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Abstract

The generic isolated bifurcations for one-parameter families of smooth planar vector fields
{X,} which give rise to periodic orbits are: the Andronov—Hopf bifurcation, the bifurcation from
a semi-stable periodic orbit, the saddle-node loop bifurcation and the saddle loop bifurcation. In
this paper we obtain the dominant term of the asymptotic behaviour of the period of the limit
cycles appearing in each of these bifurcations in termg @fhen we are near the bifurcation.
The method used to study the first two bifurcations is also used to solve the same problem
in another two situations: a generalization of the Andronov—Hopf bifurcation to vector fields
starting with a special monodromic jet; and the Hopf bifurcation at infinity for families of
polynomial vector fields.
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1. Introduction

In this paper we consider one-parameter families of analytic vector fields and study
the dependence, with respect the parameter, of the period of the limit cycles appearing in
the most elementary bifurcations. To fix the concepts, let us introduce some definitions.

For anym € {1,2,3,...,00, w}, let C"(K) be the space of planar vector fields
with the corresponding regularity and defined on a given compack séts usual, we
can endowC™(K) with the topology of the uniform convergence, taking into account
the vector field and all its derivatives up to order In this setting, form >3, it is
said that a givenXg € C"™(K) hasfirst degree of structural instability in Kf it is
structurally unstable irK whereas any vector field i6”(K) sufficiently close toXg
is either structurally stable or topologically conjugatedXg (see[1]).

Take m >3 and consider a one-paramet@f-family of vector fields inC™(K),
{Xu}uea, such thatXo has first degree of structural instability. All the possible bifur-
cations appearing in the family for ~ 0 are listed in [1,7,13]. Among them there
are isolated and non-isolated bifurcations (see [1,14] for details). In this paper we will
only study the isolated ones and among them we are just interested in the ones giving
rise to periodic orbits. From now one we will refer to themedsmentary bifurcations
They are: (i) The Andronov—Hopf bifurcation, (ii) The bifurcation from a semi-stable
periodic orbit, (iii) The saddle-node loop bifurcation, (iv) The saddle loop bifurcation.

Although, as we have said, the above list does not include the non isolated bifurca-
tions, from the local viewpoint the limit cycles appearing from them are not different
from the ones appearing from semi-stable periodic orbit bifurcations.

From now on we will assume that our family of vector fields is f(K) and
that the dependence qnis also analytic. It is worth to notice that for some of the
results given in this paper less regularity is needed. For instance, in the study of the
saddle-loop bifurcation only thé> dependence of the vector field with respeciutcs
needed, or in the study of the Andronov—Hopf bifurcation only derivatives up to order
three of the return map are used (so the result proved in this case also follows for
C*-families of vector fields).

In what follows we denote by (x) the period of the periodic orbit arising from an
elementary bifurcation and recall that we are interested in its behaviour-as 0.

It is clear that7 (1) tends to constant in the first two cases and to infinity in the last
two. Consequently, in cases (i) and (ii) we can expect some kind of Taylor expansion
for T(w), and in cases (iii) and (iv) an asymptotic development. We will only study
the dominant terms of (u). These terms constitute what we call fheéncipal term of
the asymptotic expansion. As usual we use the notdfigm) ~ a + f(u) asu — 0
meaning that Iirg(T(u) —a)/f(w =1.

u—

Until now we have said nothing about the concrete one-parameter families that
we consider. It may happen for instance that the fanfity,} does not present any
bifurcation althoughXo has first degree of structural instability. So in each case we
need a condition op that forces the family to present one of the four bifurcations listed
above. This condition will be given in detail in the statement of the corresponding result.
Let us advance however that roughly speaking the condition is that whemanges
sign then, in the corresponding case,
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(i) the origin reverses its stability,

(i) the solution starting at a given point of the semi-stable limit cycle goes, after a
complete turn, from inside the limit cycle to outside the limit cycle,

(i) the saddle-node presents the well-known saddle-node bifurcation of the critical
point,

(iv) the loop breaks and the separatrices forming the loop change their relative position.

Furthermore we will also assume that the above bifurcations occur in the “most generic

way”. We will say in this case that the above one-parameter families prgesetric

elementary bifurcations

The results of this paper show that, essentially, the principal term of the period of the
periodic orbit arising from generic elementary bifurcations characterizes the bifurcation.
More concretely, the principal term of the period is given in the following list:

(i) Andronov—Hopf bifurcation:T (1) ~ Top + T1u (See TheorenY).

(i) Bifurcation from a semi-stable periodic orbtt: T'(u) ~ Ty + T1/i (see Theorem

11).

(iif) Saddle-node loop bifurcationT (u) ~ To/./u (see Theorend4).

(iv) Saddle loop bifurcationT (i) ~ Toln 1 (see Theoreni6).

Let us point out thatTy # 0 in all the expressions above and that, althoudghis
generically nonzero, it may be zero (see Examples 8 and 12). It is also to be mentioned
that the results in (i) and (iii) are more or less common knowledge. The pro@fvpf

is the most difficult part of the paper and it strongly relies on the techniques introduced
in [12].

The proofs of cases (i), (i) and (iv) follow a similar scheme. Firstly we translate the
problem of the existence of the periodic orbits to a problem of solving an equation.
Afterwards, some variant of the Implicit Function Theorem is used to locate the limit
cycles and to obtain the dependence with respegt o6 the distance of the limit cycle
to the limit set at which the bifurcation occurs. The last step consists in computing the
period of the located limit cycle. The first two steps can be avoided to study the case
(i) because, curiously enough, the principal term of the period of the limit cycle in
this bifurcation does not depend on its exact location. It is also worth to mention that
the study of cases (iii) and (iv) is based on the knowledge of a good normal form of
the family {X,} near the singularity of the loop that exists f&p (see expression (11)
in proof of Theorem 14 and Lemma 18, respectively).

From the applied point of view, this kind of information concernifigu) can be
useful to estimate parameters associated to a system. Suppose that a vecty; field
a good model for someealistic phenomenon, being an experimentally controllable
parameter, and assume that there exist other parameters gathérediifi that need to
be estimated. This occurs, for instance, when studying neuron activities in the brain with
the aim of determining the synaptic conductangdhat it receives. In the experiments,
by injecting different external currents (which would correspond herg)iqeople is

1in this case there appear two periodic orbits and their periods have similar principal terms, only the
sign of Ty changes from one orbit to the other.



258 A. Gasull et al. / J. Differential Equations 213 (2005) 255-288

able to extract information about the period of the oscillations of the voltage of the
cell. So one hasl'(y;,2) for i = 1,...,q (where generallyy > p) and some kind

of regression is needed to estimateThen the (analytical) knowledge df(y;, ) is
determinant to do this regression/estimation properly.

Let us conclude this introduction by noticing that the tools developed to study the
Andronov—Hopf bifurcation are also useful to study another two bifurcations. The first
one is a generalization of the Andronov—Hopf bifurcation that occurs in one-parameter
families of vector fields whose first non zero jet is of ordgr2L. For these bifurcations
it follows that T'(u) ~ To/u? (see TheorenY). The second one is the so-called Hopf
bifurcation at infinity (see [15]). This bifurcation occurs in one-parameter families of
planar polynomial vector fields of degree 2 1. It consists essentially in the creation
of a periodic orbit from infinity due to a change of its stability. In this case (see
Theorem 10) we have thaf (1) ~ Tou”. Both bifurcations are studied in the same
section that the usual Andronov—Hopf bifurcation.

The first author wants to thank Jorge Sotomayor for stimulating discussions, main-
tained some years ago, about similar problems which motivated the present paper.

2. Preliminary results

In this paper the one-parameter family of analytic vector fields will be denoted by
{Xu}uea Where X, (x,y) = P(x,y: p) Ox + Q(x, y: p) 0y With (x, y) € R%2 and u € A,
being A C R an open interval containing zero. It defines the analytic planar differential
system

=P, y; )= ) Pulx,y;p),

n=>k
y=00, yiw =) Onlx,y: ), @)

n=k

where P, and Q, are homogeneous polynomials of degrei@ x andy andk € NU{0}.
In the sequel we include several results used along the paper. The following two lemmas
are corollaries of the Implicit Function Theorem.

