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Abstract. For any positive decreasing to zero sequence an such that
∑

an
diverges we consider the related series

∑
knan and

∑
jnan. Here, kn and jn

are real sequences such that kn ∈ {0, 1} and jn ∈ {−1, 1}. We study their

convergence and characterize it in terms of the density of 1’s in the sequences

kn and jn. We extend our results to series
∑

mnan, with mn ∈ {−1, 0, 1} and
apply them to study some associated random series.

1. Introduction and main results. Given a divergent series
∑
an, with an > 0,

decreasing and with limit zero, we study properties of its subsums,
∑
knan, where

kn ∈ {0, 1} and of its signed sums,
∑
jnan, where jn ∈ {−1, 1}. As we will see,

both questions are related, and moreover can be treated simultaneously studying
the series

∑
mnan, with mn ∈ {−1, 0, 1}.

For a sequence of real numbers cn we will say that the sequence fn, given by the
quotient between the number of A’s in the list c1, c2, . . . , cn and n, is the sequence
of densities of A’s associated to cn. If lim fn = f ∈ [0, 1] exists we will say that f is
the density of A’s of the sequence cn.

We characterize the convergence of the series in terms of properties of the se-
quences of densities of 1’s in kn and jn. As usual, when lim an/bn = 1 we will write
an ∼ bn. We split our main results in Theorems A and B, the first one concerning
with subsums and the second one with signed sums. As we will see in Theorem C,
some points can be treated together.

A key tool in many of our proofs will be a restricted version of the celebrated
Toeplitz Theorem about the summability of weighted sequences, see for instance [6].
For completeness, in Section 2 we present a simple proof in the restrictive case of
non-negative weights.

Theorem A. Let an be a positive monotonous sequence such that lim an = 0,∑
an = ∞ and set Un =

∑n
i=1 ai. Let kn be a sequence with kn ∈ {0, 1}, fn =∑n

i=1 ki
n be the associate sequence of densities of 1’s and Sn =

∑n
i=1 kiai be its

associated sequence of partial sums. Then the following assertions hold:
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