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Abstract: In [2] we develop an effective procedure to prove the existence, deter-
mine the number, and locate periodic orbits of dynamical systems of both discrete and
continuous nature. It is based on the use of the Poincaré-Miranda theorem. This note
presents one of the results obtained in that paper: a new example of piecewise linear
differential system with three limit cycles.

1 Introduction and main result

The study of the number of limit cycles for planar differential systems is a classical topic
in the theory of dynamical systems. In the last years, many attention has been devoted to
the study of nested limit cycles of piecewise linear systems, steered by the applicability
of these systems in the modelling of biological and mechanical applications. In 2012,
S.M. Huan and X.S. Yang gave numerical evidences of a piecewise linear system with
two zones and a discontinuity straight line, having three nested limit cycles ([3]). A proof
based on the Newton–Kantorovich theorem of the existence of these limit cycles for this
example and a nearby one, was given by J. Llibre and E. Ponce ([5]). A different proof,
from a bifurcation viewpoint, was presented by E. Freire, E. Ponce and F. Torres in [1].
Until now, as far as we know, three is the maximum observed number of limit cycles in
a piecewise linear systems with two zones and a discontinuity straight line, but it is not
known if this is the maximum number that such type of systems can have.

In this work we present a new example, again with 3 limit cycles, inspired on the ones
given in [3, 5]. The main contribution is that our proof relies on the so called Poincaré-
Miranda theorem and it is very simple. This theorem is essentially the extension of
the intermediate value theorem (or more precisely the Bolzano’s theorem) to higher
dimensions. It was stated by H. Poincaré in 1883 and 1884, and proved by himself in
1886 ([7, 8]). In 1940, C. Miranda re-obtained the result as an equivalent formulation
of Brouwer fixed point theorem ([6]). Recent proofs are presented in [4, 10]. For
completeness, we recall it. As usual, S and ∂S denote, respectively, the closure and
the boundary of a set S ⊂ Rn.

Theorem 1 (Poincaré-Miranda) Set B = {x = (x1, . . . , xn) ∈ Rn : Li < xi < Ui, 1 ≤
i ≤ n}. Suppose that f = (f1, f2, . . . , fn) : B → Rn is continuous, f(x) 6= 0 for all
x ∈ ∂B, and for 1 ≤ i ≤ n,

fi(x1, . . . , xi−1, Li, xi+1, . . . , xn) ≤ 0 and fi(x1, . . . , xi−1, Ui, xi+1, . . . , xn) ≥ 0,
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Then, there exists s ∈ B such that f(s) = 0.

We prove:

Theorem 2 The two-zones piecewise linear differential system

(1) ẋ =

{
A+x if x ≥ 1,
A−x if x ≤ 1,

where x = (x, y)t,

A− :=

(
67
50 −833

125

1
2 −87

50

)
and A+ :=

(
3
8 −1

1 3
8

)
,

has at least three nested hyperbolic limit cycles surrounding the origin.

2 Proof of Theorem 2

Let ϕ±(t; p) = (x±(t; p), x±(t; p)) denote the flow associated to the linear systems ẋ =
A±x. Observe that if there exists a limit cycle then it must lie on both sides of the line
x = 1, so let t− > 0 be the smaller time such that x−(t−; (1, y)) = 1 for a point (1, y)
with y > 0, and let t+ > 0 be the first positive time such that x+(−t+; (1, y)) = 1. Then
any limit cycle must satisfy both conditions and y+(−t+; (1, y)) − y−(t−; (1, y)) = 0, or
equivalently,

e−
3
8
u (cos (u) + y sin (u))− 1 = 0,(2) (

35 cos

(
49

50
v

)
+ (−238y + 55) sin

(
49

50
v

))
e−

1
5
v

35
− 1 = 0,(3) (

−49 cos

(
49

50
v

)
y + (77y − 25) sin

(
49

50
v

))
e−

v
5

49
+ e−

3
8
u (cos (u) y − sin (u)) = 0,(4)

where u = t+ > 0 and v = t− > 0. By solving equation (2) we get y = (e−3u/8 −
cos(u))/sin(u). By substituting this expression in equations (3) and (4), we obtain

(5)
g1(u, v) := a(v) cos(u) + b(v) sin(u)− a(v)e

3
8
u = 0,

g2(u, v) := c(v) cos(u) + d(v) sin(u) + e(v)e
3
8
u + f(v)e−

3
8
u = 0,

where

a(v) = 238 e−
v
5 sin

(
49

50
v

)
, b(v) = 55 e−

v
5 sin

(
49

50
v

)
+ 35 e−

v
5 cos

(
49

50
v

)
− 35

c(v) = 49 e−
v
5 cos

(
49

50
v

)
− 77 e−

v
5 sin

(
49

50
v

)
+ 49, d(v) = −25 e−

v
5 sin

(
49

50
v

)
,

e(v) = 77 e−
v
5 sin

(
49

50
v

)
− 49 e−

v
5 cos

(
49

50
v

)
, f(v) = −49.

