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1. INTRODUCTION

The problem of determining the basin of attraction of equilibrium points
is of paramount importance for applications of stability theory.

Local conditions which guarantee the existence of small basins of attrac-
tion, such as tr L <0 and det L >0, where L is the linear part of the planar
system at an equilibrium point, are well known.

This paper is concerned with sufficient conditions which guarantee that
the basin of attraction of an equilibrium point of a 4! planar system of
differential equations x’ = f(x) is the whole x-space R

In this context, the fundamental problem, yet unsolved, is the following:

Consider an autonomous system of differential equations

x'=f(x)  ('=d/dt), (S)
where x = (x4, x;) and f(x)= (fi(x,, x;), fo(x;, x3)).
Let # be the class of €' maps f: R* - R? such that
(i) the origin 0= (0, 0) is a critical point of (S), i.e., f(0)=0,
(ii) tr Df(x)<0 on R?,
(iii) det Df(x)>0 on R?
where Df(x)=(df;/0x,) is the Jacobian matrix.
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Fundamental Problem on Global Asymptotic Stability. Does f € # imply
that x =0 is a global asymptotically stable solution of (S)? In other words,
does every solution curve of (S) approach 0 as t — «?

This problem goes back to Krasowskii [Kr] and Markus and Yamabe
[MY]. The last two authors solved it under the additional condition that
one of the partial derivatives df;/dx; (i, j= 1, 2) vanishes identically on R”.
Hartman [Ha] gave another affirmative answer to this problem assuming
the stronger condition that Df(x) is negative definite. Other additional
conditions are discussed in Section 3 of this paper (see Theorem B). This
section is preceded by a study of the equivalence between the Fundamental
Problem and other apparently different problems, such as those stated
below.

Problem 1. Does fe % imply that the mapping /= R?> —» R? is globally
one-to-one?

Problem 2. Does fe % imply that there is a natural number K such
that for each p e R? the number of solutions of f(x)= p is bounded by K?

Problem 3. Does fe# imply that there are two positive constants p
and r such that |f(x){=p>0 for |x|=r>0 (where || denotes the
Euclidean norm)?

Problem 4. Does fe % imply that
| [min 17G0)1] dr = c0?
0o xl=r

A main result of this paper is the following.

THEOREM A. The following five statements are equivalent.

(FP) The Fundamental Problem has an affirmative answer for all
fe#.

(Pi) Problemi has an affirmative answer for all fe %, where
ie{1,2,3, 4}

Olech in [O] proved that FP <> P1 and that P3 = FP. Hartman and
Olech in [HO] showed that P4=FP, with the additional condition
f(x)#0 if x #0. Recently, Meisters and Olech [MO] proved that the FP
and P1 have a positive answer for the class of polynomial maps f: R*> - R?,
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ie., for maps f = (f}, f>) such that f, and f, are real polynomials in two
variables. Their proof led us to consider the equivalence of P2 with the
other four problems. Theorem C extends the result of [MO] to large class
of analytic vector fields.

2. EQUIVALENT PROBLEMS

In this section we prove Theorem A stated in Section 1.
P3=P4. 1tis trivial. [

P4=FP. Let 4 denote the set of points in R? whose w-limit set with
respect to system (S) is the origin. From (i), (ii), and (iii) the origin is a
sink, so A4 is a nonempty open set. To prove that the Fundamental
Problem has an affirmative solution for system (S) we have to show that
A =R Suppose that 4 #R? Then the boundary of 4, ¢4, is nonempty
and at least a solution curve of (S), ¢,(x), through x is contained in 04,
for all ¢+ on the maximal interval («, §). Note that the orbit L=
{@x);te(a, B)} is a closed set. In fact from (i), (ii), and (iii) and the
Poincaré-Bendixson Theorem it follows that the a and w-limit sets of this
curve are empty.

Consider the space E=Au L. Denote by /,,(c) the f-arc lenght of a
curve c: [a, b] - E, joining x and y. That is: /,(c)= [ | f(c(s))] |c'(s)| ds.

Then assuming |x| < |y|, we have

L= [ Cinf |fw)] dr. (1)

x| lul=r

To verify this, take r = |¢(s)| then dr/ds = {c(s)/|c(s)|, ¢’'(s)), where {, >
denotes the Euclidean inner product. Therefore |¢'(s)| = dr/ds. Integration
finishes the argument.

The integral hypothesis in P4 will be used to guarantee that a family of
curves, one of whose extremes go to infinity while the others remain
bounded, has unbounded f-arc length, as follows from (1).

Together with (S), we consider the orthogonal system

x'=fH(x), (8%)

where f* is one of (—f,, f1) or (f3, —f1). The appropriate choice is made
to ensure that f*, on L, points into 4. Denote by y,(q) the solution curve
of (S+) through g. Write y, = {¥/ (¢,(x)); s€ [0, B,)} to denote the maximal
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positive orbit of (S*) through ¢(x). Let &= g% [inf, _, f(»)|] dr,
where d denotes the Euclidean distance.

