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Abstract

The generic isolated bifurcations for one-parameter families of smooth planar vector fields
{X�} which give rise to periodic orbits are: the Andronov–Hopf bifurcation, the bifurcation from
a semi-stable periodic orbit, the saddle-node loop bifurcation and the saddle loop bifurcation. In
this paper we obtain the dominant term of the asymptotic behaviour of the period of the limit
cycles appearing in each of these bifurcations in terms of� when we are near the bifurcation.
The method used to study the first two bifurcations is also used to solve the same problem
in another two situations: a generalization of the Andronov–Hopf bifurcation to vector fields
starting with a special monodromic jet; and the Hopf bifurcation at infinity for families of
polynomial vector fields.
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1. Introduction

In this paper we consider one-parameter families of analytic vector fields and study
the dependence, with respect the parameter, of the period of the limit cycles appearing in
the most elementary bifurcations. To fix the concepts, let us introduce some definitions.
For anym ∈ {1,2,3, . . . ,∞,�}, let Cm(K) be the space of planar vector fields

with the corresponding regularity and defined on a given compact setK. As usual, we
can endowCm(K) with the topology of the uniform convergence, taking into account
the vector field and all its derivatives up to orderm. In this setting, form�3, it is
said that a givenX0 ∈ Cm(K) has first degree of structural instability in Kif it is
structurally unstable inK whereas any vector field inCm(K) sufficiently close toX0
is either structurally stable or topologically conjugated toX0 (see[1]).
Take m�3 and consider a one-parameterCm-family of vector fields in Cm(K),

{X�}�∈�, such thatX0 has first degree of structural instability. All the possible bifur-
cations appearing in the family for� ≈ 0 are listed in [1,7,13]. Among them there
are isolated and non-isolated bifurcations (see [1,14] for details). In this paper we will
only study the isolated ones and among them we are just interested in the ones giving
rise to periodic orbits. From now one we will refer to them aselementary bifurcations.
They are: (i) The Andronov–Hopf bifurcation, (ii) The bifurcation from a semi-stable
periodic orbit, (iii) The saddle-node loop bifurcation, (iv) The saddle loop bifurcation.
Although, as we have said, the above list does not include the non isolated bifurca-

tions, from the local viewpoint the limit cycles appearing from them are not different
from the ones appearing from semi-stable periodic orbit bifurcations.
From now on we will assume that our family of vector fields is inC�(K) and

that the dependence on� is also analytic. It is worth to notice that for some of the
results given in this paper less regularity is needed. For instance, in the study of the
saddle-loop bifurcation only theC∞ dependence of the vector field with respect to� is
needed, or in the study of the Andronov–Hopf bifurcation only derivatives up to order
three of the return map are used (so the result proved in this case also follows for
C4-families of vector fields).
In what follows we denote byT (�) the period of the periodic orbit arising from an

elementary bifurcation and recall that we are interested in its behaviour as� −→ 0.
It is clear thatT (�) tends to constant in the first two cases and to infinity in the last
two. Consequently, in cases (i) and (ii) we can expect some kind of Taylor expansion
for T (�), and in cases (iii) and (iv) an asymptotic development. We will only study
the dominant terms ofT (�). These terms constitute what we call theprincipal termof
the asymptotic expansion. As usual we use the notationT (�) ∼ a + f (�) as � −→ 0
meaning that lim

�→0
(T (�)− a)/f (�) = 1.

Until now we have said nothing about the concrete one-parameter families that
we consider. It may happen for instance that the family{X�} does not present any
bifurcation althoughX0 has first degree of structural instability. So in each case we
need a condition on� that forces the family to present one of the four bifurcations listed
above. This condition will be given in detail in the statement of the corresponding result.
Let us advance however that roughly speaking the condition is that when� changes
sign then, in the corresponding case,
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(i) the origin reverses its stability,
(ii) the solution starting at a given point of the semi-stable limit cycle goes, after a

complete turn, from inside the limit cycle to outside the limit cycle,
(iii) the saddle-node presents the well-known saddle-node bifurcation of the critical

point,
(iv) the loop breaks and the separatrices forming the loop change their relative position.
Furthermore we will also assume that the above bifurcations occur in the “most generic
way”. We will say in this case that the above one-parameter families presentgeneric
elementary bifurcations.
The results of this paper show that, essentially, the principal term of the period of the

periodic orbit arising from generic elementary bifurcations characterizes the bifurcation.
More concretely, the principal term of the period is given in the following list:
(i) Andronov–Hopf bifurcation:T (�) ∼ T0 + T1� (see Theorem7).
(ii) Bifurcation from a semi-stable periodic orbit:1 T (�) ∼ T0 + T1

√
� (see Theorem

11).
(iii) Saddle-node loop bifurcation:T (�) ∼ T0/

√
� (see Theorem14).

(iv) Saddle loop bifurcation:T (�) ∼ T0 ln � (see Theorem16).
Let us point out thatT0 = 0 in all the expressions above and that, althoughT1 is
generically nonzero, it may be zero (see Examples 8 and 12). It is also to be mentioned
that the results in (i) and (iii) are more or less common knowledge. The proof of(iv)

is the most difficult part of the paper and it strongly relies on the techniques introduced
in [12].
The proofs of cases (i), (ii) and (iv) follow a similar scheme. Firstly we translate the

problem of the existence of the periodic orbits to a problem of solving an equation.
Afterwards, some variant of the Implicit Function Theorem is used to locate the limit
cycles and to obtain the dependence with respect to� of the distance of the limit cycle
to the limit set at which the bifurcation occurs. The last step consists in computing the
period of the located limit cycle. The first two steps can be avoided to study the case
(iii) because, curiously enough, the principal term of the period of the limit cycle in
this bifurcation does not depend on its exact location. It is also worth to mention that
the study of cases (iii) and (iv) is based on the knowledge of a good normal form of
the family {X�} near the singularity of the loop that exists forX0 (see expression (11)
in proof of Theorem 14 and Lemma 18, respectively).
From the applied point of view, this kind of information concerningT (�) can be

useful to estimate parameters associated to a system. Suppose that a vector fieldX� is
a good model for somerealistic phenomenon, being� an experimentally controllable
parameter, and assume that there exist other parameters gathered in� ∈ Rp that need to
be estimated. This occurs, for instance, when studying neuron activities in the brain with
the aim of determining the synaptic conductances� that it receives. In the experiments,
by injecting different external currents (which would correspond here to�), people is

1 In this case there appear two periodic orbits and their periods have similar principal terms, only the
sign of T1 changes from one orbit to the other.
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able to extract information about the period of the oscillations of the voltage of the
cell. So one hasT (�i , �) for i = 1, . . . , q (where generallyq > p) and some kind
of regression is needed to estimate�. Then the (analytical) knowledge ofT (�i , �) is
determinant to do this regression/estimation properly.
Let us conclude this introduction by noticing that the tools developed to study the

Andronov–Hopf bifurcation are also useful to study another two bifurcations. The first
one is a generalization of the Andronov–Hopf bifurcation that occurs in one-parameter
families of vector fields whose first non zero jet is of order 2p+1. For these bifurcations
it follows that T (�) ∼ T0/�p (see Theorem7). The second one is the so-called Hopf
bifurcation at infinity (see [15]). This bifurcation occurs in one-parameter families of
planar polynomial vector fields of degree 2p+ 1. It consists essentially in the creation
of a periodic orbit from infinity due to a change of its stability. In this case (see
Theorem 10) we have thatT (�) ∼ T0�p. Both bifurcations are studied in the same
section that the usual Andronov–Hopf bifurcation.
The first author wants to thank Jorge Sotomayor for stimulating discussions, main-

tained some years ago, about similar problems which motivated the present paper.

