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Abstract. For any positive decreasing to zero sequence an such that
∑
an diverges we consider

the related series
∑
knan and

∑
jnan. Here, kn and jn are real sequences such that kn ∈ {0, 1}

and jn ∈ {−1, 1}. We study their convergence and characterize it in terms of the density of 1’s
in the sequences kn and jn. We extend our results to series

∑
mnan, with mn ∈ {−1, 0, 1} and

apply them to study some associated random series.
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1 Introduction and main results

Given a divergent series
∑
an, with an > 0, decreasing and with limit zero, we study properties

of its subsums,
∑
knan, where kn ∈ {0, 1} and of its signed sums,

∑
jnan, where jn ∈ {−1, 1}. As

we will see, both questions are related, and moreover can be treated simultaneously studying the
series

∑
mnan, with mn ∈ {−1, 0, 1}.

For a sequence of real numbers cn we will say that the sequence fn, given by the quotient
between the number of A’s in the list c1, c2, . . . , cn and n, is the sequence of densities of A’s
associated to cn. If lim fn = f ∈ [0, 1] exists we will say that f is the density of A’s of the
sequence cn.

We characterize the convergence of the series in terms of properties of the sequences of densities
of 1’s in kn and jn. As usual, when lim an/bn = 1 we will write an ∼ bn. We split our main results
in Theorems A and B, the first one concerning with subsums and the second one with signed sums.
As we will see in Theorem C, some points can be treated together.

A key tool in many of our proofs will be a restricted version of the celebrated Toeplitz Theorem
about the summability of weighted sequences, see for instance [6]. For completeness, in Section 2
we present a simple proof in the restrictive case of non-negative weights.

Theorem A. Let an be a positive monotonous sequence such that lim an = 0,
∑
an =∞ and set

Un =
∑n

i=1 ai. Let kn be a sequence with kn ∈ {0, 1}, fn =
∑n
i=1 ki
n be the associate sequence of

densities of 1’s and Sn =
∑n

i=1 kiai be its associated sequence of partial sums. Then the following
assertions hold:

(a) If Sn converges then limnanfn = 0. In particular lim fn = 0 when lim inf nan > 0. Moreover
if limnanfn = 0 then Sn converges if and only if

∑n
i=1 i(ai − ai+1)fi converges.

1



(b) lim inf fn ≤ lim inf SnUn ≤ lim sup Sn
Un
≤ lim sup fn. Hence, if Sn converges then lim inf fn = 0,

but there are cases where lim fn does not exist. Additionally, if lim inf fn > r > 0 then
Sn > rUn for n large enough. Moreover, lim Sn

Un
= r when lim fn = r, and if r 6= 0, then

Sn ∼ rUn.

(c) For any l ≥ 0 there exists a sequence kn ∈ {0, 1} such that lim
∑n

i=1 kiai = l.

(d) Let rn be a monotonous sequence with lim rn = ∞ and lim rn
Un

= 0. Assume also that

lim rn−rn−1

an
= 0. Then there exists a sequence kn ∈ {0, 1} such that the associate sequence of

partial sums Sn satisfies Sn ∼ rn and lim inf fn = 0.

Observe that items (a) and (b) give two different necessary conditions for the convergence of a
subseries in terms of the corresponding density. The first one is that limnanfn = 0. The second
one is that lim inf fn = 0. Notice that, on the one hand, when lim inf nan > 0, the first one implies
lim fn = 0. This is precisely the situation for the harmonic series, see for instance [10, 13, 14, 17, 18].
However, when limnan = 0 this condition is automatically satisfied because 0 ≤ fn ≤ 1, and
imposes no restrictions on fn. On the other hand, when limnan =∞ this first condition is stronger.
It implies that lim fn goes to zero faster than 1

nan
.

Moreover, in the harmonic case, it is also known that if
∑ kn

n is convergent and lim fn lnn =
C ∈ R, then C = 0, see [16]. This fact is also a consequence of the second part of item (a)
because in this situation, and when C 6= 0, n(an − an+1)fn ∼ C

(n+1) lnn and the series
∑ C

(n+1) lnn
is divergent. In particular, this result can be applied to show the divergence of the sum of the
inverses of the prime numbers by using the results of Hadamard and de la Vallée-Poussin. Recall
that they proved independently in 1896 that the density of the prime numbers smaller than n is
asymptotic to 1

lnn . In fact, using the same approach we will prove the following corollary.

Corollary 1.1. The series
∑

p>2, prime
1

p(ln p)α(ln ln p)β
, α ≥ 0, β ≥ 0, is convergent if and only if

either α > 0 or α = 0 and β > 1.

The above result when β = 0 is already proved in [20] by using a different approach.

If instead of taking the prime numbers we consider the sum of the inverses of the twin primes
it is known that the corresponding fn satisfies |fn| < C

ln2 n
, for some positive constant C, see [1, p.