Lemma 1. Let D(x, x) be an analytic function in a neighbourhood ¢,0) € R?
verifying

D(0,0) = D,(0,00 =0 and D,,(0,00D,(0,0) #0.

Then there exists a neighbourhood U (6f 0) and an analytic functionp, defined for
|u| small enoughsatisfying

D,(0,0)
D)CX (Oa 0)

’

@0 =0 and ¢'(0) = 2‘
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and such that
(@) In case thatD,,(0,0)D,(0,0) < 0 then D(xo, up) = 0 with (xo, yp) € U if and

only if u,>0 and eltherxo = ¢ (J/Ho) or xo= ¢ (—/Ip )
(b) In case thatD,, (0, 0)D,(0,0) > 0 then D(xq, p) = 0 with (xo, ug) € U if and

only if 4o <0 and eitherxo = ¢ (=7ip) or x0 = ¢ (/1)

Proof. Let us prove first (a). Sincé(0,0) = 0 and D,(0,0) # 0, by the Implicit
Function Theorem, there exists an analytic functign with »(0) = 0, such that
D (x, 1//(x)) = 0 for all x. Taking D, (0, 0) = O into account, one can easily verify that
/(0) = 0. Then a straightforward computation shows tf#édt0) = a, where

Dxx(ov O)
—_—— >
D/J(Oa O)

Consequentlyy(x) = %x? + o(x?). Note in addition that, for(xo, ug) ~ (0,0),
D(xo, ttg) = 0 if and only if ug = W(xp). This shows, due ta: > O, that yy>0.
On the other hand, it is clear that the function

fx):= l//(—)zc)
X
which is analytic forx ~ 0, verifies y(x) = f(x)%, f(0) = 0 and f'(0) = /a/2.
Accordingly ug = f(x0)2. Thereforexo = f~1(,/fig) in case thatro>0 andxp =
71 (—/mg) otherwise. This, settingy:= f~1, shows(a).

Part (b) follows from applying (a) to the functioB (x, w:=D(x,—w. O

Lemma 2. Let D(x, u) be an analytic function in a neighbourhood @, 0) € R?
verifying

D0, i) = D,(0,0) = D, (0,00 =0 and Dy, (0,0)D,,(0,0) # 0.

Then there exists a neighbourhood U (6f 0) and an analytic functionp, defined for
|l small enoughsatisfying

90 =0 and ¢'(0) = G‘M‘

DXX)C (0’ 0) '

and such that

(@) In case thatD,..(0, 0)D,,(0,0) < 0 then D(xo, g) = 0 with (xo, uy) € U and
xp # 0 if and only if 45 >0 and eitherxo = ¢ (\/Iig) or x0 = ¢ (—/Ho )-

(b) In case thatDy,, (0, 0)D,,(0,0) > O then D(xq, yp) = 0 with (xo, yg) € U and
xo # 0 if and only if g <0 and eitherxo = ¢ (/= pg) or x0 = @ (—v/=Hg)-
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Proof. SinceD(0, ) = O, there exists an analytic functidﬁ(x, ) such thatD (x, u) =
xD(x, ;). Now, on account of

Du(0,0) = D,,(0,0) and Dy, (0,0) = 1 D00,

the result follows from applying Lemma to the functionD. O

Next result studies a special type of differential equations on a strip. As we will
see, this type of differential equations will appear when we study the Andronov—Hopf
bifurcation, the generalized Hopf bifurcation, the Hopf bifurcation at infinity and the
bifurcation of semi-stable periodic orbits.

Lemma 3. Let A(r, 0; u) and B(r, 0; u) be analytic functions ofR x [0, £] x A with
A(0, 0; ) = 0 and B(0, 0; ) > 0. Consider the system of ordinary differential equa-
tions

d
d—: = A, 0; wyr™,

W g @
d[ - r5 £ .u r £
wherem € 7. Associated tq2), consider
dr A, 0; u)
T =y Ci(0; pyr. 3

i>1
For x small enoughlet (0, x; u) be the solution of3) satisfyingr (0, x; 1) = x and
denote byT'(x; u) the time t that spends the solution (@) starting at(r, ) = (x, 0) to

arrive to 0 = ¢. Thenr(0, x; ) is an analytic function ate = 0 verifying r (0, x: u) =
x ) isqri(0; wxi—1 where

0 0
ri(0; p) = eXp(/o C1(y; ) dlﬁ) . r2(0; W =ra(0; M)/O Co(yr; wWri(yr; 1) dyr
and
0
ra(0: 1) = r2(0: 0/ r1(0: 1) + r1 0 ) /O Cas r2ps 1y dyp.

In addition T'(x; pn) = T (x: w/x™ wheref is an analytic function atc = 0. Finally
if we setB(r, 0; ) = Zi>oBi(9§ wrt, then it holds

70 )_/‘f do
=) 0 0 Bo0: )
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and

ﬁ@m=—f

¢ <r1(9; WB1(0; wy  ra(0; u)) do
0

Bo(0: ) "0: 1) ) FIO; 1) Bo(0: )

Proof. That r(0, x; p) is analytic atx = 0 follows from using thatB(0, 0; ) > 0

for all 0 € [0, ¢]. Notice moreover that, on account &f(0, 0; u) = 0, r(0,x; n) =
x7(0, x; n). The concrete expression of the functiongd; u) in the statement follow
easily by solving the recurrent ordinary differential equations obtained by replacing the
expansion ofr (0, x; w) in (3). (These computations are not included here for the sake
of brevity.) Note next that, from (2)T (x; u) = x T (x; ) with

T /Z i
x;uw= | = — .
o 70, x; "B (x7(0, x; ), 0; K

§ince’r‘((9, O; ) = r1(0; ) > 0 and B(0, 0; w) > 0 for all 0 € [0, ¢], it is clear that
T(x; w) is analytic atx = 0. Finally, on account of (0, x; u) = Zi>1ri(6; wxi—1
and B(r, 0; p) = ;5 0 Bi (0; ) r’, some easy computations show that

~ ¢ r1(0; 1) B1(0; p) r2(0; ) do
Fsm ./o ( ( Bo(0; w) o u)) xR0, x m) 1 (0; 1) Bo(0; p)

with IimOR(G,x; w)/x? = 0 uniformly on 6. This proves the expression BYO; w) and
T p. O

The next three lemmas are well-known results. They will be used in the study of
the saddle loop bifurcation.

Lemma 4. Let E be a measurable set d& and consider a collection of measurable
functions{ f,,}en. If [ > oneq | fa(x)ldx < oo then

/ Y fudx = Z/ ) dx.
Ey=1 n=1"E

Lemma 5. Let E be a measurable set & and consider a collection of measurable
positive functiond f,,},en. Then

fZﬂww=Z/nmm
Ep=1 n=1’E

where the infinity value is also allowed
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Lemma 6 (Cauchy’s estimatgs Let f(z) be an analytic function omDg = {z € C :
lz| < R} such that for all z € Dg, it holds f(z) = Y 7°ga;z" and |f(z)| < M. Then
la;| < M/R' for all i.

3. Hopf-like Bifurcations

This section is devoted to study two similar bifurcations: a generalization of the
Hopf bifurcation at the origin in SectioB.1 and the Hopf bifurcation at infinity for
polynomial vector fields in Section 3.2.

3.1. Generalized Andronov—Hopf bifurcation

Hopf-like bifurcations typically occur when a monodromic singular point (i.e., such
that a Poincaré map can be defined in a neighbourhood of it) reverses its stability as
the parameter varies.

Let us suppose that there exists an open inter¥atontaining zero such that the
vector field X, has a monodromic critical point with no characteristic directions for
all u e A. It is not restrictive to assume that the critical point is fixed at the origin
and that its associated differential equation can be written as in (1), learg odd
number. Taking polar coordinated = x? + y2 and 0 = arctar(y/x), it writes as

dr

— = R, (0; wr",

o ’; 0 wr

d0 - (4)
— = Fo(0; wyr"t

- Z:k (0: pyr

with k>1, and wherer, (0; u) = cos@ P,(cos0, sin 0; u) + sin 0 Q,,(cos0, sin 0; p)

and F,(0; u) = cos0 Q,(cosb, sin 0; w) — sin 0 P,(cos0, sin 0; u) are trigonometric
polynomials of degree+1 in 0 and analytic inu. Notice that the monodromy condition
for the critical point at the origin, together with the fact that it has not characteristic
directions, implies that} (0; ) does not vanish.