2. Preliminary results

In this paper the one-parameter family of analytic vector fields will be denoted by
{X�}�∈� whereX�(x, y) = P(x, y;�) �x +Q(x, y;�) �y with (x, y) ∈ R2 and� ∈ �,
being� ⊂ R an open interval containing zero. It defines the analytic planar differential
system


ẋ = P(x, y;�) = ∑

n�k

Pn(x, y;�),

ẏ = Q(x, y;�) = ∑
n�k

Qn(x, y;�),
(1)

wherePn andQn are homogeneous polynomials of degreen in x andy andk ∈ N∪{0}.
In the sequel we include several results used along the paper. The following two lemmas
are corollaries of the Implicit Function Theorem.

Lemma 1. Let D(x,�) be an analytic function in a neighbourhood of(0,0) ∈ R2

verifying

D(0,0) = Dx(0,0) = 0 and Dxx(0,0)D�(0,0) = 0.

Then there exists a neighbourhood U of(0,0) and an analytic function�, defined for
|�| small enough, satisfying

�(0) = 0 and �′(0) =
√
2

∣∣∣∣ D�(0,0)

Dxx(0,0)

∣∣∣∣,
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and such that:
(a) In case thatDxx(0,0)D�(0,0) < 0 thenD(x0,�0) = 0 with (x0,�0) ∈ U if and

only if �0�0 and eitherx0 = �
(√

�0
)
or x0 = �

(−√
�0
)
.

(b) In case thatDxx(0,0)D�(0,0) > 0 thenD(x0,�0) = 0 with (x0,�0) ∈ U if and
only if �0�0 and eitherx0 = �

(√−�0
)
or x0 = �

(−√−�0
)
.

Proof. Let us prove first (a). SinceD(0,0) = 0 andD�(0,0) = 0, by the Implicit
Function Theorem, there exists an analytic function�, with �(0) = 0, such that
D
(
x,�(x)

) = 0 for all x. TakingDx(0,0) = 0 into account, one can easily verify that
�′(0) = 0. Then a straightforward computation shows that�′′(0) = a, where

a := −Dxx(0,0)
D�(0,0)

> 0.

Consequently�(x) = a
2 x

2 + o(x2). Note in addition that, for(x0,�0) ≈ (0,0),
D(x0,�0) = 0 if and only if �0 = �(x0). This shows, due toa > 0, that �0�0.
On the other hand, it is clear that the function

f (x) := x

√
�(x)
x2

,

which is analytic forx ≈ 0, verifies �(x) = f (x)2, f (0) = 0 and f ′(0) = √
a/2.

Accordingly �0 = f (x0)
2. Thereforex0 = f−1

(√
�0
)
in case thatx0�0 and x0 =

f−1
(−√

�0
)
otherwise. This, setting� := f−1, shows(a).

Part (b) follows from applying (a) to the functioñD(x,�) := D(x,−�). �

Lemma 2. Let D(x,�) be an analytic function in a neighbourhood of(0,0) ∈ R2

verifying

D(0,�) = Dx(0,0) = Dxx(0,0) = 0 and Dxxx(0,0)Dx�(0,0) = 0.

Then there exists a neighbourhood U of(0,0) and an analytic function�, defined for
|�| small enough, satisfying

�(0) = 0 and �′(0) =
√
6

∣∣∣∣ Dx�(0,0)Dxxx(0,0)

∣∣∣∣,
and such that:
(a) In case thatDxxx(0,0)Dx�(0,0) < 0 thenD(x0,�0) = 0 with (x0,�0) ∈ U and

x0 = 0 if and only if �0�0 and eitherx0 = �
(√

�0
)
or x0 = �

(−√
�0
)
.

(b) In case thatDxxx(0,0)Dx�(0,0) > 0 thenD(x0,�0) = 0 with (x0,�0) ∈ U and
x0 = 0 if and only if �0�0 and eitherx0 = �

(√−�0
)
or x0 = �

(−√−�0
)
.
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Proof. SinceD(0,�) ≡ 0, there exists an analytic functioñD(x,�) such thatD(x,�) =
xD̃(x,�). Now, on account of

D̃�(0,0) = Dx�(0,0) and D̃xx(0,0) = 1

3
Dxxx(0,0),

the result follows from applying Lemma1 to the functionD̃. �
Next result studies a special type of differential equations on a strip. As we will

see, this type of differential equations will appear when we study the Andronov–Hopf
bifurcation, the generalized Hopf bifurcation, the Hopf bifurcation at infinity and the
bifurcation of semi-stable periodic orbits.

Lemma 3. Let A(r, �;�) and B(r, �;�) be analytic functions onR× [0, �] ×� with
A(0, �;�) = 0 and B(0, �;�) > 0. Consider the system of ordinary differential equa-
tions 

dr

dt
= A(r, �;�) rm,

d�
dt

= B(r, �;�) rm,
(2)

wherem ∈ Z. Associated to(2), consider

dr

d�
= A(r, �;�)
B(r, �;�)

=:
∑
i�1

Ci(�;�) ri . (3)

For x small enough, let r(�, x;�) be the solution of(3) satisfyingr(0, x;�) = x and
denote byT (x;�) the time t that spends the solution of(2) starting at(r, �) = (x,0) to
arrive to � = �. Thenr(�, x;�) is an analytic function atx = 0 verifying r(�, x;�) =
x
∑
i�1 ri(�;�)xi−1 where

r1(�;�) = exp

(∫ �

0
C1(�;�) d�

)
, r2(�;�) = r1(�;�)

∫ �

0
C2(�;�)r1(�;�) d�

and

r3(�;�) = r22(�;�)/r1(�;�)+ r1(�;�)
∫ �

0
C3(�;�)r21(�;�) d�.

In addition, T (x;�) = T̂ (x;�)/xm where T̂ is an analytic function atx = 0. Finally
if we setB(r, �;�) = ∑

i�0Bi(�;�) ri, then it holds

T̂ (0;�) =
∫ �

0

d�
rm1 (�;�)B0(�;�)
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and

T̂x(0;�) = −
∫ �

0

(
r1(�;�)B1(�;�)

B0(�;�)
+m

r2(�;�)
r1(�;�)

)
d�

rm1 (�;�)B0(�;�)
.