313]. Hence, by using again the second part of item (a) we recover the nice result of Brun [4], who
proved in 1919 the convergence of that series, because in this case, |n(an − an+1)fn| ≤ C

(n+1) ln2 n

and the series
∑ C

(n+1) ln2 n
is convergent.

The result of item (c) is already known, see [2, 19, 21].

Notice also that by Stolz’s criterion, if lim rn−rn−1

an
= 0, then lim rn

Un
= 0. Therefore, item (d)

implies that, essentially, subsums of the original series with lim inf fn = 0 can diverge with any
speed smaller than the speed of divergence of the complete series. A celebrated concrete example for
an = 1

n and rn = ln lnn, is the result of 1874 of Mertens who proved that
∑

p prime, p≤n
1
p ∼ ln lnn,

see [9, 11, 15].

The most famous convergent, but not absolutely convergent series, was given by Mercator in

the XVII century and is
∑ (−1)n+1

n = ln 2. Taking jn = (−1)n+1, it holds that the density of 1’s in
the sequence jn is 1

2 . Next theorem shows that in many convergent cases this will be the situation.
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Theorem B. Let an be a positive monotonous sequence such that lim an = 0,
∑
an = ∞ and

set Un =
∑n

i=1 ai. Let jn be a sequence with jn ∈ {−1, 1}, fn = 1
n

∑n
i=1

(1+ji)
2 be its associate

sequence of densities of 1’s and Tn =
∑n

i=1 jiai be the associated sequence of partial sums. Then
the following assertions hold:

(i) If Tn converges then limnan(2fn − 1) = 0. In particular lim fn = 1
2 when lim inf nan > 0.

Moreover, if limnan(2fn − 1) = 0, Tn converges if and only if
∑n

i=1 i(ai − ai+1)(2fi − 1)
converges.

(ii) lim inf(2fn − 1) ≤ lim inf TnUn ≤ lim sup Tn
Un
≤ lim sup(2fn − 1). Hence, if Tn converges then

1
2 ∈ [lim inf fn, lim sup fn], but there are cases where lim fn does not exist. Additionally, if
lim inf fn > r > 1

2 (resp. lim sup fn < s < 1
2) then Tn > (2r − 1)Un (resp. Tn < (2s− 1)Un)

for n large enough. Moreover, if lim fn = r then lim Tn
Un

= 2r − 1 and, in particular, when

r 6= 1
2 , Tn ∼ (2r − 1)Un.

(iii) For any l ∈ R there exists a sequence jn ∈ {−1, 1} such that lim
∑n

i=1 jiai = l.

(iv) Let rn be a monotonous sequence with lim rn = ∞ and lim rn
Un

= 0. Assume also that

lim rn−rn−1

an+1
= 0. Then there exists a sequence jn ∈ {−1, 1} such that the associate sequence

of partial sums Tn satisfies Tn ∼ rn and 1
2 ∈ [lim inf fn, lim sup fn]

Notice that 0 < rn−rn−1

an
< rn−rn−1

an+1
. Hence, as in Theorem A, by Stolz criterion the hypothesis

lim rn−rn−1

an+1
= 0 implies that lim rn

Un
= 0.

As we will see, the proofs of the first two items of the above two theorems will be a consequence
of the following more general result about series

∑
mnan, with mn ∈ {−1, 0, 1}.

Theorem C. Let an be a positive monotonous sequence sequence such that lim an = 0,
∑
an =∞

and set Un =
∑n

i=1 ai. Let mn be a sequence with mn ∈ {−1, 0, 1}, such that fn and gn are the
associated sequences of densities of 1’s and −1’s, respectively, and let Pn =

∑n
i=1miai be its

associated sequence of partial sums. Then the following assertions hold:

(a) If Pn converges then limnan(fn−gn) = 0. In particular lim(fn−gn) = 0 when lim inf nan > 0.
Moreover if limnan(fn − gn) = 0 then Pn converges if and only if

∑n
i=1 i(ai − ai+1)(fi − gi)

converges.

(b) lim inf(fn − gn) ≤ lim inf PnUn ≤ lim sup Pn
Un
≤ lim sup(fn − gn). Hence, if Pn converges then

lim inf(fn − gn) = 0, but there are cases where lim(fn − gn) does not exist. Additionally, if
lim inf(fn − gn) > r > 0 (resp. lim sup(fn − gn) < s < 0) then Pn > rUn (resp. Pn < sUn)
for n large enough. Moreover, lim Pn

Un
= r when lim(fn− gn) = r, and in particular, if r 6= 0,

then Pn ∼ rUn.

In the above theorem, two items more, similar to the last two items of Theorems A and B could
be added. We have decided to omit them because the statements of these theorems are stronger.
For instance they allow to obtain any finite sum without using −1’s (Theorem A).