Theorem 7 (Generalized Andronov—Hopf bifurcatipnLet { X}, 4 be an analytic fam-
ily of planar vector fields such that its expression in polar coordinates is givedhy
with k =2p + 1 and F.(0; 0) > 0O for all 0. Let S,,(0; n) be given by the relation

Zn}kRn(& wr" _ Z S, (0; )r"
Z@an(H;M)r”’l_n)l T

and define

2n 2n 0
Vi(p) = exp(/ S1(0; d9) and V3= / S3(0; 0) exp (/ S1(¢; 0) dlﬁ) do.
0 0 0
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Then if V1(0) =1 and V;(0) V3 # 0, the following holds

(a) Exactly one limit cycley,, bifurcates from the critical point ok, at the origin for
20 (respectivelyu<s0) if V{(0) V3 is negative(respectively positije Moreover
no periodic orbits bifurcate from the origin on the opposite sideuet 0.

(b) The period of the periodic orbi, is

| To+Tiw+0(u?) if p=0,
o= { Tou (1+ 0(Iu|1/2)) if p>1,

where Tp > 0 and 713 may be zerqsee Example).

Proof. For u small enough the Poincaré return map of vector figldwith respect to
the transversal sectioft! = 0} is well-defined in a neighbourhood of the origin. Let
r(0, x; w) be the solution of the polar expressionXf given in @) with r(0, x; u) = x.
Then the Poincaré map can be computed @, x; 1) and so the displacement map
is given by D(x; ) := r(2r, x; ) — x. Notice that the zeros obD(x; u) correspond

to the limit cycles ofX, in a neighbourhood of the origin. Several derivatives of this
displacement map can be computed by using Lemma 3. In particular we get that

D0;0)=D,(0;0) =V1(0) —1=D,(0;00 =0 and
Dy (O O)Dxu((); 0) = GV:{(O) V3 # 0.

Therefore (a) is a direct consequence of Lemma 2 applied to the displacement function.
In order to prove (b) let us assume for instance that0) V3 < 0. Denote thex-
coordinate of the poinjz#ﬂ{e = 0} by x;(@). Then Lemma 2 shows that(u) = (/1)

where ¢ is an analytic function withyp(0) = 0 and ¢'(0) = ,/|V{(0)/ V3| =:0. Now
the expression of (1) follows from applying Lemma 3 withm = k — 1. Indeed, using
the notation in that result, we have thatu) = T (x;(w); @) and, on the other hand,
we can assert thaf (x; p) = T(x w/x*=1 where T(x W) is an analytic function at
x = 0. Thus, sincex;(u) = o./1t + fu+ O (133, it turns out that

T(w) = T(q(w;
32\ (. =
= (a/E+Bu+ 0G¥D) (T(0;0 +o7"(0; 0)/ii+ O(w)

al—kml—k)/Z(?(o; 0) + ((1 - k)gf(o; 0) + o7 (0; 0)> Ji+ 0(u)>.

Notice trlat the result will follow once we show thit(o; 0) > 0 and that ifk =
1, then T’(0; 0) = 0. By applying Lemma 3 the first inequality is straightforward
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because

o Re@:0  \ _do
T(o,O)—/O exp<<l ")/ Fw:0" | R 7O

From Lemma3 we also obtain that

=~ Fi1+1(0; 0) /() Ry (s 0)
7(0;0) = (1— K — 1—k 0. (5
©o=a-pK- [ e (( [ g ©)

We do not specify the valuk because we are only interested in the casel. Let us
prove that in fact the integral irb} is zero for anyk. To see this notice first that, for
all 0 € [0, 2n], Fr(0+ m; 0) = Fr(0; 0), Rr(60+m; 0) = R (0;0) and Fy+1(0+ m; 0) =

— Fi;+1(0; 0). Note moreover that the hypothesis(0) = 0 implies thatf02” ’Iﬁkgg 8; do =

2y ffég 8; d0 = 0. Hence the functiofl —> exp((l —k) fo ’;’;%;8 d¢> is m-periodic.

Consequently, if we denote the integrand appearing in (5) {#), we have shown
that (0 + =) = —I1(0). ThereforeT’(0; 0) = (1 — k)K as desired. [J

Next example shows that the constdfit that appears in Theorem 7 may be zero.
It also shows that the period of the limit cycle of an Andronov—Hopf bifurcation tends
to a constant value with many different possible speeds.

Example 8. Consider a polynomial system of the forrh) (such that in polar coordi-
nates writes as

d
_r = ur — r3,
dt
40y 5om
dt

with € {0, 1}. One can easily check that the hypotheses in Thecfeane fulfilled.
It has limit cycles only foru > 0, and in this case the limit cycle is unique and given
by y, = {r = /u}. Furthermore its period is

T = 2n { 2n(1+ " 4+ O(u?™)) when & = 1,

1—our 2n when 0 =0

Remark 9. Notice that the hypotheses in Theoréhfor £ = 1 (modulus the regular-

ity of X,) are the same as the ones in the classical Andronov—Hopf bifurcation. In
particular, V1(0) = 1 indicates that the origin is a weak focus f&p, V3 is the first
Lyapunov constant oK, and the conditionV;(0) # 0 implies that the eigenvalues of
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the linear part ofX, at the origin cross the imaginary axis transversally whemoves
from negative to positive values.

3.2. Hopf bifurcation at infinity

Given a family of planar polynomial vector fieldgX,}, it is said that a Hopf
bifurcation at infinity occurs fop crossing 0 if “the infinity changes its stability” giving
rise to a periodic orbit (se§l5] or Theorem 10 for a rigorous definition). To study
the period of the periodic orbit appearing in this bifurcation it is more convenient to
compactify the polynomial vector field defined on the plane to an analytic vector field on
the sphere. Instead of this well-known procedure, called the Poincaré compactification,
we will consider a simpler coordinate transformation that consists in changing the radius
r of the polar coordinates tp = 1/r. Suppose that the polynomial fami{yX,} writes
in polar coordinates as

F= ) Ry(0;wr",
n=k (6)

0= > F,(6; ,u)r”_l,
n=k

wherem e N is the maximum degree of the componentsXgf and R, and F, are
defined as in4). With this notation we prove the following:

Theorem 10 (Hopf bifurcation at infinity. Let {X,} be an analytic family of planar
polynomial vector fields such that its expression in polar coordinates is givei®)by
Assume thain = 2p + 1 and that F,,,(0; 0) > 0 for all 0 € [0, 2x]. Let S,(0; ) be
given by the relation

m+1—k
Y Rpy1-0(0; p"
=1
= =Y Su(0: wp".
> Fug1-n(0; w1 =1
n=1

and define

21 21 0
Wi(w) = exp(f $1(0; ,u)d@) and W3 = / S3(0; O)GXD</ S1(; 0) dlﬁ) do.
0 0 0

Then if W1(0) =1 and W;(0) W3 # 0, the following holds

(a) Exactly one limit cycley, bifurcates from the infinity fop=>0 (respectivelyu<0)
in case thatW;(0) W3 is negative(respectively positije Moreover no periodic
orbits bifurcate from infinity on the opposite side pf= 0.

(b) The period of the periodic orbit, is 7' (1) = To u” (1+ 0(J|T1|)) with Tp > O.
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Proof. The changep = 1/r in (6) yields to

. m+1—k 1
p=—= ( Z Rin+l—n(0; ,u)p”) p,

n=1

. m+1—k
0= < Z Fm+17n (8’ /l)pn_]-) pl—m.
n=1

Notice that the “infinity” of the original system is now = 0. By applying Lemma
3 it can be seen that ip;(1) denotes the inverse of thecoordinate of the point
7, N {0 = 0}, then there exists an analytic functiap such thatp;(w) = ¢(/p)

(respectivelyp,(n) = ¢(/—p)) satisfying thatp(0) = 0 and ¢'(0) = ,/|W;(0)/ Ws|.
To end the proof we can follow the same steps that in the proof of Theoreml?7.

4. Bifurcation from a semi-stable periodic orbit

Let {X,}.ca be a one-parameter family of planar analytic vector fields. The bifur-
cation from asemi-stable periodic orbits characterized by the sudden emergence of
a double periodic orbitl’, for let us fix © = 0, which afterwards gives rise to two
hyperbolic periodic orbits with different stability.