Proof. That r(�, x;�) is analytic atx = 0 follows from using thatB(0, �;�) > 0
for all � ∈ [0, �]. Notice moreover that, on account ofA(0, �;�) = 0, r(�, x;�) =
x r̂(�, x;�). The concrete expression of the functionsri(�;�) in the statement follow
easily by solving the recurrent ordinary differential equations obtained by replacing the
expansion ofr(�, x;�) in (3). (These computations are not included here for the sake
of brevity.) Note next that, from (2),T (x;�) = x−mT̂ (x;�) with

T̂ (x;�) :=
∫ �

0

d�

r̂(�, x;�)mB
(
xr̂(�, x;�), �;�

) .
Since r̂(�,0;�) = r1(�;�) > 0 andB(0, �;�) > 0 for all � ∈ [0, �], it is clear that
T̂ (x;�) is analytic atx = 0. Finally, on account of̂r(�, x;�) = ∑

i�1 ri(�;�)xi−1

andB(r, �;�) = ∑
i�0Bi(�;�) ri, some easy computations show that

T̂ (x;�) =
∫ �

0

(
1−

(
r1(�;�)B1(�;�)

B0(�;�)
+m

r2(�;�)
r1(�;�)

)
x + R(�, x;�)

)
d�

rm1 (�;�)B0(�;�)

with lim
x→0

R(�, x;�)/x2 = 0 uniformly on�. This proves the expression of̂T (0;�) and

T̂ ′(0;�). �
The next three lemmas are well-known results. They will be used in the study of

the saddle loop bifurcation.

Lemma 4. Let E be a measurable set ofR and consider a collection of measurable
functions{fn}n∈N. If

∫
E

∑∞
n=1 |fn(x)| dx < ∞ then

∫
E

∞∑
n=1

fn(x) dx =
∞∑
n=1

∫
E

fn(x) dx.

Lemma 5. Let E be a measurable set ofR and consider a collection of measurable
positive functions{fn}n∈N. Then∫

E

∞∑
n=1

fn(x) dx =
∞∑
n=1

∫
E

fn(x) dx,

where the infinity value is also allowed.
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Lemma 6 (Cauchy’s estimates). Let f (z) be an analytic function onDR = {z ∈ C :
|z| < R} such that, for all z ∈ DR, it holds f (z) = ∑∞

i=0 aiz
i and |f (z)| < M. Then

|ai | < M/Ri for all i.

3. Hopf-like Bifurcations

This section is devoted to study two similar bifurcations: a generalization of the
Hopf bifurcation at the origin in Section3.1 and the Hopf bifurcation at infinity for
polynomial vector fields in Section 3.2.

3.1. Generalized Andronov–Hopf bifurcation

Hopf-like bifurcations typically occur when a monodromic singular point (i.e., such
that a Poincaré map can be defined in a neighbourhood of it) reverses its stability as
the parameter varies.
Let us suppose that there exists an open interval� containing zero such that the

vector fieldX� has a monodromic critical point with no characteristic directions for
all � ∈ �. It is not restrictive to assume that the critical point is fixed at the origin
and that its associated differential equation can be written as in (1), beingk an odd
number. Taking polar coordinatesr2 = x2 + y2 and � = arctan(y/x), it writes as

dr

dt
=
∑
n�k

Rn(�;�)rn,

d�
dt

=
∑
n�k

Fn(�;�)rn−1
(4)

with k�1, and whereRn(�;�) = cos�Pn(cos�, sin �;�) + sin �Qn(cos�, sin �;�)
and Fn(�;�) = cos�Qn(cos�, sin �;�) − sin �Pn(cos�, sin �;�) are trigonometric
polynomials of degreen+1 in � and analytic in�. Notice that the monodromy condition
for the critical point at the origin, together with the fact that it has not characteristic
directions, implies thatFk(�;�) does not vanish.

Theorem 7 (Generalized Andronov–Hopf bifurcation). Let {X�}�∈� be an analytic fam-
ily of planar vector fields such that its expression in polar coordinates is given by(4)
with k = 2p + 1 and Fk(�;0) > 0 for all �. Let Sn(�;�) be given by the relation∑

n�k Rn(�;�)rn∑
n�k Fn(�;�)rn−1 =

∑
n�1

Sn(�;�)rn,

and define

V1(�) = exp

(∫ 2�

0
S1(�;�) d�

)
and V3 =

∫ 2�

0
S3(�;0)exp

(∫ �

0
S1(�;0) d�

)
d�.
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Then, if V1(0) = 1 and V ′
1(0) V3 = 0, the following holds:

(a) Exactly one limit cycle	� bifurcates from the critical point ofX� at the origin for
��0 (respectively��0) if V ′

1(0) V3 is negative(respectively positive). Moreover
no periodic orbits bifurcate from the origin on the opposite side of� = 0.

(b) The period of the periodic orbit	� is

T (�) =
{
T0 + T1� +O

(|�|3/2) if p = 0,
T0 �−p (1+O

(|�|1/2)) if p�1,

whereT0 > 0 and T1 may be zero(see Example8).

Proof. For � small enough the Poincaré return map of vector fieldX� with respect to
the transversal section{� = 0} is well-defined in a neighbourhood of the origin. Let
r(�, x;�) be the solution of the polar expression ofX� given in (4) with r(0, x;�) = x.
Then the Poincaré map can be computed asr(2�, x;�) and so the displacement map
is given byD(x;�) := r(2�, x;�) − x. Notice that the zeros ofD(x;�) correspond
to the limit cycles ofX� in a neighbourhood of the origin. Several derivatives of this
displacement map can be computed by using Lemma 3. In particular we get that

D(0;0) = Dx(0;0) = V1(0)− 1= Dxx(0;0) = 0 and

Dxxx(0;0)Dx�(0;0) = 6V ′
1(0) V3 = 0.

Therefore (a) is a direct consequence of Lemma 2 applied to the displacement function.
In order to prove (b) let us assume for instance thatV ′

1(0) V3 < 0. Denote thex-
coordinate of the point	�∩{� = 0} by xl(�). Then Lemma 2 shows thatxl(�) = �(

√
�)

where� is an analytic function with�(0) = 0 and�′(0) =
√∣∣V ′

1(0)/V3
∣∣ =: 
. Now

the expression ofT (�) follows from applying Lemma 3 withm = k−1. Indeed, using
the notation in that result, we have thatT (�) = T (xl(�);�) and, on the other hand,
we can assert thatT (x;�) = T̂ (x;�)/xk−1 where T̂ (x;�) is an analytic function at
x = 0. Thus, sincexl(�) = 


√
� + �� +O(�3/2), it turns out that

T (�) = T (xl(�);�)

=
(


√

� + �� +O(�3/2)
)1−k (

T̂ (0;0)+ 
T̂ ′(0;0)√� +O(�)
)

= 
1−k�(1−k)/2
(
T̂ (0;0)+

(
(1− k)

�


T̂ (0;0)+ 
T̂ ′(0;0)

)√
� +O(�)

)
.