Take y ey, E such that the f-arc length of y, between x and y is less
than or equal to §/2 and write M = {¢,(y); te [0, 00)}.

The following two assertions, proved below, will lead to a contradiction
with the assumption 04 # ¢.

ASSERTION 1. If y, cuts M at a point y, then the f-arc length of y,
between x and y is larger than or equal to the f-arc length of y, between @ (x)
and y,. That is

lx,y(’YO) = ltp,(x), y:(’))t)'

ASSERTION 2. The curve y, cuts M for all te [0, B) at a point denoted by
V=@ (). Furthermore ©(t)1 oo as t1p.

Conclusion. From Assertions 1 and 2, and the choice of y, we have that
o
1<PI(X), y,(yt) < ‘2’, te [0, p).

Since | y,| = 0 when ¢ 1§, and ¢,(x) e L we have from (1) and the choice of
J that 436<lq,1(x), ,(7.), for t near B, a contradiction with the inequality
above. Therefore 4 = R

Proof of Assertion 1. For every uey, between x and y, the Poincaré
map 7. y,— 7, is defined by the flow of (S). Setting n(u)=u,, Poincaré
formula gives

ds,
ds,

[t Drtoun ar |

0

1w [
weo 1S TP

where s, (resp. s,) is the Euclidean arc length parameter on y, (resp. 7,),
with origin at u (resp. u,). From (ii) it follows that

| £ ()|
oo S

ds,
dsg

Equivalently,
|/ ()| ds,

A 0L 1,

|f(u)] dso

which, after integration, gives Assertion 1. ||

s0=0
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Proof of Assertion 2. Consider the following subset of [0, §),

s
B= {te [0, B,y nM=y,and [, ,.(7.) SE}-

By the choice of M, B# (. By the continuous dependence of solutions
with respect to initial conditions and Assertion 1, it follows that B is an
open set.

To prove that B is closed, consider {z,} in B, such that ¢, —» 7 < f§; then
¢ (x) > pi(x)=2z.

If either y; leaves E or tends to infinity, it is clear that y;e B, because M
must intersect y; to reach the origin.

So we can assume that y;< E and is contained in a compact set. So the
o-limit set of the solution curve of (S*) through z is either the origin or
a periodic orbit surrounding it. In both cases, by (1) and the definition of
0, we can choose § such that /., .,(y;) = 36/4. Hence, by continuity with
respect to the initial conditions, it follows that, for » large {y (¢, (x));
s20} is €' uniformly close to {y(z);s>0}, on arcs of f-arc length 35/4.
Therefore M must intersect y,. From this fact and Assertion 1 we have that
fe B. Then B=[0, ).

To finish the proof it is enough to show that z(¢)1co, when ¢18.
Otherwise we could take ¢,7f such that (¢,) > T< oo, and we could
construct curves y, joining points ¢, (x)e L, which tend to infinity, with
points y,€ M, which tend to ¢,(y). Furthermore, from Assertion 1, the
f-arc length of these curves would be less than or equal to §/2, contra-
dicting the divergence of the integral in P4. |

FP = P1. Suppose that fis not globally one-to-one on R% That means
that there are y,zeR? such that y#:z and f(y)=/f(z)=a. Then the
function g(x)=f(x + y)— a satisfies assumptions (i), (ii), and (iii). That g
satisfies all assumptions of the FP and at the same time that the system
x"= g(x) has two critical points implies a contradiction. ||

P1=P2. [t is immediate. [

P2=P3. Let p be a point in R? for which f(x)= p has the maximum
possible number K of solutions. We denote by x;, for i=1, .., K, the solu-
tions of f(x) = p. Assumption (iii) implies that fis a local diffeomorphism.
Therefore there is a p >0 and an open bounded neighborhood V; of each
x; such that f|, is a difffomorphism, V,n V= if i#j, and f(V,)=
{x:|x—pl<p}=Bforeachi=1,.,K

We claim that f ~'(B)={JX_, V;. Clearly f ~'(B)> UK, V.. Suppose the
inclusion in the other direction does not hold. That means that there is a
point y not in (JX | V, such that f(y)=ze B. But for each i=1, ..., K there
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is a point y, in V¥, such that f(y,)=z also. Since V,n V= for i# it
follows that y, # y, when i # j. Furthermore these points y; are all different
from y. Hence the equation f(x) =z has K+ | distinct solutions, in contra-
diction with the maximality of K. Thus f ~'(B)=UX V..

We may now choose r' > 0 so large that the ball of radius r’ centered at
the origin O contains (JX_ | V,. For this ' and the previously chosen p we
have obtained that

f(x)—pl=p>0 if |x|=r>0. )

Therefore the function g(x)= f(x + x,)— p satisfies all assumptions of P3
with r=r"+|x,|, and since P3=>P4=FP the origin 0 is a global
asymptotically stable critical point for the system x’= g(x). But then this
system can have no other critical points. This means that K= 1. In other
words, the function f: R?>— R? is globally one-to-one. Hence we can
assume p =0, and from (2) follows P3. |

Remark. Notice that the proof FP = P1 has been achieved by changing
the given f by another function g inside &. It is not known if this change
can be avoided.