Theorems A, B and C can be extended, without major difficulties, to positive divergent series
with non increasing terms going to zero, but they are no more true for general positive sequences
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an going to zero. Under these assumptions it is possible to have a convergent subseries with
density f arbitrarily close to one. For instance we can split the integers in the set of squares
S := [12, 22, 32, 42, . . .] and the complementary one, N \ S = [2, 3, 5, 6, 7, 8, 10, . . .]. Then, for any
fixed m ∈ N, construct an taking the inverses of the first m elements of S and the inverse of the
first element in N \ S, and continue similarly with the remaining elements. In this way,

∑
an

is divergent and the subseries of the inverses of the squares is convergent. Hence, writing it as∑
knan, with kn = 1 when 1/an is a square, and kn = 0 otherwise, we get that for this series is

convergent and the density of 1’s is f = m
m+1 . Similarly, a convergent series with kn with density

f = 1 can be constructed.

Consider a discrete random variable W, with the following distribution: P{W = 1} = p,
P{W = −1} = q and P{W = 0} = 1 − p − q, with p + q > 0. For short we will denote this
distribution by W(p, q).

The convergence of the random series
∑
anWn, where Wn are independent identically distri-

buted (i.i.d.) random variables, with distribution W(p, q), can be studied with the celebrated
Kolmogorov’s Three-Series Theorem, see Theorem 2.8 or [3, 12]. In Section 4 we will prove next
theorem by using it. That section also includes a discussion of how, in some particular cases, this
result can be reobtained as a consequence of Theorem C and of the Law of the Iterated Logarithm.

Theorem D. Consider the random series Z =
∑
anWn, where Wn is a sequence of i.i.d. random

variables, with distributionW(p, q). Assume that an is a positive sequence, that tends to 0 and such
that

∑
an =∞. Then Z converges a.s. if and only if p = q and

∑
a2n is convergent. Otherwise, Z

is a.s. divergent.

2 Preliminary results

In the first part of this section we collect several results about series. In the second one we recall
some results about random variables and random series.

One of the main tools that we will use is the so called Toeplitz Theorem ([6, Sec. 3.1-3.6], that
we state and prove here with more restrictive assumptions appropriate for our interests.

Theorem 2.1. Let cn,m, (n,m) ∈ N× N be a double sequence satisfying the following properties:

(a) cn,m ≥ 0 for all (n,m) ∈ N× N and cn,m = 0 when m > n.

(b) lim
∑n

i=1 cn,i = 1.

(c) For any fixed m ∈ N, lim cn,m = 0.

Then for any sequence xn we get that the sequence yn =
∑n

i=1 cn,ixi satisfies

lim inf xn ≤ lim inf yn ≤ lim sup yn ≤ lim supxn.

In particular if limxn = l ∈ R ∪ {±∞} then lim yn = l.

Proof. Let us denote a := lim inf xn and b := lim supxn and let z be an accumulation point of
yn. We will assume that a and b are finite. The other cases follow by obvious adaptations of the
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proof. To prove the theorem we need to show that z ∈ [a, b]. To do this we will show that for any
ε > 0, z ∈ [a− ε, b+ ε].

Note first that if xn ∈ [A,B] for all n ∈ N, then since cn,i ≥ 0 we get

yn ∈
[( n∑

i=1

cn,i
)
A,
( n∑
i=1

cn,i
)
B
]

for all n ∈ N. Therefore, since lim
∑n

i=1 cn,i = 1, any accumulation point of yn belongs to [A,B].

The second observation is that if we change a finite number of terms of the sequence xn,
obtaining a new sequence x′n, then the set of accumulation points of the corresponding sequence
y′n does not change. This is due to the fact that if, given a fixed r, we change xr by x′r then the
corresponding sequence y′n satisfies y′n = yn + cn,r(x

′
r − xr) and since lim cn,r = 0, the sequences

yn and y′n share the same set of accumulation points.

Let z be an accumulation point of yn and let ε > 0. Then the sequence xn has only a finite
number of terms outside [a − ε, b + ε]. We construct another sequence x′n by changing the terms
outside [a− ε, b+ ε] by a for example. Then from the second observation z is also an accumulation
point of the sequence y′n and by the first observation it follows that z ∈ [a− ε, b+ ε]. This ends the
proof of the theorem.

A consequence of the above result is the next known extension of the celebrated Stolz’s criterion
that we state and prove in the next lemma.

Lemma 2.2. (Stolz’s criterion) Let an
bn

be a sequence of real numbers with bn a monotonous
sequence tending to ∞. Then

lim inf
an − an−1
bn − bn−1

≤ lim inf
an
bn
≤ lim sup

an
bn
≤ lim sup

an − an−1
bn − bn−1

In particular, if the sequence an−an−1

bn−bn−1
converges to l ∈ R ∪ {±∞} the same holds for an

bn
.

Proof. It follows applying Theorem 2.1 to

xn =

{
a1
b1
, if n = 1,

an−an−1

bn−bn−1
otherwise,

with cn,i =


b1
bn
, if i = 1,

bi−bi−1

bn
, if 1 < i ≤ n,

0, if i > n,

because yn = an/bn.