Notice that the result will follow once we show that̂T (0;0) > 0 and that if k =
1, then T̂ ′(0;0) = 0. By applying Lemma 3 the first inequality is straightforward
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because

T̂ (0;0) =
∫ 2�

0
exp

(
(1− k)

∫ �

0

Rk(�;0)
Fk(�;0) d�

)
d�

Fk(�;0) > 0.

From Lemma3 we also obtain that

T̂ ′(0;0) = (1− k)K −
∫ 2�

0

Fk+1(�;0)
F 2
k (�;0) exp

(
(1− k)

∫ �

0

Rk(�;0)
Fk(�;0) d�

)
d�. (5)

We do not specify the valueK because we are only interested in the casek = 1. Let us
prove that in fact the integral in (5) is zero for anyk. To see this notice first that, for
all � ∈ [0,2�], Fk(�+�;0) = Fk(�;0), Rk(�+�;0) = Rk(�;0) andFk+1(�+�;0) =
−Fk+1(�;0). Note moreover that the hypothesisV1(0) = 0 implies that

∫ 2�
0

Rk(�;0)
Fk(�;0) d� =

2
∫ �
0
Rk(�;0)
Fk(�;0) d� = 0. Hence the function� �−→ exp

(
(1− k)

∫ �
0
Rk(�;0)
Fk(�;0) d�

)
is �-periodic.

Consequently, if we denote the integrand appearing in (5) byI (�), we have shown
that I (� + �) = −I (�). ThereforeT̂ ′(0;0) = (1− k)K as desired. �
Next example shows that the constantT1 that appears in Theorem 7 may be zero.

It also shows that the period of the limit cycle of an Andronov–Hopf bifurcation tends
to a constant value with many different possible speeds.

Example 8. Consider a polynomial system of the form (1) such that in polar coordi-
nates writes as 

dr

dt
= �r − r3,

d�
dt

= 1− �r2m

with � ∈ {0,1}. One can easily check that the hypotheses in Theorem7 are fulfilled.
It has limit cycles only for� > 0, and in this case the limit cycle is unique and given
by 	� = {r = √

�}. Furthermore its period is

T (�) = 2�
1− ��m

=
{
2�(1+ �m +O(�2m)) when � = 1,
2� when � = 0.

Remark 9. Notice that the hypotheses in Theorem7 for k = 1 (modulus the regular-
ity of X�) are the same as the ones in the classical Andronov–Hopf bifurcation. In
particular,V1(0) = 1 indicates that the origin is a weak focus forX0, V3 is the first
Lyapunov constant ofX0, and the conditionV ′

1(0) = 0 implies that the eigenvalues of
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the linear part ofX� at the origin cross the imaginary axis transversally when� moves
from negative to positive values.

3.2. Hopf bifurcation at infinity

Given a family of planar polynomial vector fields{X�}, it is said that a Hopf
bifurcation at infinity occurs for� crossing 0 if “the infinity changes its stability” giving
rise to a periodic orbit (see[15] or Theorem 10 for a rigorous definition). To study
the period of the periodic orbit appearing in this bifurcation it is more convenient to
compactify the polynomial vector field defined on the plane to an analytic vector field on
the sphere. Instead of this well-known procedure, called the Poincaré compactification,
we will consider a simpler coordinate transformation that consists in changing the radius
r of the polar coordinates to = 1/r. Suppose that the polynomial family{X�} writes
in polar coordinates as 

ṙ =
m∑
n=k

Rn(�;�)rn,

�̇ =
m∑
n=k

Fn(�;�)rn−1,

(6)

wherem ∈ N is the maximum degree of the components ofX� and Rn and Fn are
defined as in (4). With this notation we prove the following:

Theorem 10 (Hopf bifurcation at infinity). Let {X�} be an analytic family of planar
polynomial vector fields such that its expression in polar coordinates is given by(6).
Assume thatm = 2p + 1 and thatFm(�;0) > 0 for all � ∈ [0,2�]. Let Sn(�;�) be
given by the relation

−

m+1−k∑
n=1

Rm+1−n(�;�)n

m+1−k∑
n=1

Fm+1−n(�;�)n−1

=
∑
n�1

Sn(�;�)n,

and define

W1(�) = exp

(∫ 2�

0
S1(�;�) d�

)
and W3 =

∫ 2�

0
S3(�;0)exp

(∫ �

0
S1(�;0) d�

)
d�.

Then, if W1(0) = 1 andW ′
1(0)W3 = 0, the following holds:

(a) Exactly one limit cycle	� bifurcates from the infinity for��0 (respectively��0)
in case thatW ′

1(0)W3 is negative(respectively positive). Moreover no periodic
orbits bifurcate from infinity on the opposite side of� = 0.

(b) The period of the periodic orbit	� is T (�) = T0 �p
(
1+O(

√|�| )) with T0 > 0.
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Proof. The change = 1/r in (6) yields to


̇ = −

(
m+1−k∑
n=1

Rm+1−n(�;�)n
)

1−m,

�̇ =
(
m+1−k∑
n=1

Fm+1−n(�;�)n−1
)

1−m.

Notice that the “infinity” of the original system is now = 0. By applying Lemma
3 it can be seen that ifl (�) denotes the inverse of thex-coordinate of the point
	� ∩ {� = 0}, then there exists an analytic function� such thatl (�) = �(

√
�)

(respectivelyl (�) = �(
√−�)) satisfying that�(0) = 0 and�′(0) =

√∣∣W ′
1(0)/W3

∣∣.
To end the proof we can follow the same steps that in the proof of Theorem 7.�

4. Bifurcation from a semi-stable periodic orbit

Let {X�}�∈� be a one-parameter family of planar analytic vector fields. The bifur-
cation from asemi-stable periodic orbitis characterized by the sudden emergence of
a double periodic orbit�, for let us fix � = 0, which afterwards gives rise to two
hyperbolic periodic orbits with different stability.
By means of the arc-length and the normal coordinates, the study of the above bi-

furcation is settled into an analogous framework than the one when using the polar
coordinates in the Hopf bifurcation. Following [16, Chapter 2], see this reference for
further details, we introduce local coordinates with respect to the emerging singular
limit cycle � of X0. We assume, without loss of generality, that this limit cycle turns in
clockwise sense. Fix an arbitrary pointp ∈ � and consider the arc-length parametriza-
tion of � from p, say s �−→ (

�(s),�(s)
)
for s ∈ [0, �], being � the length of�

and taking also the clockwise sense. Letn denote the length of the normal to�,
whose outward direction is taken to be positive. Then any point(x, y) in a sufficiently
small neighbourhood of� can be parameterized by the curvilinear coordinates(n, s).
If X�(x, y) = P(x, y;�)�x + Q(x, y;�)�y as usual, then the relation between both
coordinate systems is given by

x = �(s)− n�′(s), y = �(s)+ n�′(s), (7)

where

(
�′(s),�′(s)

) = 1√
P 2
(
�(s),�(s);0)+Q2

(
�(s),�(s);0)