By means of the arc-length and the normal coordinates, the study of the above bi-
furcation is settled into an analogous framework than the one when using the polar
coordinates in the Hopf bifurcation. Following [16, Chapter 2], see this reference for
further details, we introduce local coordinates with respect to the emerging singular
limit cycle I' of Xo. We assume, without loss of generality, that this limit cycle turns in
clockwise sense. Fix an arbitrary poipte I and consider the arc-length parametriza-
tion of I' from p, says —> (¢(s),¥(s)) for s € [0,¢], being ¢ the length of I
and taking also the clockwise sense. lretdenote the length of the normal tb,
whose outward direction is taken to be positive. Then any painy) in a sufficiently
small neighbourhood of’ can be parameterized by the curvilinear coordingtes).

If Xu(x,y) = P(x,y; Wiy + Q(x,y; w0, as usual, then the relation between both
coordinate systems is given by

x=q@) —nP'(s), y=ys)+ne's), )

where

1

(@' ). ¥ () =
JP2(05).0(5): 0) + Q2 (p(5). 1(5): 0)

X<P (@(5), ¥(5); 0) , Q((p(s)uﬁ(s);O)). 8)
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Notice therefore thaf is located at{n = 0}. Define P(n, s; u) := P ((s) —n/(s),

Y(s) +n¢'(s); 1) and O, s; 1):=Q (o(s) — ny/(s), Y(s) + n¢/(s); u). Then one can
verify that the coordinate transformatioid) (brings system (1) to

dn _ O, 51 @/ (s) = Pn.s: /' 5) = n (P(n, 51 0" (s) + O, 53 10y (5)
i 1 n (W) — W)

ds _ P(n,s; o' (s) + O(n, s; /' (s)

dt 1+n(Y'©)e"(s) — ' ()Y ()

’

9)
Associated to the above system we consider the differential equation
& = Fosip, (10)
where
F(n,s; w

0, s ¢/ (s) = P(n,s: /() — n (P(n, 53 e (s) + O(n, 53 iy (s))
P(n, s; Wo'(s) + Q(n, s; Y/ ()

It is easy to check thaf'(n, s; u) is analytic atn = 0 and ¢-periodic with respect to

s. We can now state the main result of this section.

Theorem 11 (Bifurcation from a double-periodic orbit Let {X,},.4 be a family of
planar analytic vector fields such thatg has a periodic orbitI” of length¢. Consider
the curvilinear coordinatesn, s) associated ta” given by(7) and letno(s; u) be the
solution of (10) with ng(0; u) = 0. Define

L OF(0,s;0 1 (L 3°F(0,s:0 S OF (0,0
leexp</ gd‘g)’ sz_f L’;’)exp(/ (—’C’)dC>d9
0 on 2 Jo on 0 on

and R(u) = no(¢; w). Then if Wy = 1andR’(0) W2 # 0, the following holds

(a) Exactly two limit cycle,sw//jr and Vi bifurcate fromI" for u=>0 (respectivelyu<0)
when R’(0) W, is negative (respectively positije Moreover no periodic orbits
bifurcate fromI" on the opposite side qf = 0.

(b) The period of the emerging limit cycles is given BY (1) = To + T1/Tul + O (1),
where Tp > 0 is the period ofl" and Ty may be zerqsee Exampld2).

Proof. Consider the transversal section kogiven by 2 := {s = 0,n € (=0, 0)} for
somed > 0 small enough. Notice that the return mapXof with respect toX is well
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defined foru ~ 0. This return map leads to the displacement map
D(x; w:=n(l, x; u) — x,

wheren(s, x; u) is the solution of 10) satisfyingn(0, x; ) = x. It is clear that, for
x ~ 0, the zeroes of —> D(x; u) correspond to the limit cycles of, nearI'. Note
also that, by definitionng(s; 1) = n(s, 0; u) andng(s; 0) = 0.

We claim thatD,(0; 0) = Wy — 1, D,,(0;0) = 2W> and D,(0; 0) = R’(0) hold.
Note that once we show this then, on account of the hypothesis, we will have that
D(0; 0) =0, Ds(0; 0) = 0 and D, (0; 0)D,(0; 0) # 0. Thus the assertions in (a) will
follow by applying Lemma 1. In order to prove the claim we perform the change of
variablesw = n — ng(s; 1) to the differential equation (10), which yields to

D Fw 4+ nols: . s ) — S ) _ OFnolsi 1) 514
ds 0s on
2
l F . .
+_6 (no(s,u),s,u)wngO(wg).

2 on?

(More precisely, the remainder term above is a functiftw, s; n) such that
Iimof(w,s;,u)/w?’ = 0 uniformly ons and u.) Then, by Lemma 3, we can assert
w—>

thatn(s, x; w) = no(s; ) + w(s, x; w) with

2
s .o x [*0°F(no(t; ), t; ¢ OFG(E. L) 4
w(s, x; u) = xefo an dt 1+_/ (no(t; W), 75 1) efo o dt dt
2 Jo On?

+0(x%).

Consequently, taking alseg(s; 0) = 0 into account, the above expansion shows that
D(0; u) = R(u) and D(x; 0) = (W1 —1) x + W x2+ O(x3). So the claim is proved and
the assertions i) follow from Lemma 1. This result also shows thatx;’f(u) denotes
the n-coordinate of the pointyf{ N {s = 0}, then there exists an analytic functiah

defined in a neighbourhood ¢f = 0, with ¢(0) = 0 and¢’'(0) = ,/|R’(0)/ W>| =: «,
such thatx;™ (1) = ¢(E/THD.

Next, to prove(b) let us denote byl (x; u) the time that spends the solution of
(9) starting at a point in> with (n,s) = (x,0) to return toX. It is clear then that
T*(w = T (xj*(w; w). By applying Lemma 3 to system (9) we have tHfatx; p) is
an analytic function ak = 0 with

4
T(O;,u):/ = 1~ —ds.
0o PO,s; o' (s)+ Q(0,s; iy (s)
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Accordingly, taking 8) also into account, it turns out that

¢ ds To
7(0; 0) =/ =/ dt = To,
0 /P2 (p(s), (5): 0) + 02 (p(s). Y(5): 0) /O

where Ty is the period of the periodic orbif’ of Xo. Here we used that the relation
between the initial time and the arc-lengtls is given bydt/ds = (P2(<p(s), Y(s); 0)

+Q2(<p(s),lp(s);0))_l/2. On the other hand, sinceli(u) = o /ul + O(n) and
T(x;p) = T(0; w) + T'(0; p)x + x2g(x; 1), we can conclude that

T*(w = T (xiF (W) p) = T(0; 0) £ o' (0; 0)y/ |l + O (w).

Consequently, sinc& (0; 0) = Tp, this completes the proof of the result]

Next example plays a similar role to Examg8e It shows that the speed at which
the period of the hyperbolic periodic orbits tend to the period’afan be any power
of |ul*/2.

Example 12. Fix a neighbourhood ofl" = {x? + y2 = 1} not containing the origin.
Consider there the analytic familyX,} which in polar coordinates writes as

dr P
E—V((’”—l) —,U),
do

—=1- -
T or =1

with 6 € {0, 1}. Note then that it is under the hypotheses of Theofem There are
limit cycles only whenu > 0 and, in this case, they are given pﬁ ={r=1£/u}.
Furthermore their periods are
(o = 2n Cf2n (14 &ED)M 2+ o) if 0 =1,
W= T T Gymep2 = | 2n ifd=0.