Lemma 2.3. Let an be a non-vanishing sequence, let mn be a sequence with mn ∈ {−1, 0, 1} and
fn (resp. gn) its associate sequence of densities of 1’s (resp. −1’s) and let Pn =

∑n
i=1miai be the

corresponding sequence of partial sums. Then

(1) nan(fn−gn) = Pn−an
n−1∑
i=1

(
1

ai+1
− 1

ai

)
Pi and Pn = nan(fn−gn)+

n−1∑
i=1

i(ai−ai+1)(fi−gi).
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Proof. We have m1 = P1
a1

and for i > 1, mi = Pi−Pi−1

ai
, fn = 1

2n

∑n
i=1mi(mi + 1) and gn =

1
2n

∑n
i=1mi(mi − 1). Hence, fn − gn = 1

n

∑n
i=1mi and, as a consequence,

fn − gn =
1

n

(
n∑
i=2

Pi − Pi−1
ai

+
P1

a1

)
=

Pn
nan
− 1

n

n−1∑
i=1

(
1

ai+1
− 1

ai

)
Pi

and the first assertion follows. Similarly, n(fn − gn) =
∑n

i=1mi and holds that m1 = f1 − g1 and
for i > 1, mi = i(fi − gi)− (i− 1)(fi−1 − gi−1). Hence

Pn =

n∑
i=2

(
i(fi− gi)− (i−1)(fi−1− gi−1)

)
ai+ (f1− g1)a1 = nan(fn− gn) +

n−1∑
i=1

i(ai−ai+1)(fi− gi).

The following result is well-known. We include its proof for completeness.

Lemma 2.4. Let f : [1,∞) :−→ (0,∞] be a continuous decreasing function. Then the sequence
An = An(f) =

∑n
i=1 f(i)−

∫ n
1 f(s)ds is convergent.

Proof. Clearly
∑n

i=1 f(i) −
∫ n
1 f(s)ds ≥ 0. Moreover An+1 − An = f(n + 1) −

∫ n+1
n f(s)ds ≤ 0.

Thus An is a positive decreasing sequence. Therefore it is convergent.

Recall that Euler, in 1731, proved that lim
(∑n

i=1
1
i − lnn

)
= γ ∈ [0, 1), where γ ≈ 0.577218 is

precisely the nowadays called Euler’s constant, see [7, 9]. Notice that if f0(x) = 1/x then An(f0)
precisely converges to the gamma constant, γ.

Next lemma facilitates the application of the second part of item (a) of Theorem A.

Lemma 2.5. Let an be a sequence of positive numbers given by a smooth function h : R+ → R+,
that is an = h(n), such that limh′(n+ 1)/h′(n) = 1. If for x big enough, h′(x) < 0 and h′′(x) > 0,
then an+1 − an ∼ h′(n).

Proof. By the Intermediate Value Theorem, an+1 − an = h(n + 1) − h(n) = h′(zn), where zn ∈
(n, n+ 1). Since h′ is increasing h′(n) < h(n+ 1)− h(n) < h′(n+ 1). Hence,

h′(n+ 1)

h′(n)
<
h(n+ 1)− h(n)

h′(n)
< 1.

Taking limit in both sides, by the hypotheses, the lemma follows.

2.1 Random series

Some of the results of this section are extracted from [3, 8]. We start stating the Law of the
Iterated Logarithm, that quantifies the speed of convergence towards the expected value given by
the Strong Law of Large Numbers.

Theorem 2.6. Let Xn be a sequence of i.i.d. random variables with E(X2
1 ) <∞. Then,

(2) lim inf

∑n
i=1Xi − nµ

σ
√

2n ln lnn
= −1 (a.s.) and lim sup

∑n
i=1Xi − nµ

σ
√

2n ln lnn
= +1 (a.s.),

where E(X1) = µ and Var(X1) = σ2.
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Corollary 2.7. Let Wn be a sequence of i.i.d. with distribution W(p, q), and let Fn (resp. Gn) be
the random variables that give the density of 1’s (resp. −1’s) in the sequence. Then

lim inf

√
n
(
Fn −Gn − (p− q)

)
√

ln lnn
= −L (a.s.) and lim sup

√
n
(
Fn −Gn − (p− q)

)
√

ln lnn
= L (a.s.),

where L =
√

2(p+ q − (p− q)2) . Moreover, for almost all ω, there exists K(ω) > L such that

∣∣Fn(ω)−Gn(ω)− (p− q)
∣∣ ≤ K(ω)

√
ln lnn

n
.

Proof. Recall that the discrete random variable W(p, q), takes the values 1,−1 and 0 with re-
spective probabilities p, q and 1 − p − q and that p + q > 0. Notice that

∑n
i=1Wi = n(Fn − Gn),

E(Wi) = µ = p− q and Var(Wi) = σ2 = p+ q − (p− q)2. Hence

n∑
i=1

Wi − nµ = n
(
Fn −Gn − (p− q)

)
.