×
(
P
(
�(s),�(s);0) , Q (�(s),�(s);0)). (8)
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Notice therefore that� is located at{n = 0}. Define P̃ (n, s;�) := P
(
�(s)− n�′(s) ,

�(s)+ n�′(s);�
)
andQ̃(n, s;�) := Q

(
�(s)− n�′(s),�(s)+ n�′(s);�

)
. Then one can

verify that the coordinate transformation (7) brings system (1) to
dn

dt
= Q̃(n, s;�)�′(s)− P̃ (n, s;�)�′(s)− n

(
P̃ (n, s;�)�′′(s)+ Q̃(n, s;�)�′′(s)

)
1+ n

(
�′(s)�′′(s)− �′(s)�′′(s)

) ,

ds

dt
= P̃ (n, s;�)�′(s)+ Q̃(n, s;�)�′(s)

1+ n
(
�′(s)�′′(s)− �′(s)�′′(s)

) .
(9)

Associated to the above system we consider the differential equation

dn

ds
= F(n, s;�), (10)

where

F(n, s;�)

:= Q̃(n, s;�)�′(s)− P̃ (n, s;�)�′(s)− n
(
P̃ (n, s;�)�′′(s)+ Q̃(n, s;�)�′′(s)

)
P̃ (n, s;�)�′(s)+ Q̃(n, s;�)�′(s)

.

It is easy to check thatF(n, s;�) is analytic atn = 0 and�-periodic with respect to
s. We can now state the main result of this section.

Theorem 11 (Bifurcation from a double-periodic orbit). Let {X�}�∈� be a family of
planar analytic vector fields such thatX0 has a periodic orbit� of length�. Consider
the curvilinear coordinates(n, s) associated to� given by(7) and let n0(s;�) be the
solution of (10) with n0(0;�) = 0. Define

W1= exp

(∫ �

0

�F(0, s;0)
�n

ds

)
, W2 = 1

2

∫ �

0

�2F(0, s;0)
�n2

exp

(∫ s

0

�F(0, �;0)
�n

d�
)
ds

and R(�) = n0(�;�). Then, if W1 = 1andR′(0)W2 = 0, the following holds:
(a) Exactly two limit cycles, 	+

� and 	−
� , bifurcate from� for ��0 (respectively��0)

when R′(0)W2 is negative (respectively positive). Moreover no periodic orbits
bifurcate from� on the opposite side of� = 0.

(b) The period of the emerging limit cycles is given byT ±(�) = T0± T1
√|�| +O(�),

whereT0 > 0 is the period of� and T1 may be zero(see Example12).

Proof. Consider the transversal section to� given by � := {s = 0, n ∈ (−�, �)} for
some� > 0 small enough. Notice that the return map ofX� with respect to� is well
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defined for� ≈ 0. This return map leads to the displacement map

D(x;�) := n(�, x;�)− x,

where n(s, x;�) is the solution of (10) satisfyingn(0, x;�) = x. It is clear that, for
x ≈ 0, the zeroes ofx �−→ D(x;�) correspond to the limit cycles ofX� near�. Note
also that, by definition,n0(s;�) = n(s,0;�) and n0(s;0) ≡ 0.
We claim thatDx(0;0) = W1 − 1, Dxx(0;0) = 2W2 and D�(0;0) = R′(0) hold.

Note that once we show this then, on account of the hypothesis, we will have that
D(0;0) = 0, Dx(0;0) = 0 andDxx(0;0)D�(0;0) = 0. Thus the assertions in (a) will
follow by applying Lemma 1. In order to prove the claim we perform the change of
variablesw = n− n0(s;�) to the differential equation (10), which yields to

dw

ds
= F(w + n0(s;�), s;�)− �n0(s;�)

�s
= �F(n0(s;�), s;�)

�n
w

+1

2

�2F(n0(s;�), s;�)

�n2
w2 +O(w3).

(More precisely, the remainder term above is a functionf (w, s;�) such that
lim
w→0

f (w, s;�)/w3 = 0 uniformly on s and �.) Then, by Lemma 3, we can assert

that n(s, x;�) = n0(s;�)+ w(s, x;�) with

w(s, x;�) = x e
∫ s
0

�F(n0(�;�),�;�)
�n d�

(
1+ x

2

∫ s

0

�2F(n0(�;�), �;�)

�n2
e
∫ �
0

�F(n0(�;�),�;�)
�n d�

d�

)

+O(x3).

Consequently, taking alson0(s;0) ≡ 0 into account, the above expansion shows that
D(0;�) = R(�) andD(x;0) = (W1−1) x+W2 x

2+O(x3). So the claim is proved and
the assertions in(a) follow from Lemma 1. This result also shows that ifx±

l (�) denotes
the n-coordinate of the point	±

� ∩ {s = 0}, then there exists an analytic function�

defined in a neighbourhood of� = 0, with �(0) = 0 and�′(0) = √|R′(0)/W2| =: 
,
such thatx±

l (�) = �(±√|�|).
Next, to prove(b) let us denote byT (x;�) the time that spends the solution of

(9) starting at a point in� with (n, s) = (x,0) to return to�. It is clear then that
T ±(�) = T

(
x±
l (�);�

)
. By applying Lemma 3 to system (9) we have thatT (x;�) is

an analytic function atx = 0 with

T (0;�) =
∫ �

0

1

P̃ (0, s;�)�′(s)+ Q̃(0, s;�)�′(s)
ds.
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Accordingly, taking (8) also into account, it turns out that

T (0;0) =
∫ �

0

ds√
P 2
(
�(s),�(s);0)+Q2

(
�(s),�(s);0) =

∫ T0

0
dt = T0,

whereT0 is the period of the periodic orbit� of X0. Here we used that the relation
between the initial timet and the arc-lengths is given bydt/ds = (

P 2(�(s),�(s);0)
+Q2(�(s),�(s);0))−1/2

. On the other hand, sincex±
l (�) = ±


√|�| + O(�) and
T (x;�) = T (0;�)+ T ′(0;�)x + x2g(x;�), we can conclude that

T ±(�) = T
(
x±
l (�);�

) = T (0;0)± 
T ′(0;0)√|�| +O(�).

Consequently, sinceT (0;0) = T0, this completes the proof of the result.�
Next example plays a similar role to Example8. It shows that the speed at which

the period of the hyperbolic periodic orbits tend to the period of� can be any power
of |�|1/2.

Example 12. Fix a neighbourhood of� = {x2 + y2 = 1} not containing the origin.
Consider there the analytic family{X�} which in polar coordinates writes as

dr

dt
= r

(
(r − 1)2 − �

)
,

d�
dt

= 1− �(r − 1)m

with � ∈ {0,1}. Note then that it is under the hypotheses of Theorem11. There are
limit cycles only when� > 0 and, in this case, they are given by	±

� = {r = 1± √
�}.

Furthermore their periods are

T ±(�) = 2�
1− (±1)m��m/2

=
{
2�
(
1+ (±1)m�m/2 +O(�m)

)
if � = 1,

2� if � = 0.