Remark 13. It is clear from the proof of Theorerhl that the conditiondv; = 1 and
Wy # 0 correspond to require thdt is a double limit cycle. In fact it is not difficult
to verify (see [1,16]) that using the originét, y)-coordinates,

To
Wi = eXp(/o <Px (x(0), y(0); 0) + Oy (x(1), y(1); 0)) dt) ,

wheret —> (x(t), y(¢)) is the “time” parametrization of” and Tp its period. Thus
W1 is the characteristic exponent of.
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5. Saddle-node loop bifurcation

Consider a one-parameter family of vector fiel@$,},4 such that foru = 0,
Xo has a singularitypg which is a semi-hyperbolic saddle-node of multiplicity two.
Assume also that the vector fieldg presents a homoclinic orbif® connecting the
non-hyperbolic separatrix opg with its nodal sector, not through the boundary of
this sector. If the dependence (X} with respect tou is such that the saddle-node
presents the local saddle-node bifurcation then, for thoseich that the saddle node
disappears, a hyperbolic limit cyclg, emerges froml". This bifurcation is known as
the saddle-node loop bifurcationThis section is devoted to study the behaviour of the
period ofy, asu —> 0. The main result of this section is, essentially, a reformulation
of results in [6, pp. 1011-1013, 8]. It reads as follows:

Theorem 14 (Saddle-node loop bifurcatignLet {X,},c1 be a one-parametef> fam-

ily of planar vector fields such that

(a) For u =0, X has a semi-hyperbolic saddle-node popft of multiplicity twa

(b) The vector fieldXp has a homoclinic connectiorsay I', at po. This orbit I’
connects the non-hyperbolic separatrix of the hyperbolic sectopgfwith its
nodal sector but not through the boundary of this sector

(c) The family{X,},c1 provides a generic unfolding of the saddle-nddee Remark
15 for a precise formulation of this conditipn

Then there exists a neighbourhood U Iofand a neighbourhood V gi = 0 such that

for all u € V lying on one side oft = 0, X, has a unique periodic orbiy, in U,

which tends tol” as u — 0. Furthermore denoting its period byl (x), then

T (1) ~ To/v/ 11l

for someTy > 0. For all u € V on the opposite side gf = 0, X, has no periodic
orbits in U.

Proof. We take first a convenient normal form oKX} near the singularitypg. Thus,
on account of the assumption i), one can show (sef5,9] for instance) that for
eachk e N there exist aC* diffeomorphism®; such that, in some neighbourhood of
(po. 0) € R?x 4,

Xy = @0, (G (8060 (62 + o)) 0 + vy ) ), (11)

where f(x; ), g(x; 1) ando(u) areCk functions with £ (0; 0) g(0; 0) % 0 andx(0) =

0. Clearly we can assume thgt(0; 0) g(0; 0) > 0 (otherwise we reverse time). The
generic condition in(c) corresponds to require that(0) # 0. Let us fix for instance
thato/(0) > 0 (otherwise we perform the change in the parameter given by —u).

In this case it is well known (sef8] for instance) that foru=>0, a unique (hyperbolic

and stable) limit cycley,, bifurcates fromI'. In the study of the bifurcations in the two
preceding sections and, as we will see, also in the next one, the dominant term of the
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Xy, p>0

Fig. 1. Poincaré map in the saddle-node loop bifurcation.

period 7'(w) of the limit cycley, strongly depends on its distance Fowhen p. varies.
Fortunately, in this case, the leading term of the asymptotic behavio@ifof can be
computed without locating,,. This fact makes the study of this case easier than the
other ones.

Take anyk >1 and consider th&* diffeomorphism®; =:® given in (11). Define

ITi={d(=0,5):s € (—e,0)} and XT:={®(,s):5€ (-5 0)}.

For e > 0 andé > O small enough, it is clear that~ and X' are transversal
sections forXg to the homoclinic connectiod”. Thus the same happens faf, in

a neighbourhood of" and ¢ ~ 0. Note in addition that a Poincaré return map for
X, with p20 is well defined inX~. Let us denote this return map b§(s; u) and

its associated time function by (s; ). In order to study them we first consider the
Poincaré and time mappings &f, from X~ to 2" (see Fig.1), which we denote by
P;(s; w) andT;(s; p), respectively. More precisely, they are defined implicitly by means
of

@ (Ti(s; ), D(=0, 5); ) = P (0, Pi(s: ).,

where ¢(t, ¢; p) is the solution ofX,, passing througly R? at 1 = 0. Similarly, let
P.(s; w) and T,(s; u) be respectively the Poincaré and time mapping gffrom >t
to 27, which verify

@ (To(s; ), PO, 8); pt) = P (=0, Pe(s; ) .

Recall that, foru=0, there exists a periodic orbjt, which tends tol” as u tends to
zero. Note moreover that, has a unique intersection point wiffi-, which we fix to
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be @ (—d, s¢(w) for somes;(u) € (—¢,¢). It is clear thats;(u) — 0 asu — OF.
Notice in addition that the period of, is

T(w =T; (se(u); p) + T (Pi(se(p); 1); 1) - (12)

Due to the continuous dependence with respect to initial conditions and parameters,
the second term in the above equality tends to a constant value whemds to zero,
i.e.,

lim Te (Pi(se s ) p) = T, > 0, (13)
n—>

where TeF is the time that spends the homoclinic solutibrof Xo for going from X™
to 27

Let us turn now to study the first term i1Z), which tends to infinity ag — O*.
Taking (11) into account we can assert that

)

O R(x; W
T; (se(); ) Z/,(;m

where R(x; u):= 1/ (f(x; w) g(x; w)). Thus R(0; 0) > 0. To study this integral notice
first that

° RO 2RO
[(3 2+ o) dx = _a('u) arctan

) ~ 10 yith 1p:= KOO

0
Jaw ) VA VT O

On the other hand, by applying the mean value theorem,

Ty Ge(; i) Vi [0 R )

To )5 To (x2 + aw)
(% JERO:w " O JER: (E(x; )i p) x
5 To (x? + a(p)) —5 To(x2+aw) ’

whereé(x; u) is between 0 and, in particular insidegf—d, 6]. Notice at this point that
if we define K :=sup{R,(x: p): x € [-0, ], u~ 0}, then it turns out that

2x dx
X2+ a(u)

O JH R (E(x; p); wx

& + a(p)
—5  To(x%+a(w)

o)

<Kf/ =K./uln ,
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which one can easily verify that tends to zeroias— 0. Accordingly

: : 5 .
im LG p — 14 lim / VIR (EGx; s p) X
pu—0* To u—0tJ 5 To(x?+ a(w)

This, together with 12) and (13), proves that(u) ~ To/,/1 as desired. [J

Remark 15. The hypothesis ir(c) for the family {X,} in Theorem14 corresponds to
require that the function:(x) in (11) verifieso/(0) # O.

6. Saddle loop bifurcation

Let {X,}c1 be a one-parametél™ family of planar vector fields. Suppose that for
u =0, Xo presents a saddle loap, being the saddle pointg hyperbolic and strong
(i.e., divXg(0) # 0). This section is devoted to study, far~ 0, the dominant term
of the asymptotic development of the period of the periodic orbit that bifurcates from
I when the connection is broken. Note that the hyperbolicity of the saddle pgint
of Xq forces that, foru ~ 0, each vector field, has also a hyperbolic saddle point
pu- We denote byiz(u) < 0 < A1(p) its eigenvalues and by(u) = —A2(u)/21(p) its
ratio of hyperbolicity.

Theorem 16 (Saddle loop bifurcation Let {X,},c4 be an one-paramete€> family

of planar vector fieldsAssume that fon = 0, Xo has a hyperbolic saddle pointg

with hyperbolicity radior(0) > 1 (respectively r(0) < 1). Suppose also thakg has
a saddle connectignsay I', at pg. Under a generic assumptio(to be specified in
Remark 20), there exists a neighbourhood U &f and a neighbourhood V ofi = 0

such that for allx € V lying on one side of: = 0, X, has a unique periodic orbi,

in U, which tends tol" as u — 0. Furthermore denoting its period byl (u), then

T(w) =cInjul+ 0(D),

wherec = —1/71(0) (respectively c = 1/42(0)). For all u € V on the opposite side
of £ =0, X, has no periodic orbits inJ.

Let us point out that the assertions concerning the existence and locatipp of
are common knowledge (s€d,8]). For related results concerning the period )gf
see [3,11]. Our first goal will be to prove Lemma 18, that will provide us a con-
venient normal form to study the time and Dulac functions associated to the pas-
sage near a saddle point. This is an easy application of the following result of
Bonckaert [2]:
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Lemma 17. For eachk e N there existsK (k) € N such that if{Y,} is anyC> family
of vector fields verifying that

jK(k) (Y,u - X,u) (P,u) =0,

then the two familiegX,} and {Y,} are C* conjugate (This means that there exists a
Ck family of diffeomorphisme, such that(®,). (Y,) = X,..)

