. Also
condition (b) is verified trivially becausk;(6;) = Q3(0;) = 0fori = 1, 2, and finally

d d
a=ghl ko= g @+—P)| =1

2

1 1d> ,
B1= Ed—ZZQm(l, D=0 = 2422 (*2+2)) |z:0 =2

Note thata, = a1, B2 = p1, hencea? + B2 = a3 + 2 = 5 # 0, and then the system
belongs to clas§. Since(2+M —m)a; — 281 = (2+ M — m)ay — 28, = 0, by theorem A,
system (38) is a focus—centre. Recall that each characteristic diregtioith i = 1, 2, at the
end of the desingularization process unfolds into four singular pdipfsp5, p2, p1} where
p; and p; are elementary degenerate saddle nodes, ghdnd p, are hyperbolic saddles.
From theorem B, the Poincareturn map can be written d3(xo) = V1xg + 0(xg), where

27 co$ 0 sinb + cof 6 sin’ 0 + cosy sin° O + sin* 6
Vlzexp[GPV/ —p do
0 sin

2t (cos o .
= exp{GPVf ( - + cosv S|n9+1) de} = exp{2r}.
0 sing
Hence the origin is a repulsive focus.

Example 2. Consider the system

x=Pkx,y)= y(owc2 +bxy +cy2)

40
¥ =0(x,y) = y¥(ax +by) +x° “o

witha < 0andc < 0. In polar coordinateg R, 0), system (40) is written as
R = R(a COS 0 Sind + (c + ) cosh sin 6 + b sin? 6 + R%sind cos ) 1)

6 = —csin*6 + R?cog 6.
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Its origin has two characteristic directions given {#f = 0} and{6, = =}. Asin the previous
example we just need to verify the focus—centre conditiongéfor= 0}. Condition (a)
is verified sincexQ(x,y) — yP(x,y) = —cy* +x® > 0, except at the origin. Also
condition (b) is trivially verified sinceP;(6;) = Q3(6;) = 0 fori = 1,2, and finally as
ar=ar=P1=pr=0a <0, e+ B2 =0a5+p2=a+#0, hence the system is of clags
Since2+M —m)ag; — 261 = (2+M — m)az — 28, = 2a < 0, by theorem A, system (40) is
a focus—centre.

From proposition C, the Poincérreturn map can be written d$(xg) = xo + 0(xp). On
the other hand, an easy computation gives

2 ine + (c + in%o +bsi
GPV/ a coS 0 sing + (¢ a).czlose sin®0 + b sint o "
0 —csint6
. —4b cose .
= lim — —— = sign(b) co.

e—0* ¢ SIng

Hence we have shown that in the hypothesis of proposition C, the expres$ipgieén
in theorem B is not valid for studying the stability of the origin.
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Appendix

It is well known, from the Bendixon—Dumortier theory (see [22] for instance), that by means
of finitely many blow-ups a real analytic vector field given in a neighbourhood of a real
isolated singular point on the plane can be carried into an analytic field of directions given
in a neighbourhood of a union of glued-in projective lines and having only finitely many
singular points, each of them elementary and different from a focus or a centre (a brief
geometric description of the method can be found in [8]). This result enables us to turn
the singular monodromic point into a polycycle having at the vertices singular points each of
them elementary (hyperbolic or degenerate elementary), and having the same associated return
map. A polycycle having all its singular points elementary (that is, its linearizations have at
least one non-zero eigenvalue) is called elementary.

We briefly recall some concepts and results (see again [22] for more details).

Definition 11. A Dulac series is a formal series of the form

o0

D(x) = cx + Y " P;(In(x))x"

j=1
wherec > 0,0 < pug < --- < uj <---, u; — oo, and theP; are polynomials.

Definition 12. A germ of a mapping : (R*,0) — (R*, 0) is said to be semiregular if it
can be expanded into an asymptotic Dulac series, that is for\atlyere exists a partial sum
S of the above series such thatx) — S(x) = o(x"). The coefficient of the above series is
called the principal term.

Semiregular mappings are relevant because the transition map of a hyperbolic sector associated
with a hyperbolic saddle is not in general differentiable (regular), but it is semiregular (see
lemma 2 in section 0.2 of [22]). Moreover, it can be proved that the germs of semiregular
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mappings form a group. In particular, the composition of semiregular mappings is also
semiregular. As usual we denote

exp{—1/x} if x#0

o if x=0.

Definition 13.

(i) A germ of a mapping : (R*,0) — (R*, 0) is said to be flat semiregular i]fo‘1 oflis
semiregular.

(i) A germ of a mappingf : (R*,0) — (R*, 0) is said to be vertical semiregular if its
inverse is the germ of a flat semiregular germ.

The transition map of a hyperbolic sector associated with a degenerate elementary singular
point is either a flat semiregular map or a vertical semiregular map.
The following are well known results (see again [22]).

Lemma 14. Let m, m’, h be semiregular maps such thatx) = cx* + o(x"), m(x) =
ax* +o(x*), andm’(x) = bx¥* + o(x¥*). Seto = fyom, ande’ =m’ o fo_l. Then

(I) hom(x) = catxM + O(xA;L);
(i) o' ohoo(x) = (ba'/u**)x +0(x).
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