Remark 13. It is clear from the proof of Theorem11 that the conditionsW1 = 1 and
W2 = 0 correspond to require that� is a double limit cycle. In fact it is not difficult
to verify (see [1,16]) that using the original(x, y)-coordinates,

W1 = exp

(∫ T0

0

(
Px (x(t), y(t);0)+Qy (x(t), y(t);0)

)
dt

)
,

where t �−→ (x(t), y(t)) is the “time” parametrization of� and T0 its period. Thus
W1 is the characteristic exponent of�.
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5. Saddle-node loop bifurcation

Consider a one-parameter family of vector fields{X�}�∈� such that for� = 0,
X0 has a singularityp0 which is a semi-hyperbolic saddle-node of multiplicity two.
Assume also that the vector fieldX0 presents a homoclinic orbit� connecting the
non-hyperbolic separatrix ofp0 with its nodal sector, not through the boundary of
this sector. If the dependence of{X�} with respect to� is such that the saddle-node
presents the local saddle-node bifurcation then, for those� such that the saddle node
disappears, a hyperbolic limit cycle	� emerges from�. This bifurcation is known as
the saddle-node loop bifurcation. This section is devoted to study the behaviour of the
period of 	� as� −→ 0. The main result of this section is, essentially, a reformulation
of results in [6, pp. 1011–1013, 8]. It reads as follows:

Theorem 14 (Saddle-node loop bifurcation). Let {X�}�∈� be a one-parameterC∞ fam-
ily of planar vector fields such that:
(a) For � = 0, X0 has a semi-hyperbolic saddle-node pointp0 of multiplicity two.
(b) The vector fieldX0 has a homoclinic connection, say �, at p0. This orbit �

connects the non-hyperbolic separatrix of the hyperbolic sector ofp0 with its
nodal sector but not through the boundary of this sector.

(c) The family{X�}�∈� provides a generic unfolding of the saddle-node(see Remark
15 for a precise formulation of this condition).

Then there exists a neighbourhood U of� and a neighbourhood V of� = 0 such that,
for all � ∈ V lying on one side of� = 0, X� has a unique periodic orbit	� in U,
which tends to� as � −→ 0. Furthermore, denoting its period byT (�), then

T (�) ∼ T0/
√|�|

for someT0 > 0. For all � ∈ V on the opposite side of� = 0, X� has no periodic
orbits in U .

Proof. We take first a convenient normal form for{X�} near the singularityp0. Thus,
on account of the assumption in(a), one can show (see[6,9] for instance) that for
eachk ∈ N there exist aCk diffeomorphism�k such that, in some neighbourhood of
(p0,0) ∈ R2× �,

X� = (�k)∗
(
f (x;�)

(
g(x;�)

(
x2 + 
(�)

)
�x + y�y

) )
, (11)

wheref (x;�), g(x;�) and
(�) areCk functions withf (0;0) g(0;0) = 0 and
(0) =
0. Clearly we can assume thatf (0;0) g(0;0) > 0 (otherwise we reverse time). The
generic condition in(c) corresponds to require that
′(0) = 0. Let us fix for instance
that 
′(0) > 0 (otherwise we perform the change in the parameter given by� �−→ −�).
In this case it is well known (see[8] for instance) that for��0, a unique (hyperbolic
and stable) limit cycle	� bifurcates from�. In the study of the bifurcations in the two
preceding sections and, as we will see, also in the next one, the dominant term of the
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Fig. 1. Poincaré map in the saddle-node loop bifurcation.

periodT (�) of the limit cycle 	� strongly depends on its distance to� when� varies.
Fortunately, in this case, the leading term of the asymptotic behaviour ofT (�) can be
computed without locating	�. This fact makes the study of this case easier than the
other ones.
Take anyk�1 and consider theCk diffeomorphism�k =:� given in (11). Define

�− := {
�(−�, s) : s ∈ (−ε, ε)} and �+ := {

�(�, s) : s ∈ (−ε, ε)} .
For ε > 0 and � > 0 small enough, it is clear that�− and �+ are transversal
sections forX0 to the homoclinic connection�. Thus the same happens forX� in
a neighbourhood of� and � ≈ 0. Note in addition that a Poincaré return map for
X� with ��0 is well defined in�−. Let us denote this return map byP(s;�) and
its associated time function byT (s;�). In order to study them we first consider the
Poincaré and time mappings ofX� from �− to �+ (see Fig.1), which we denote by
Pi(s;�) andTi(s;�), respectively. More precisely, they are defined implicitly by means
of

�
(
Ti(s;�),�(−�, s);�

) = �
(
�, Pi(s;�)

)
,

where�(t, q;�) is the solution ofX� passing throughq ∈ R2 at t = 0. Similarly, let
Pe(s;�) and Te(s;�) be respectively the Poincaré and time mappings ofX� from �+
to �−, which verify

�
(
Te(s;�),�(�, s);�

) = �
(−�, Pe(s;�)

)
.

Recall that, for��0, there exists a periodic orbit	� which tends to� as� tends to
zero. Note moreover that	� has a unique intersection point with�−, which we fix to
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be �
(−�, s�(�)

)
for somes�(�) ∈ (−ε, ε). It is clear thats�(�) −→ 0 as� −→ 0+.

Notice in addition that the period of	� is

T (�) = Ti (s�(�);�)+ Te (Pi(s�(�);�);�) . (12)

Due to the continuous dependence with respect to initial conditions and parameters,
the second term in the above equality tends to a constant value when� tends to zero,
i.e.,

lim
�−→0+ Te (Pi(s�(�);�);�) = T �

e > 0, (13)

whereT �
e is the time that spends the homoclinic solution� of X0 for going from�+

to �−.
Let us turn now to study the first term in (12), which tends to infinity as� −→ 0+.

Taking (11) into account we can assert that

Ti (s�(�);�) =
∫ �

−�

R(x;�)
x2 + 
(�)

dx,

whereR(x;�) := 1/ (f (x;�) g(x;�)). ThusR(0;0) > 0. To study this integral notice
first that

∫ �

−�

R(0;�)
x2 + 
(�)

dx = 2R(0;�)√

(�)

arctan

(
�√

(�)

)
∼ T0√

�
with T0 := �R(0;0)√


′(0)
.

On the other hand, by applying the mean value theorem,

Ti (s�(�);�)
√

�

T0
=
∫ �

−�

√
�R(x;�)

T0
(
x2 + 
(�)

) dx
=
∫ �

−�

√
�R(0;�)

T0
(
x2 + 
(�)

) dx +
∫ �

−�

√
�Rx

(
�(x;�);�

)
x

T0
(
x2 + 
(�)

) dx,

where�(x;�) is between 0 andx, in particular inside[−�, �]. Notice at this point that
if we defineK := sup

{
Rx(x;�) ; x ∈ [−�, �],� ≈ 0

}
, then it turns out that

∣∣∣∣∣
∫ �

−�

√
�Rx(�(x;�);�) x

T0
(
x2 + 
(�)

) dx

∣∣∣∣∣ �K√
�
∫ �

0

2x dx

x2 + 
(�)
= K

√
� ln

∣∣∣∣∣�2 + 
(�)

(�)

∣∣∣∣∣ ,
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which one can easily verify that tends to zero as� −→ 0. Accordingly

lim
�−→0+

Ti(s�(�);�)
√

�

T0
= 1+ lim

�−→0+

∫ �

−�

√
�Rx

(
�(x;�);�

)
x

T0
(
x2 + 
(�)

) dx = 1.