Since E(W 2
i ) = p+ q > 0 we can apply Theorem 2.6. Replacing the above equality in (2) we get

the results.

The following result, known as Kolmogorov’s Three-Series Theorem, is the general tool for
studying sums of independent random variables. Notice that it allows to know the behavior of a
random series studying three deterministic series. As usual, 1B denotes the indicator function of
the set B, that is 1B(x) = 1 if x ∈ B and 1B(x) = 0 otherwise.

Theorem 2.8. Let Xn be a sequence of independent random variables. The series
∑
Xn is a.s.

convergent if and only if, for some A > 0, next three conditions are satisfied:

(a)
∑
P
(
|Xn| ≥ A

)
is convergent,

(b) If Yn = Xn · 1{|Xn|≤A},
∑
E(Yn), the series of the expected values of Yn, is convergent,

(c)
∑

Var(Yn) is convergent.

Finally we state a corollary of Kolmogorov’s 0− 1 Law.

Corollary 2.9. Let Xn be a sequence of independent random variables. Then, the series
∑
Xn is

either a.s. convergent or a.s. divergent.

3 Proofs of the main results

We start this section proving Theorem C. Afterwards, using it we will prove the first two items of
Theorems A and B.

Proof of Theorem C. (a) Left-hand equality (1) in Lemma 2.3 is

nan(fn − gn) = Pn − an
n−1∑
i=1

(
1

ai+1
− 1

ai

)
Pi.

7



Putting

cn,i =

{ an
ai+1
− an

ai
, if i < n,

0, otherwise,

we get that lim
∑n

i=1 cn,i = lim
(
1− an

a1

)
= 1 and for any fixed i, lim cn,i = 0. Thus if limPn = l, ap-

plying Theorem 2.1 to the sequence Pn and the coefficients cn,i we get lim an
∑n−1

i=1

(
1

ai+1
− 1

ai

)
Pi =

l and hence limnan(fn − gn) = 0. Clearly this last equality implies lim(fn − gn) = 0 when
lim inf nan > 0. The other statement follows directly from the right-hand equality (1) of Lemma 2.3.
Moreover, dividing both sides of this equality by Un we get

Pn
Un

=
nan
Un

(fn − gn) +
n−1∑
i=1

i(ai − ai+1)

Un
(fi − gi).

To prove item (b), take

cn,i =


i(ai−ai+1)

Un
, if i < n,

nan
Un
, if i = n,

0, otherwise.

Then,
∑n

i=1 cn,i = 1 and for all i ∈ N, lim cn,i = 0. Thus the claimed chain of inequalities follows
from Theorem 2.1. From these inequalities all the other results but one follow. Only remains to
show that in general the condition about the convergence to zero of fn − gn is not a necessary
condition for the convergence of a subseries. More specifically, we want to prove the existence of
sequences an and mn under the hypotheses of the theorem and such that

∑
mnan converges (then

lim inf(fn − gn) = 0) but lim(fn − gn) does not exist. Note that since limnan(fn − gn) must be
zero it follows that we need to choose an such that lim inf nan = 0. To do this we will specify
both sequences, an and mn, based on a nice example constructed by Šalat [18], with a different
objective. In fact, to simplify the problem we will construct a series

∑
knan, with kn ∈ {0, 1}. In

this way gn ≡ 0 and fn − gn ≡ fn.
We will prove that if bn = 1

mm+2 , where m is the unique natural number such that n ∈
[mm, (m+ 1)m+1), an = bn + 1

n2 and we set

(3) kn =

{
1, if n ∈ [mm, 2mm) for some m ∈ N,
0, otherwise,

then the following assertions hold:

(I) an is a monotonous positive sequence, limnan = 0 and the series
∑
an is divergent.

(II) lim sup fn ≥ 1
2 and

∑
knan is convergent.

To prove (I), note first that the sequence an is clearly positive and monotone because the
sequence bn is non-increasing and 1

n2 is monotonous decreasing. To see that limnan = 0 it suffices
to show that limnbn = 0. To prove this, observe that for n ∈ [mm, (m+ 1)m+1) we have

nbn =
n

mm+2
<

(m+ 1)m+1

mm+2
=

1

m

(
1 +

1

m

)m+1

8



that clearly tends to zero. Lastly note that

(m+1)m+1−1∑
i=mm

bi =
(
(m+ 1)m+1 −mm

) 1

mm+2
>
mm+1

mm+2
=

1

m
.

Thus
∑
bn is divergent and hence the same occurs for

∑
an.

To prove (II), note that f2mm ≥ 1
2 , because from (3) at least half of the kn until n = 2mm are

1’s. Then lim sup fn ≥ 1
2 . Finally, to see that

∑
knan converges it suffices to show that

∑
knbn is

convergent. We have
(m+1)m+1−1∑

i=mm

kibi =
2mm−1∑
i=mm

bi =
mm

mm+2
=

1

m2
.

Therefore
∑
knbn is convergent and the same happens for

∑
knan.