Lemma 18. Let {X,},c1 be the family defined abové&ix some parametep, € 4

and anyk € N.

(a) If r(ug) = p/q with (p,g) = 1, then there exists &~ family of diffeomorphisms
@, such thatin some neighbourhood dfp,,. 1) € R%x A,

1
Xu = (ép)*(m (xax + vg(u; ,U)av)>y

where f(u; p) and g(u; ) are polynomials inu := x?y? with coefficientsC*
functions inu. In particular it holds f(0; ) = 1/41(r) and g(0; p) = —r ().
(b) If r(up) ¢ Q then there exists & family of diffeomorphismg,, such that it holds

Xy = (@,u)*</11(ﬂ)x Ox + Z2(p) y ay)

in some neighbourhood fpy,, o) € R?x A.

Proof. Clearly we can assume that, = (0, 0) andjlxu(O) = 1) x Ox + Z2(1) y 0y
for all u. Fix some parameten, and letk € N be given. Consider in addition the
natural numberK (k) that provides Lemmd?.

Let us study first the case(yy) € Q0 and assume that(yy) = p/q with (p,q) = 1.
Recall (see [4] for instance) that the resonant monomials of drder the first and
second components df, are given respectively by

A1(w) = ni1(w) +miz(p) and Jz(w) = ni1(w) +mi2(w),

wheren +m =i >2. Consequently all the resonant monomials X, are generated
by the unique relatiorpl1(ug) + g42(ug) = 0. Thus, on account of the continuity of
r(p), there exists a neighbourhodd of p such that ifu € Ug then the resonances of
X, with order <K (k) are also given by /1(u)+¢42(n) = 0. Then, by using standard
techniques (see agafd]), we can construct a conjugatio@*¢ on x and analytic on

x and y) between{X,},cy, and

Xj = (xP(u; w0 +o(lx. y||’“’”)>ax + <yQ(u; w+o(lx, y||’“k>)>6y,
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where P and Q are polynomial inu := x”y? with P(0; u) = 21(x) and Q(0; u) =

J2(1). Next, by applying Lemmad7, we can assert the existence o4 conjugation
betweenX and

X2 = xP(u; Wy + yQ(us; 1)dy.

Consider now any € N verifying that (p + ¢) k + 1 > K (k). We define f (u; 1) and
g(u; p) as the Taylor polynomial of degree at u = 0 of

— and u — Q(u;,u)’
P(u; ) P(u; @

respectively. Therefore, since by construction we have that

= P(u: )+ o) and UM

JAUHD) fsw Q; ) + 0,

taking (p +¢) k + 1 > K (k) into account, Lemmad.7 shows thatXﬁ is Ck conjugate
to

X3:=
B flus

(x0x + yg(u; pdy) .

This completes the proof in the rational case.

Consider finally the case(uy) ¢ @ and note that theX,, has no resonant monomi-
als. Hence, due to the continuity ofu), there exists a neighbourhodéh of uq such
that if u € Up then X, has no resonant monomials of ord&rK (k). In this situation,
exactly the same way as before, we can construct a conjugation befWggpry, and

X} = (il(u)x +o(llx. y||K<")))ax + (iz(m y+0(lr, y||“">))6y-

Then, by Lemmal7, there exists a&* conjugation betweenX; and X7 := A1(u)

x Ox + Z2(u) y 0y. This shows the result in the irrational case and completes the
proof. [

Taking o = 0 and anyk >1, we consider theC* diffeomorphism® in Lemma 18.
Define

21={P(s,1) :5 € (—¢,¢)} andZr ={DP(1,s):5 € (—¢,¢)}.

For ¢ > 0 small enough, it is clear thaf; (respectivelyX,) is a transversal section
for X, in the stable (respectively unstable) manifold ygf.
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Fig. 2. Transversal sections in Definitidi®.

Definition 19. We denote the Dulac and time mappings associated to the passage from
21 to 2, for X, by P1 and Ty respectively (see Fig2). To be more precise, for each
s € (0, ¢) we definePy(s; u) and T1(s; 1) by means of the relation

@ (Ta(s: @), (s, s ) = @ (L, Pa(s; )

where ¢(z, ¢; 1) is the solution ofX, passing throughy e R? at r = 0. Similarly,
let P, and 7> be respectively the Poincaré and time mappings frbinto X, for
—X,. More precisely, for each € (0, ¢), we define Py(s; 1) and T>(s; p) by means
of @ (=Ta(s; W), (s, 1); ) = @ (L, Pa(s; w)).

Let us point out thatTy and T» are positive functions. It is well known thatP,
and T», which are only well defined fou ~ 0, are C* functions ats = 0. Note in
particular that

Po(s; ) = ao(p) + a1(p)s 4+ o(s) with ag(0) =0 anday(0) # 0.

Remark 20. The generic assumption in the statement of Theofnis a(0) # 0. It

is important to note that this condition does not depend on the particular transversal
sectionsX1 and 2, used to defineP,. We construct them using the normal form only
for convenience.

Definition 21. Let g(s; x) be ac! function in (0, €) x A for somes > 0. We shall say
that g belongs toB if setting g(0; ) := 0 theng is a C* function at (s; u) = (0; pg)
for up ~ 0 and g,(0; i) = 0. In other wordsg € B if there exists &' function g in
(—e&,8) x A with g(0; p) = g,(0; ) = 0 such thatg(s; p) = g(s; p) for s > 0. (Note
that if g € B, then it also holdsg,(0; ug) = 0 for ug ~ 0.)
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Definition 22. The function defined fos > 0 ando € R by means of

=L if a £ 0,

M“”z{—msﬁxzq

is called the Roussarie—Ecalle compensator.

It is well known that in general the function8; and Tj, involved in the passage
near the saddle point, are not smoothsat 0. Concerning these functions we shall
prove the following:

Proposition 23. With the definitions introduced abgve

(@) If r(0) > 1then Pi(s; u) = s W (1+ Wq(s; u)) and T1(s; u) = %(lu) In s4+o(s; w
with y; € B.

(b) If r(0) =1 then settingo () = 1 — r(uw),

Pi(s; ) = s <1 + op(wsw (s; o1 (1) + P (s; u)>,
and

Ta(si 1) = 7505 INs + Br(wso (s a1 () + Palsi ),

wherey; € B and o2 and f3; are C*.

In order to prove Theoreni6, about which we recall that it deals with the case
r(0) # 1, it is enough to consider the cas€0) > 1. As we will see, the assertion
concerning the case(0) < 1 is straightforward once it is proved the one f@0) > 1.

This is the reason why Proposition 23 does not contemplate the r¢@se< 1. On

the other hand, since little effort has to be made to study also ther¢@se- 1, we
include it for the sake of completeness. Let us also point out that to prove Theorem
16 it suffices that the functio, in Proposition 23 is bounded for ~ 0. We show

that ¥, € B because we think that it is an interesting result by itself. Finally it is
worth noting thatf; anday are related to the polynomialf(x; 1) and g(u; ) of the
normal form that we use in the resonant case (see (a) in Lemma 18). More concretely,
p1(w) = fu(O; ) and oo(n) = gg.(0; ). So we prefer to keep the notation of the
proof although they are unspecified in the statement.

In the proof of Proposition 23 we shall use the following result:

Lemma 24. Let a(u) and f(u) be C* functions in a neighbourhood qf = 0 with
%(0) = 0 and (0) > 1. Then the functionG(s; u) = sP®ew (s; a())" belongs toB
for anyn € N.
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Proof. Define G(0; n) := 0. To show the result it is convenient to write the Ecalle—
Roussarie compensator as

e -1

w@s; o) = F(eln s)Ins with F(u):=

It is easy to verify that F (u)|<e*! and|F'(u)|<e™!. Then, using the first inequality,
it turns out that|G(s; w)| = |sFWOF (a(u) In s)"* (In 5)"| <sPW-n12Wl(n 5)". Hence,
since $(0) — n|a(0)| > 1,

0G(0; . G(s;
Mzhm M:Ofor‘uowo.
0s s—0 Ky

It is clear in addition thaiG(0; ug) = 0. On the other hand, by using also the bound
for F’, some computations yield to

‘@‘ <sPUOWNin 5y (B () + no! ()
u

and

‘@‘ < ((ﬁ(,u) + no(w) Ins + n)sﬁ(“)”la(“)l(ln s L
s

Note that both upper bounds tend to zero(asu) — (0, ug) with pg ~ 0 because
p0) > 1 andx(0) = 0. ThusG,(s; p) — 0 and G (s; u) — 0 as(s, u) — (0, pp)
and so the result follows. [

Proof of Proposition 23. Recall that the diffeomorphisn®, which we use to define
X1 and Xy, verifies X, = &, (Xﬁ’) WhereXﬁ’ denotes the normal form of,. This

normal form depends on(0) ¢ @ andr(0) € Q. In the first caseXﬁ’ = 21(W)x0y +
J2(w)yd, and one can easily show, without using tha®) > 1, that Pi(s; p) = s™®
and Ti(s; p) = ﬁ In s.