This, together with (12) and (13), proves thatT (�) ∼ T0/
√

� as desired. �

Remark 15. The hypothesis in(c) for the family {X�} in Theorem14 corresponds to
require that the function
(�) in (11) verifies
′(0) = 0.

6. Saddle loop bifurcation

Let {X�}�∈� be a one-parameterC∞ family of planar vector fields. Suppose that for
� = 0, X0 presents a saddle loop�, being the saddle pointp0 hyperbolic and strong
(i.e., divX0(0) = 0). This section is devoted to study, for� ≈ 0, the dominant term
of the asymptotic development of the period of the periodic orbit that bifurcates from
� when the connection is broken. Note that the hyperbolicity of the saddle pointp0
of X0 forces that, for� ≈ 0, each vector fieldX� has also a hyperbolic saddle point
p�. We denote by�2(�) < 0 < �1(�) its eigenvalues and byr(�) = −�2(�)/�1(�) its
ratio of hyperbolicity.

Theorem 16 (Saddle loop bifurcation). Let {X�}�∈� be an one-parameterC∞ family
of planar vector fields. Assume that for� = 0, X0 has a hyperbolic saddle pointp0
with hyperbolicity radior(0) > 1 (respectively, r(0) < 1). Suppose also thatX0 has
a saddle connection, say �, at p0. Under a generic assumption(to be specified in
Remark20), there exists a neighbourhood U of� and a neighbourhood V of� = 0
such that for all� ∈ V lying on one side of� = 0, X� has a unique periodic orbit	�
in U, which tends to� as � −→ 0. Furthermore, denoting its period byT (�), then

T (�) = c ln |�| +O(1),

where c = −1/�1(0) (respectively, c = 1/�2(0)). For all � ∈ V on the opposite side
of � = 0, X� has no periodic orbits inU .

Let us point out that the assertions concerning the existence and location of	�
are common knowledge (see[4,8]). For related results concerning the period of	�
see [3,11]. Our first goal will be to prove Lemma 18, that will provide us a con-
venient normal form to study the time and Dulac functions associated to the pas-
sage near a saddle point. This is an easy application of the following result of
Bonckaert [2]:
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Lemma 17. For eachk ∈ N there existsK(k) ∈ N such that if{Y�} is anyC∞ family
of vector fields verifying that

jK(k)
(
Y� −X�

)
(p�) = 0,

then the two families{X�} and {Y�} are Ck conjugate. (This means that there exists a
Ck family of diffeomorphisms�� such that(��)∗

(
Y�
) = X�.)

Lemma 18. Let {X�}�∈� be the family defined above. Fix some parameter�0 ∈ �
and anyk ∈ N.
(a) If r(�0) = p/q with (p, q) = 1, then there exists aCk family of diffeomorphisms

�� such that, in some neighbourhood of(p�0,�0) ∈ R2×�,

X� = (��)∗
(

1

f (u;�)

(
x�x + yg(u;�)�y

))
,

where f (u;�) and g(u;�) are polynomials inu := xpyq with coefficientsC∞
functions in�. In particular it holds f (0;�) = 1/�1(�) and g(0;�) = −r(�).

(b) If r(�0) /∈ Q then there exists aCk family of diffeomorphisms�� such that it holds

X� = (��)∗
(
�1(�) x �x + �2(�) y �y

)

in some neighbourhood of(p�0,�0) ∈ R2×�.

Proof. Clearly we can assume thatp� = (0,0) and j1X�(0) = �1(�) x �x + �2(�) y �y
for all �. Fix some parameter�0 and let k ∈ N be given. Consider in addition the
natural numberK(k) that provides Lemma17.
Let us study first the caser(�0) ∈ Q and assume thatr(�0) = p/q with (p, q) = 1.

Recall (see [4] for instance) that the resonant monomials of orderi for the first and
second components ofX� are given respectively by

�1(�) = n�1(�)+m�2(�) and �2(�) = n�1(�)+m�2(�),

wheren+m = i�2. Consequently all the resonant monomials forX�0 are generated
by the unique relationp�1(�0) + q�2(�0) = 0. Thus, on account of the continuity of
r(�), there exists a neighbourhoodU0 of �0 such that if� ∈ U0 then the resonances of
X� with order�K(k) are also given byp�1(�)+q�2(�) = 0. Then, by using standard
techniques (see again[4]), we can construct a conjugation (C∞ on � and analytic on
x and y) between{X�}�∈U0 and

X1
� :=

(
xP (u;�)+ o

(
‖x, y‖K(k)

))
�x +

(
yQ(u;�)+ o

(
‖x, y‖K(k)

))
�y,
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whereP and Q are polynomial inu := xpyq with P(0;�) = �1(�) andQ(0;�) =
�2(�). Next, by applying Lemma17, we can assert the existence of aCk conjugation
betweenX1

� and

X2
� := xP (u;�)�x + yQ(u;�)�y.

Consider now any� ∈ N verifying that (p + q)� + 1> K(k). We definef (u;�) and
g(u;�) as the Taylor polynomial of degree� at u = 0 of

u �−→ 1

P(u;�)
and u �−→ Q(u;�)

P (u;�)
,

respectively. Therefore, since by construction we have that

1

f (u;�)
= P(u;�)+ o(u�) and

g(u;�)
f (u;�)

= Q(u;�)+ o(u�),

taking (p + q)� + 1 > K(k) into account, Lemma17 shows thatX2
� is Ck conjugate

to

X3
� := 1

f (u;�)

(
x�x + yg(u;�)�y

)
.

This completes the proof in the rational case.
Consider finally the caser(�0) /∈ Q and note that thenX�0 has no resonant monomi-

als. Hence, due to the continuity ofr(�), there exists a neighbourhoodU0 of �0 such
that if � ∈ U0 thenX� has no resonant monomials of order�K(k). In this situation,
exactly the same way as before, we can construct a conjugation between{X�}�∈U0 and

X1
� :=

(
�1(�) x + o

(
‖x, y‖K(k)

))
�x +

(
�2(�) y + o

(
‖x, y‖K(k)

))
�y.

Then, by Lemma17, there exists aCk conjugation betweenX1
� and X2

� := �1(�)
x �x + �2(�) y �y . This shows the result in the irrational case and completes the
proof. �
Taking �0 = 0 and anyk�1, we consider theCk diffeomorphism� in Lemma 18.

Define

�1 = {�(s,1) : s ∈ (−ε, ε)} and�2 = {�(1, s) : s ∈ (−ε, ε)} .