Numerically it is easy to guess that there are 3 different solutions of system (5),
see the figure. Their approximate values in (u, v) variables are (0.441441, 4.554696),
(0.639391, 4.105752) and (1.686596, 3.458345). Once we prove that near these values there
are actual solutions of system (5), each one of them will correspond to a solution of the
system of equations (2)–(4) and, consequently, all them will give rise to 3 limit cycles
of (1), see again the figure.
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Figure 1. Left part: Intersection points between g1(u, v) = 0 (in blue)
and g2(u, v) = 0 (in magenta) and some boxes containing them. Right
part: the 3 limit cycles of system (1).

To prove the existence of 3 solutions of system (5), we consider the 3 boxes:

B1 :=

[
9

25
,
1

2

]
×
[

219

50
,
26

5

]
, B2 :=

[
1

2
,
7

5

]
×
[

71

20
,
219

50

]
and B3 :=

[
7

5
, 2

]
×
[

17

5
,
71

20

]
which are also shown in the figure and we apply the Poincaré-Miranda theorem to each
of them. For short we only give some details for B1. We write [u, u] := [9/25, 1/2] and
[v, v] := [219/50, 26/5].

The existence of a solution in B1 will follow by applying the Poincaré-Miranda the-
orem to this box if we prove the following two claims:

(i) It holds that g2(u, v) > 0 and g2(u, v) < 0 for all u ∈ [u, u].
(ii) It holds that g1(u, v) < 0 and g1(u, v) > 0 for all v ∈ [v, v].

To control the sign of gj on the sides of each box we use next lemma:

Lemma 3 Set h(x) = A cos(αx)+B sin(αx)+Ceβx+De−βx, with A,B,C,D ∈ R, α 6= 0,

β > 0 and x ∈ [x, x] ⊂ R+. Then for each n ≥ 0 we have h(x) =
n∑
j=0

ajx
j +mn(x)xn+1,

where

aj =
1

j!

(
αj
[
A cos

(
j
π

2

)
+B sin

(
j
π

2
)
)]

+ βj
[
C + (−1)jD

])
,(6)

|mn(x)| ≤ mn =
|α|n+1 (|A|+ |B|) + |β|n+1 (|C|eβx + |D|e−βx

)
(n+ 1)!

.(7)

In fact, we only give the details to prove in item (i) that g2(u, v) > 0 for all u ∈ [u, u].
All the other sides of the box and the study of the other two boxes can be done by
adapting the same procedure. We have that

g2(u, v) = c

(
219

50

)
cos(u) + d

(
219

50

)
sin(u) + e

(
219

50

)
e

3
8
u + f

(
219

50

)
e−

3
8
u, with
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A = c
(

219
50

)
= 49 e−

219
250 cos

(
10731
2500

)
− 77 e−

219
250 sin

(
10731
2500

)
+ 49,

B = d
(

219
50

)
= −25 e−

219
250 sin

(
10731
2500

)
,

C = e
(

219
50

)
=
(
−49 cos

(
10731
2500

)
+ 77 sin

(
10731
2500

))
e−

219
250 , D = f

(
219
50

)
= −49.

By applying Lemma 3 with n = 4, α = 1 and β = 3/8, we have that g2(u, v) =∑4
j=0 aju

j + m4(u)u5, with aj given in (6) and |m4(u)| < m4 ' 0.66642 < 0.7 = M,

see (7). Taking a−j := Trunc(aj · 10k) · 10−k − 10−k with k = 3, for each j = 0, . . . , 4 we

obtain that
∑4

j=0 aju
j >

∑4
j=0 a

−
j u

j in [u, u], where

4∑
j=0

a−j u
j = − 1

1000
+

1001

50
u− 39899

1000
u2 − 669

500
u3 +

357

125
u4.

Putting all the inequalities together we get that in [u, u],

g2(u, v) =
4∑
j=0

aju
j +m(u)u5 >

4∑
j=0

a−j u
j − 7

10
u5 := Q5(u).

Finally, Q5 is a polynomial with rational coefficients. Computing its Sturm sequence
([9]) we get that it has no zeroes [u, u] and it is positive, as we wanted to prove.

On the other two sides of B1 or on the boundaries of the other 2 boxes we can
use the same approach. The only changes are that n and k vary from one to another,
the corresponding upper bound M must be computed and sometimes instead of gj is is

convenient to consider ev/5gj , see [2] for more details.
To prove the hyperbolicity of the limit cycles we can follow the same ideas that in [5].
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