So consider the casg0) € @ and assume that(0) = p/g with (p,q) = 1. Let us
fix that the functions that appear ik are

1

flu; = )

n . 1 .
+ Y B and gus ) = —r(p) + . D ot
i=1 i=1
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where recall that: = x?y4. It will be clear later the reason why we fix the coefficients
of g(u; w) in this way. For the same reason it is convenient to introduce

o1(p) = p — qr(p.

Note that the coefficients; and f5; are C* functions defined foru ~ 0 and that
«1(0) = 0.

Let us show first the result concerning the Dulac map. It follows from the tools
developed by Roussarie [12] to prove the so called Mourtada’s form for the Dulac
map (see also [5,10]). Indeed, according to Propositions 10 and 11 in [12] there exist
k € N andy € B such that

Koo 1/q
Pi(s; ) = s"® (1 + ) 5P Qilss )+ Y(s; u)) : (14)

i=1

where eachQ; (s; 1) is a polynomial of degreeli in w (s; «1(u)) with its coefficients
polynomial inay(p), ..., %+1(w). In particular one can easily verify thad(s; u) =
a2 (o (s; a1 (p)). For eachi we consider the function

(s3 ) —> s Q; (53 ). (15)

Assume first that(0) > 1, and note that in consequenge>2. Thusip >2 and hence,
by applying Lemma24, the function in (15) belongs tB6 for anyi. On account of (14)
this easily shows that the assertion concernfags; 1) in (a) is true. In order to prove
the one in(b) note thatr(0) = 1 implies thatp = ¢ = 1. According to (14), since
01(s; w) = ax(ww (s; a1 (w)) , it suffices to verify that the function in (15) belongs to
B for i >2. However, by applying Lemma 24, this is also clear because ither?.

Let us study next the time functiofiy associated to the passage through the saddle.
Notice thatTi(s; w) is precisely the time that spends the solutioanﬁf passing through
(s, 1) to reach{x = 1}. Consider the family of vector field¥, := xd, + yg(u; n)0y,
which it is clear that provides the same foliation X5 . To study the solutions of),
we follow the same approach as Roussarie [12] for the Dulac map. We thus perform
the singular change of variablds = x,u = xPy?}, which one can easily show that
brings Y, to

{ X =x,
= 271—11 o () u'.

Note that this differential system has separated variables. The solution of the first
equation isx(z, xp) = xpe’. Let us denote byu(z, ug; 1) the solution of the second
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equation passing througly at r = 0. This solution can be expanded as
0 .
u(t,uos ) = Y gi(t: pwug, (16)
i=1

In particular one can easily verify thgt (r; u) = ¢*1®!, Moreover Lemma 19 ifj12]
shows that there exist positive constaftsand Cg such that

lgi (t: 1)) < Co (Ce’/2>l for 1>0 andpu ~ 0. (17)

This implies that 16) is convergent forlug| < =37 and, since )2, r’ < 1 for
0<r<1/2 that

(18)

. 1
|M(I,M0,H)| < CO |f |I/t()| < W

Note at this point that, on account af—Ins,s) =1 and¥, = f(u; p X,’}’ we
have that

—Ins
T1(s; p =/0 [ (u(, sP; w; p) dr.

In order to study this function let us first note that

1 ad .
f(ult, ug; w3 w) = er;ai(t;u)u’o, (19)

with

ai(t) = Pr&i+ P2 D gm0 gmp(0)

my+mp=i
ot By Y gm() g, () (20)

mi+...+my=i

In the above equality (and in the sequel when there is no risk of ambiguity) we omit the
parameter dependence for the sake of shortness. Note in particulan that [f1¢™".
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The above expansion yields to

o]

1 —Ins )
Ti(s; p) = — In i (t; Pt dt.
1(s3 1) 0 s ~|—/0 ;a (t; ) s

Our next goal is to commute the sum and integral in the above expressiBi{sofi).

To this end note that, since — f(u; 1) is polynomial, the series in1Q) has the
same radius of convergence than the one in (16). Consequently, on account of (18),
if we define Cy := sup{| f(u; w|: |u| <Co, u ~ 0} then by applying Lemma 6 with

R = 51, it follows that

la; (t; w)| < C1(2Ce''?)! for t>0 and u ~ 0. (21)
This easily shows that the condition in Lemmais verified and hence that
—Ins

1 S
Ti(s; ) = _T(H) Ins + ;sp /0 ai(t; wdt (22)

for s > 0 small enough. In order to develop the above expression we take advantage of
Proposition 10 in[12], which shows thag; (t) = ¢*/ Q;(¢t) where Q; is a polynomial
of degree<i — 1 in

ecflt_l .
=== if oy #0
Qoq, t) = o . ’
(00, 1) { t if e1 =0
with its coefficients polynomial invy, ..., «;. Consequently from20) it follows that

ai(t) = Bre™ PHQ) + Boe® ' PA(Q) + - -+ + B, P/ (Q),

where Pij is a polynomial of degreé — j in Q with its coefficients polynomial in

o1, o2, ..., 0 for j<i and Pl.j = 0 for j > i (here we use that whep > i there is
not any combination of natural numbers verifying:1 +...4m; = i). Note moreover
that the chang€ = Q(u1, r) yields to

—Ins . @(s;01) . .
[ e @ = [ e+ v R @ a
0 0
and accordingly this proves that

—Ins
f ai(t; W dt = R; (w(s; a1)) . (23)
0
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where R; is a polynomial of degree with its coefficients polynomial i, ..., o; and
f1s ..., B;. Thus, if we define

00 ) —Ins
Y(s; )= Zsp’ /0 a; (t; p) dt, (24)
=3

then, on account of the expression®f(s; w) in (22) and the relation in (23), we get

-1
A1(u)

Ta(s; ) = In s + 57 Ry ((s; 01)) + 527 R (0(s; 00)) + Y (s 10). (25)

Next we shall see that € 13, and to this end we need the following:

Claim 1. There exists a positive consta@ such that

0Oa; (t; '
ai(t; ) “)‘ <C3 <8Ce’/2>l for t>0 and u~ 0.
o

Since the proof of this claim is rather technical, for the sake of clarity in the
exposition we defer it until we show the assertions concerning the time function. Some
computations, using the above claim ari), show that ifu ~ 0 then

—Ins . —Ins X .
5P / ai(t; w dt| <C1(2CsP)! / e'?dt <AC1(2CsP Y2, (26)
0 0
d ) —Ins ) —Ins da;: t: )
'— <s’” / ai(t;,u)dt) <P / M‘dt<4C3(8Csp_l/2)’ (27)
du 0 0 du

and

—Ins
pi/ ai(t; W dt —a;(—Ins; p)
0

d - p—Ins )
= (sp’/ a; (t; ,u)dt)’ = ghit
s 0

i i1 .
<Pt (zcsl’—l/z)’. 28)
S

(To obtain these inequalities we assume that © < 1.) Define /(0; u):= 0 for all p.
Note that from 26) we get that, fory ~ O,

3
13 i 1 (2csP=1/2)
< im = p—1/2) _ T S S
<acy fim, 03 (205" VR =dcyimy S e

lim

s—0

V(s to)
S
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becausep >1. Therefore

M(OV”O) = 0. The inequality in 28) shows on the other

hand that we can comput%ﬁ derivating (24) term by term and thém — 0 as
(s, 1) — (0, ug). Accordmgly 8‘” is continuous ai0, uy). Exactly the same way but

using (27) one can easily verlfy th%% is also continuous. This proves thate B as

desired.