Proof of Theorem A. Items (a) and (b) are a direct consequence of Theorem C and its proof.

(c) We consider first the case l > a1. The opposite situation follows similarly and we skip
the details. Let n0 be the first natural number such that

∑n0+1
i=1 ai ≥ l. We choose ki = 1 for

i = 1, . . . , n0 and kn0+1 = 0. Now let n1 > n0 be the first natural number greater than n0 such that
Sn0 +an1 < l. We choose ki = 0 for all i ∈ {n0+1, . . . , n1−1}. Note that l−Si = l−Sn0+1 < an0+1

for all i in this set. We also choose kn1 = 1 and let n2 be the first natural number greater than n1
such that

Sn1 + an1+1 + . . .+ an2+1 ≥ l.

Now we choose ki = 1 for all i ∈ {n1, . . . , n2} and kn2+1 = 0. In this way we obtain a sequence
kn such that l − Sn is a positive non increasing sequence verifying that l − Snj < anj+1 for some
partial nj , with j even. This shows that limSn = l.

(d) Now we will construct a sequence kn ∈ {0, 1} such that for n large enough

rn < Sn =
n∑
i=1

kiai ≤ rn + aϕ(n)

where ϕ(n) is a non-decreasing sequence going to infinity.

Notice that since lim rn−rn−1

an
= 0, it is not restrictive to assume that rn − rn−1 < an. Assume

for instance that a1 < r1 and let n1 be the first integer such that
∑n1

i=1 ai > rn1 . Observe that such
a n1 exists because lim rn

Un
= 0. We choose ki = 1 for i ∈ {1, . . . , n1}. Now let n2 be the first natural

number greater than n1 such that rn2 > Sn1 . Now we choose ki = 0 for all i ∈ {n1 + 1, . . . , n2− 1}
and kn2 = 1. Clearly we have ri ≤ Si < ri+an1 for all i ∈ {n1+1, . . . , n2−1} and Sn2 = Sn1 +an2 ≥
rn2−1 + an2 > rn2 because rn2 − rn2−1 < an2 . Moreover Sn2 − rn2 < an2 . Proceeding in this way
we obtain a sequence ni and a sequence kn in such a way we have rn < Sn =

∑n
i=1 kiai ≤ rn + anj

for all n ∈ {nj , . . . , nj+1}. Thus we have

0 <
Sn − rn
rn

≤ anj ,

for all n ∈ {nj , . . . , nj+1}. Passing to the limit we get lim Sn
rn

= 1. Observe now that lim inf fn = 0.

If not, lim inf SnUn = lim inf rn
Un

> 0 giving a contradiction. This ends the proof of the Theorem.
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Proof of Corollary 1.1. Recall that by the results of Hadamard and de la Vallée-Poussin the density
of the prime numbers smaller than n is asymptotic to 1

lnn . Hence, by the second part of item
(a) of Theorem A the convergence of the series involving the prime numbers depends on the
convergence of the series with terms n(an − an+1)fn ∼ n

lnn(an − an+1), where an = h(n), with
h(x) = 1

x(lnx)α(ln lnx)β
. It is not difficult to see for any α ≥ 0, β ≥ 0, we are under the hypotheses

of Lemma 2.5. Hence an+1 − an ∼ h′(n) ∼ − 1
n2(lnn)α(ln lnn)β

and, as a consequence,

n(an − an+1)fn ∼
n

lnn
(an − an+1) ∼

1

n(lnn)α+1(ln lnn)β
.

By the Integral Convergence test, the series
∑ 1

n(lnn)δ
is convergent if and only if δ > 1. Hence,

since n(lnn)α+1(ln lnn)β ≥ n(lnn)α+1, the result follows for α > 0.

Consider now α = 0. Again by the Integral Convergence test, the series
∑ 1

n lnn(ln lnn)β
is

convergent if and only if β > 1, because for β 6= 1,
(

1
1−β

1
(ln lnx)β−1

)′
= 1

x lnx(ln lnx)β
and (ln ln lnx)′ =

1
x lnx(ln lnx) . Hence the corollary follows. In fact, these series were used by Hardy [5, 14], with
β = 1, 2, to illustrate the series that either diverge or converge very slowly.

A direct consequence of the second part of statement (a) of Theorem A is next result that gives
a kind of comparison test between the densities of 1’s.

Corollary 3.1. Let kn, k
′
n be sequences such that kn, k

′
n ∈ {0, 1}, let fn, f

′
n be their corresponding

sequences of densities of 1’s and let Sn, S
′
n be their corresponding sequences of partial sums. Assume

that limnanfn = limnanf
′
n = 0. Then the following statements hold.

• If fn ≤ f ′n and S′n converges, then Sn converges.

• If fn ≥ f ′n and S′n diverges, then Sn diverges.

• If lim fn
f ′n

= C 6= 0 then both series have de same character.