3. ADDITIONAL SUFFICIENT CONDITIONS

In this section we shall consider additional hypotheses that together with
(i), (i), and (iii) imply for a given f that the Fundamental Problem has a
positive answer.

PROPOSITION 1. Assume that f satisfies hypotheses (i), (ii), and (iii) and
the condition

(C4) jow [ min 1/(x)|] dr = .

Then 0 is global asymptotically stable for x' = f(x).
Proof. 1t follows from the proof of P4=FP. |

PROPOSITION 2. [If f satisfies hypotheses (i), (ii), and (iii) and one of the
Sfollowing conditions:

(C1) fis globally one-to-one, or
(C3) there exists p, r such that

lf(x)Zp>0,  for |x|2r>0,

then (C4) holds and so 0 is global asymptotically stable for x' = f(x).
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Proof. 1t is clear that (C1) implies (C3). So since (C3) implies (C4) the
proof follows from Proposition 1. |

There are several conditions that imply that f'is globally one-to-one. We
consider some of them in the following result.

PROPOSITION 3. Assume that f satisfies hypotheses (1), (1i), and (iii) and
one of the following conditions

(C2) there is a positive integer K such that for each p in R? the number
of solutions of the system f(x)= p is bounded by K;

(CS) 0&fi/ox, and 0f,/0x, do not change sign;

(C6) 0f1/0x, and 0f,/0x, do not change sign;

(C7) there are some real numbers p and q such that p(3f/0x,)+
q(0f5/0x,) and p(2f,/0x,) + q(2f,/0x,) do not change sign and one of them
does not vanish;

(C8) for all ve R?, |v| =1 the solution of the initial value problem

x'=(Df(x))"'v,  x(0)=0, (8.)
is defined for all t = 0.
Then f is globally one-to-one.

Proof. When condition (C2) holds it follows from the proof of
P2 = P3.

In [GN, Sect. 7] it is proved that one of the conditions (C5), (C6), or
(C7) implies that f is globally one-to-one.

Condition (C8) gives the inverse function of f

f‘(y)=<p<lyl,ﬁ>,

where @(1,v) denotes the solution of (S,) such that ¢(0,v)=0 (see
(WD 1

Proposition 3 generalizes Theorem 4 of [O].

PROPOSITION 4. If one of the following conditions holds then the system
(S,) has a solution definited for all t> 0.

(C9) |(Df(x)) '|<alx|+b for a,beR.
(C10) [ [inf,,,_, [inf,, -, |Df(x)o|1] dr= oo.



334 GASULL, LLIBRE, AND SOTOMAYOR

Proof. 1t is clear that (C9) implies (C10) because

Jnt 1D (x)ol = |(Bf) ' 2

In [H] it is proved that (C10) implies that the solution of (S,) is defined
forall t=0. |

The result of Proposition 4 also holds in R”, and (C10) can also be
written in the form

fw [inf u(x)"?] dr= oo, (3)
(1]

Jx}=r
where u(x) denotes the smallest eigenvalue of (Df(x))(Df(x))".

COROLLARY 5. When n=2 condition (C10) can be written as

[ inf {e(ﬂ —[(x) - ‘;(det Df(x))*] 1/2}1/2
0

dr = o0,

Ix|=r

where e(x) = |Vfi(x)]> + [Vf,(x)|%
Proof. The proof follows from (3) because

V()1 <Vfilx), sz(X))) I
Vi ix), Via(x)) IVfa(x)1? '

The results obtained so far in this section can be synthesized in the
following theorem.

(Df())DS(x)) = <

THEOREM B. Assume that f satisfies hypotheses (i), (ii), and (iii) and one
of the conditions from (C1) to (C10); then 0 is global asyvmptotically stable

Jor x' = f(x).

DEerFINITION.  We shall say that a function f: R*>—> R? is a planar
Khovansky  function, and write feK,, .., if f=(f1,f,) where
f1, f2€R[ x, y] are two polynomials with degrees m, and m,, x = (x,, x,),
Y={(Y1, . ¥n), and y;=e<%*’ with a,e R

Note that when n=0, K, ., o is the set of planar polynomial functions.

THEOREM C. Assume that f is a planar Khovansky function in K, .,
satisfying (i), (ii), and (iii). Then x =0 is global asymptotically stable for the
system x' = f(x).
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Proof. From (iii) we know that all solutions of the system (f,, f2)=a
for any aeR? are nondegenerate. Hence from [K] (see also [R]) we
obtain that the maximum number of solutions of that system are finite and
bounded by

K=m;m,(1+m, +my)" 2" V2

Then the theorem follows by using condition (C2) of Theorem B. ||

A simple example satisfying the hypotheses of Theorem C is given by
f=(1—¢* 1—e’e" ™).
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