We are now in position to conclude the proof of the assertions concerning the time
function. Suppose first that(0) > 1 (i.e., p/¢ > 1). Then p>2 and Lemma 24
shows thats?” Ry (w(s; 1)) and s2” Ro (w(s; 1)) belong to. On account of (25) this
proves (a). Assume finally thatr(0) = 1. Then p = 1 and, again by Lemma 24,
$%R (w(s; 01)) € B. This proves(b) because, due tgi(r; u) = ¢! it is easy to
check thats Ry (o(s; a1)) = fisw(s; aq).

Finally we must show Claim 1, and to this end we use an intermediate step:

can be written as a

Claim 2. For any >0 and u ~ 0, the functionug —> ‘3“(’5—‘:”‘)

power series inug with radius of convergence greater thad%%z and there exists a
positive constantC, such that

< Co if |uol < (29)

1
8Ce!/2’

Ou(t, uo; 1) ‘

To see this note that, settingu; ©):=>; 110(,(,u)u’ Landg(u; p): Z”“ ’(,u)u
then the functiory — &‘“L—‘;f’” is the solution of the linear differential equation

x'(1) = p (u(t, uo; W @) x(1) = g (u(t, uo; 1); 1)

with initial condition x(0) = 0. (Here we apply the theorem on differentiability of
solutions with respect to parameters.) Consequently one can verify that

0 ; [
Oult. uoi ) _ exp< /O P (u(s, uo)) d5>

o
t s
X {/O q (u(s, uo))exp<—/o p (u(&, uo)) d5>dS}- (30)

Notice that, sincer —> p(u; p) is polynomial, the seriep (u(&, ug)) = Y524 pi (Euf)
is convergent folug| < ﬁ In addition, if we defineCl:= sup{|p(u; ,u)|' lu| < Co,
u =0}, then from (8) we have thaup(u(f, ug)) | < C4 for Jugl < W Thus,

by applying Lemma 6 withR = W’ we can assert thatp; (&)| < C2(2Ce§/2)’.
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Therefore

‘ /0 p (u( uo)) dé‘ <) fo |Pi(OupldE<Cy ) /O (2ce2ugl) ¢
i=1 i=1

lY/2

= ZCZZ > (2Cluol)

o .
< 4c5y" (20 Pluol) (31)
i=1

(Here we use Lemm& in the first inequality.) In particular, by applying Lemma 4,
this shows that the series

/0‘ p (& ug)) dé = ; (/O pi@dé) ufy

is convergent forug| < Consequently, since —> e~ is an entire function,

the series

_1
2Ces/2"

exp(—/o (u(&, uo)) di) sz(S)uo

is also convergent fofug| < ZC%Z On the other hand, sinc® 2, r’ < 1 in case
that 0 < r < 1/2 from (31) it is also clear that the above function is bounded by
e*C2 for lug| < Wg Notice moreover thay (u(s, uo)) = Y ;=4 qi (s)ug has radius of
convergence greater tha@ex—/z becausa: — ¢ (u; p) is polynomial. We can conclude

therefore that
q(u(s,uo»exp(— /0 p(u(é, uo)) dé) Zq,(s)uo

is convergent fofug| < W Note also that if we defin€ := sup{lq (u; w)!: lu| < Co,
w~ 0} then, due to 18), this function is bounded bycge“cz for |ug|l < ﬁ
Thus by applying Lemma 6 again, now witR = it turns out that|g; (s)| <

CYe*C2 (4Ce*/2)'. In addition,

t ) o t ) , t i
/Z(ji(s)ubds < Zf |q,~(s)u6|ds<cge4022/ (4Ces/2|uo|) ds
0 iz i=170 i=170

_1
4Ces/2”
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/ ad eit/z -1 P
= 2052 " ——= (4Clug))’
— [

oo

< 4CyAE Y (4cef/2|uo|)’ : (32)
i=1

(Here we use Lemma in the first inequality.) According to Lemma 4 this shows that
the series

o0

t s t
/o q(u(s,uo»exp(— /0 p(u(E, uo)) dé)ds=z< fo cii(s)ds>u

i=1

is convergent forjug| < WZ It is clear then that the functlon between brackets in

(30) can be written as a convergent seriesdn= 0 for |ug| < W Note in addition

that, on account of (32), it is bounded bngle“cé for |ug| < 8Ce’/2' On the other
hand, from (31) taking = ¢, it follows that

t
eXp(f P(M(S, uo)) ds) < e4C2 for lug| < 4cir/2
0 :

and, sincex — ¢* is entire, that this function can be written as a serieggir= 0 with
radius of convergence greater th%é,—/z. In brief, we have shown thazf—L u(t, uo; )
is the product of two series with radius of convergence greater ggéﬁg and that
| utt ugi I < Ca for Juol < gekyy with Cpi= (4cge4cé). This shows the
validity of Claim 2.

We are now in position to prove Claim 1. To do so note first that if we define
filu; )= % and fa(u; p):= %‘;“) then from (L9) we obtain that

V)

G2 (33)

= da; (t; ; ;
S22 Gt o ) 2O g Gt uos ) + A
i o on

Recall in addition that(z, ug; 1) and “‘(‘+") can be written as a series i =0

with radius of convergence greater thgfgl—z (This follows from (7) and Claim 2
respectlvely) Consequently the series in (33) has also radius of convergence greater

than ice ,/2 because eaclf; is polynomial inu. Now if we define

i/
folu; ) + —=| : |ul <Co,,u%0}

C3:= SUIO{Ifl(u wlCa +
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then, taking the upper bounds i18) and (29) into account and applying Lemma 6
1

with R = B2 the claim follows. O
Proof of Theorem 16. Since the transversal sectio®s and X» areCk, with k>1, it
is well known thatP, and T» are C* functions ats = 0 (see Fig.2). It is also clear
that if

Pa(s; ) = ao() + a1(ws +0(s) and To(s; i) = bo(w) + ba(p)s + 0(s)

are the respective Taylor's developmentssat 0, then it holdsag(0) = 0, a1(0) > 0
and bp(0) > 0. The (generic) assumption that we make is #fgD) # 0.
Let us consider first the cas€0) > 1 and define

F(s; )= Pr(s; ) — Pa(s; ) and T (s; ) := Ta(s; ) + Ta(s; ).

Thus, forpg ~ 0, the periodic orbits ofX,, near the saddle connectidnare precisely
the positive roots ofF(s; ug) = 0 nears = 0. In addition, if F(so; g) = O then the
period of the corresponding periodic orbit is given BYso; 1p). The idea will be to
track down the periodic orbits by applying the Implicit Function Theorem#toTo

this end note that, by (a) in Propositi@3, Py is the restriction tos > 0 of a function,
say P1, which is C! on neighbourhood ofs; 1) = (0; 0) and verifies

- 0P1(0;0) 0Py (0;0
,(0: 0) = 1; )= 15(u )=0

(Here we took Definition21 into account.) To be precise, we shall apply the Implicit
Function Theorem using this “extended” function instead of the original one. However,
to avoid introducing new notation, let us maintain the nameFofThus, since

F(0;0) =0, F,(0;0) = —a1(0) # 0 and F,(0; 0) = ap(0) # O,

by the Implicit Function Theorem, there existsCa function x;(x), defined foru e
(—¢, ), verifying that F (x;(u); 1) = 0. We can assert in addition that

/
0
x; () = cu+o(w) with ¢:= __ao( ).
a1(0)
Consequently, ifc > 0 (respectivelyc < 0) then the solution ofX,, passing through
@ (x;(w), 1) is a limit cycle for u € (0, ¢) (respectivelyu € (—¢,0)). It is also clear
that, in each case, the period of this limit cycle is given Byu) := T (x;(1); ).
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Finally, by applying (a) in Propositio23, some computations show that

-1
/1(0)

T(w = Inful+ O(2).

_In order to prove the assertion whex0) < 1 we take the family of vector fields
X, := —X,. Following the obvious notation, it is clear thai(u) = —42(w) and

J2(p) = —A1(u). Consequentlf(uw) = 1/r(u), and so the assertion follows by applying
the result in case of ratio of hyperbolicity greater than oriel.
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