Proof of Theorem B. Similarly that in Theorem A, items (i) and (ii) are a direct consequence of
Theorem C. Only one example of a convergent signed subseries such that the lim(fn − gn) =
lim(2fn − 1) does not exist, must be given. Such an example can be constructed similarly to the
one with gn ≡ 0 given in the proof of Theorem C. We omit the details.

(iii) Assume without loss of generality that l ≥ 0. If l ≥ a1 put k1 = 1 and let i1 be the first
natural number such that Si1 =

∑i1
i=1 ai > l. We choose ki = 1 if i ∈ {1, . . . , i1}. Now let i2 > i1

be the first natural number such that Si2 =
∑i1

i=1 ai −
∑i2

i=i1+1 ai < l. Then we choose ki = −1
if i ∈ {i1 + 1, . . . , , i2}. Note that |Si − l| < ai1 for any i ∈ [i1, i2]. In this way we can define an
increasing sequence ij and kn ∈ {1,−1} given by

kn =

{
1, if n ∈ {ij + 1, . . . , ij+1} for some even j,
−1, if n ∈ {ij + 1, . . . , ij+1} for some odd j,

where i0 := 0. Note that we will get |Si − l| < aij if i > ij . This ends the proof when l ≥ a1. The
other cases follow by obvious adaptations of this proof.

10



To prove item (iv) we consider the sequences bn = a2n and cn = a2n−1. Set r̃n = 1
2r2n. We have

0 <
r̃n − r̃n−1

bn
=

1

2

r2n − r2n−2
a2n

=
1

2

(
r2n − r2n−1

a2n
+
r2n−1 − r2n−2

a2n

)
.

Thus passing to the limit we get by hypothesis that lim r̃n−r̃n−1

bn
= 0, because 0 < r2n−r2n−1

a2n
<

r2n−r2n−1

a2n+1
. Hence the sequence r̃n satisfies the hypotheses of item (d) of Theorem A with respect

to the series
∑n

i=1 bi.

Therefore we get that there exists a sequence kn ∈ {0, 1} such that lim
∑n
i=1 kia2i
1
2
r2n

= 1. Define

ji =

{
−1 + 2ki/2, if i is even,

1, otherwise.

We have T2n =
∑2n

i=1 jiai = −
∑n

i=1 bi + 2
∑n

i=1 kibi +
∑n

i=1 ci. Hence

T2n
r2n

=

∑n
i=1 ci −

∑n
i=1 bi + 2

∑n
i=1 kibi

r2n
.

Now we claim that

lim

(
n∑
i=1

ci −
n∑
i=1

bi

)
= M ∈ R.

To see this let h : [1,∞) :−→ (0,∞) be a continuous decreasing function satisfying h(n) = an for
all n ∈ N and let H(x) =

∫ x
1 h(s)ds. From Lemma 2.4 there exist L1,M1 ∈ R such that

lim

(
n∑
i=1

bi −
∫ n

1
h(2s)ds

)
= L1 and lim

(
n∑
i=1

ci −
∫ n

1
h(2s− 1)ds

)
= M1.

Thus we get

lim

(
n∑
i=1

bi −
n∑
i=1

ci

)
= L1 −M1 −

1

2

∫ 2

1
h(s)ds+

1

2
lim

∫ 2n

2n−1
h(s)ds = M

and the claim follows. Hence,

lim
T2n
r2n

= lim
2
∑n

i=1 kibi
r2n

= lim

∑n
i=1 kia2i
1
2r2n

= 1.

Similar computations show that also lim T2n+1

r2n+1
= 1, and so lim Tn

rn
= 1.

Lastly we get 1
2 ∈ [lim inf fn, lim sup fn]. Otherwise, either lim inf fn >

1
2 or lim sup fn <

1
2 . In

the first case from item (ii) we obtain lim inf TnUn ≥ lim inf(2fn− 1) > 0 and hence Tn
Un

> r for some
r > 0 and n large enough, in contradiction with the hypothesis. In the other case we arrive to
contradiction arguing with lim sup Tn

Un
.
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4 Random series

In this section we prove Theorem D and compare it with a corollary of our theorems on deterministic
series. We end with a test example.

Proof of Theorem D. We will apply the Kolmogorov’s Three-Series Theorem to the sequence of
independent random variables Xn = anWn. Since an tends to zero, given any A > 0, there exits
n0 such that for all n > n0, P

(
|Xn| ≥ A

)
= 0. Hence the

∑n
i=1 P

(
|Xi| ≥ A

)
always converges and

item (a) of the theorem is satisfied for any A > 0.

Similarly, for any n big enough, Yn = Xn·1{|Xn|≤A} = Xn. Hence E(Yn) = anE(Wn) = (p−q)an.
Then

∑n
i=n0

E(Yi) = (p−q)
∑n

i=n0
ai, that converges if and only if p = q, because

∑n
i=1 ai diverges.

Hence item (b) of the theorem holds if and only if p = q.

Finally, for p = q and again for n > n0,

Var(Yn) = Var(Xn) = Var
(
anWn

)
= a2n Var(W1).

Since Var(W1) = 2p > 0,
∑n

i=1 Var(Yi) converges if and only if
∑n

i=1 a
2
i converges, as we wanted

to prove.

When either p 6= q or
∑n

i=1 a
2
i diverges, by Corollary 2.9, the random series diverges a.s. and

the theorem follows.

As we will see, the results obtained applying Theorem C together with a consequence of the Law
of the Iterated Logarithm (Corollary 2.7) are weaker that the ones stated by using the Kolmogorov’s
Three-Series Theorem, given in Theorem D. Nevertheless, we briefly discuss them because we
believe that it is nice to see how from the study of properties of related deterministic series it is
also possible to get as a consequence results about a.s. convergence of random series.

Corollary 4.1. Let an be a positive sequence that tends monotonically to 0 and such that
∑
an =

∞. Consider the random series Z =
∑
anWn, where Wn are i.i.d. random variables with distribu-

tion W(p, q). The following holds:

(i) If p 6= q then Z is a.s. divergent.

(ii) If p = q and an ≥ R√
n ln lnn

, for n ≥ n0 and some R > 0, then Z is a.s. divergent.

(iii) If p = q and
∑√

n ln lnn
(
an − an+1

)
converges then Z is a.s. convergent.

Proof. Let Fn (resp. Gn) be the random variable that gives the density of 1’s (resp. −1’s) in the
sequence Wn. We know from Corollary 2.7 that for almost all ω, the sequence fn = Fn(ω) and
gn = Gn(ω) satisfy

(4) lim inf

√
n
(
fn − gn − (p− q)

)
√

ln lnn
= −L and lim sup

√
n
(
fn − gn − (p− q)

)
√

ln lnn
= L,

with L =
√

2(p+ q − (p− q)2) . Fixed two of these sequences fn and gn we also know that

(5)
∣∣fn − gn − (p− q)

∣∣ ≤ K√ ln lnn

n
,
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for some K > L. Therefore, to prove the corollary we can assume that the densities of 1’s and −1’s
in the series Z(ω) are given by sequences fn and gn satisfying (4) and (5).

(i) As a consequence of Theorem C we get that when
∑
mnan is convergent and fn − gn

converges, then it converges towards 0. Since we know that fn − gn converges towards p − q, we
get that Z is a.s. divergent when p− q 6= 0.

(ii) To prove that Z is a.s. divergent we will use item (a) of Theorem C and (4). Since p = q,
notice that

lim supnan

∣∣∣fn − gn∣∣∣ ≥ lim sup
R
√
n√

ln lnn

∣∣∣fn − gn∣∣∣ = RL > 0.

Hence limnan(fn − gn) 6= 0 and Z is a.s. divergent.

(iii) Again, by Theorem C, to prove that Z is a.s. convergent it suffices to show that
∑
n(an−

an+1)(fn − gn) is convergent. We will use that the sequence fn satisfies (5) and p = q. This holds
because

n
(
an − an+1

)∣∣∣fn − gn∣∣∣ ≤ Kn√ ln lnn

n

(
an − an+1

)
= K
√
n ln lnn

(
an − an+1

)
,

which, by hypothesis (iii), is precisely the general term of a convergent series.

We end the paper comparing the results of applying Theorem D and the above corollary to a
test family of random series. We consider

Wα,β =
∑ Wn

nα lnβ n
, α > 0, β ≥ 0,

where Wn are i.i.d. random variables with distribution W(p, q). Both results imply that Wα,β is
a.s. divergent unless p = q. Hence we fix p = q. Then, notice that by Theorem D, Wα,β is a.s.
convergent if and only if

∑ 1
n2α ln2β n

is convergent, and otherwise Wα,β is a.s. divergent. Table 1
collects the final results obtained when p = q. There we have also used the trivial result that if
bn is a positive sequence such that

∑
bn is convergent then the random sequence

∑
bnWn is also

(always) convergent .

0 < α < 1
2 α = 1

2
1
2 < α < 1 α = 1 α > 1

0 ≤ β ≤ 1
2 a.s. div. a.s. div. (∗) a.s. conv. a.s. conv. conv.

1
2 < β ≤ 1 a.s. div. a.s. conv. (∗) a.s. conv. a.s. conv. conv.

β > 1 a.s. div. a.s. conv. a.s. conv. conv. conv.

Table 1: Behavior of the random series Wα,β, with p = q, according to α and β. Cases with (∗)
are covered by the Kolmogorov’s Three-Series Theorem but not by our approach.

If, instead of Theorem D, we apply items (ii) and (iii) of Corollary 4.1 we recover all the results
of that table except the ones corresponding to α = 1

2 and 0 ≤ β ≤ 1. In this range of values our
approach does not decide the behavior of the random series.
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1/61 + . . . , où les dénominateurs sont nombres premiers jumeaux est convergente ou finie,
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[18] T. Šalát, On subseries, Math. Z. 85 (1964) 209–225.
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