For ε > 0 small enough, it is clear that�1 (respectively�2) is a transversal section
for X� in the stable (respectively unstable) manifold ofp�.
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Fig. 2. Transversal sections in Definition19.

Definition 19. We denote the Dulac and time mappings associated to the passage from
�1 to �2 for X� by P1 andT1 respectively (see Fig.2). To be more precise, for each
s ∈ (0, ε) we defineP1(s;�) and T1(s;�) by means of the relation

� (T1(s;�),�(s,1);�) = � (1, P1(s;�)) ,

where�(t, q;�) is the solution ofX� passing throughq ∈ R2 at t = 0. Similarly,
let P2 and T2 be respectively the Poincaré and time mappings from�1 to �2 for
−X�. More precisely, for eachs ∈ (0, ε), we defineP2(s;�) and T2(s;�) by means
of � (−T2(s;�),�(s,1);�) = � (1, P2(s;�)).

Let us point out thatT1 and T2 are positive functions. It is well known thatP2
and T2, which are only well defined for� ≈ 0, are Ck functions ats = 0. Note in
particular that

P2(s;�) = a0(�)+ a1(�)s + o(s) with a0(0) = 0 anda1(0) = 0.

Remark 20. The generic assumption in the statement of Theorem16 is a′
0(0) = 0. It

is important to note that this condition does not depend on the particular transversal
sections�1 and�2 used to defineP2. We construct them using the normal form only
for convenience.

Definition 21. Let g(s;�) be aC1 function in (0, ε)×� for someε > 0. We shall say
that g belongs toB if setting g(0;�) := 0 theng is a C1 function at (s;�) = (0;�0)
for �0 ≈ 0 andgs(0;�0) = 0. In other words,g ∈ B if there exists aC1 function g̃ in
(−ε, ε)× � with g̃(0;�) = g̃s(0;�) = 0 such thatg(s;�) = g̃(s;�) for s > 0. (Note
that if g ∈ B, then it also holdsg�(0;�0) = 0 for �0 ≈ 0.)
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Definition 22. The function defined fors > 0 and
 ∈ R by means of

�(s; 
) =
{
s−
−1


 if 
 = 0,
− ln s if 
 = 0,

is called the Roussarie–Ecalle compensator.

It is well known that in general the functionsP1 and T1, involved in the passage
near the saddle point, are not smooth ats = 0. Concerning these functions we shall
prove the following:

Proposition 23.With the definitions introduced above,
(a) If r(0) > 1 thenP1(s;�) = sr(�)

(
1+ �1(s;�)

)
andT1(s;�) = −1

�1(�)
ln s+�2(s;�)

with �i ∈ B.
(b) If r(0) = 1 then, setting
1(�) = 1− r(�),

P1(s;�) = sr(�)
(
1+ 
2(�)s� (s; 
1(�))+ �1(s;�)

)
,

and

T1(s;�) = −1
�1(�)

ln s + �1(�)s� (s; 
1(�))+ �2(s;�),

where�i ∈ B and 
2 and �1 are C∞.

In order to prove Theorem16, about which we recall that it deals with the case
r(0) = 1, it is enough to consider the caser(0) > 1. As we will see, the assertion
concerning the caser(0) < 1 is straightforward once it is proved the one forr(0) > 1.
This is the reason why Proposition 23 does not contemplate the caser(0) < 1. On
the other hand, since little effort has to be made to study also the caser(0) = 1, we
include it for the sake of completeness. Let us also point out that to prove Theorem
16 it suffices that the function�2 in Proposition 23 is bounded fors ≈ 0. We show
that �2 ∈ B because we think that it is an interesting result by itself. Finally it is
worth noting that�1 and 
2 are related to the polynomialsf (u;�) and g(u;�) of the
normal form that we use in the resonant case (see (a) in Lemma 18). More concretely,
�1(�) = fu(0;�) and 
2(�) = qgu(0;�). So we prefer to keep the notation of the
proof although they are unspecified in the statement.
In the proof of Proposition 23 we shall use the following result:

Lemma 24. Let 
(�) and �(�) be C∞ functions in a neighbourhood of� = 0 with

(0) = 0 and �(0) > 1. Then the functionG(s;�) = s�(�)� (s; 
(�))n belongs toB
for any n ∈ N.
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Proof. Define G(0;�) := 0. To show the result it is convenient to write the Ecalle–
Roussarie compensator as

�(s; 
) = F(
 ln s) ln s with F(u) := e−u − 1

u
.

It is easy to verify that|F(u)|�e|u| and |F ′(u)|�e|u|. Then, using the first inequality,
it turns out that|G(s;�)| = |s�(�)F (
(�) ln s)n (ln s)n|�s�(�)−n|
(�)|(ln s)n. Hence,
since�(0)− n|
(0)| > 1,

�G(0;�0)

�s
= lim

s−→0

G(s;�0)
s

= 0 for �0 ≈ 0.

It is clear in addition thatG�(0;�0) = 0. On the other hand, by using also the bound
for F ′, some computations yield to

∣∣∣∣�G(s;�)

��

∣∣∣∣ �s�(�)−n|
(�)|(ln s)n+1 (�′(�)+ n
′(�)
)

and

∣∣∣∣�G(s;�)

�s

∣∣∣∣ �((�(�)+ n
(�)
)
ln s + n

)
s�(�)−n|
(�)|−1(ln s)n−1.

Note that both upper bounds tend to zero as(s,�) −→ (0,�0) with �0 ≈ 0 because
�(0) > 1 and
(0) = 0. ThusGs(s;�) −→ 0 andG�(s;�) −→ 0 as (s,�) −→ (0,�0)
and so the result follows.�

Proof of Proposition 23. Recall that the diffeomorphism�, which we use to define

�1 and�2, verifiesX� = �∗
(
XN�

)
, whereXN� denotes the normal form ofX�. This

normal form depends onr(0) /∈ Q and r(0) ∈ Q. In the first caseXN� = �1(�)x�x +
�2(�)y�y and one can easily show, without using thatr(0)�1, that P1(s;�) = sr(�)

and T1(s;�) = −1
�1(�)

ln s.
So consider the caser(0) ∈ Q and assume thatr(0) = p/q with (p, q) = 1. Let us

fix that the functions that appear inXN� are

f (u;�) = 1

�1(�)
+

n∑
i=1

�i (�) u
i and g(u;�) = −r(�)+ 1

q

n∑
i=1


i+1(�) ui,
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where recall thatu = xpyq . It will be clear later the reason why we fix the coefficients
of g(u;�) in this way. For the same reason it is convenient to introduce


1(�) := p − qr(�).

Note that the coefficients
i and �i are C∞ functions defined for� ≈ 0 and that

1(0) = 0.
Let us show first the result concerning the Dulac map. It follows from the tools

developed by Roussarie in[12] to prove the so called Mourtada’s form for the Dulac
map (see also [5,10]). Indeed, according to Propositions 10 and 11 in [12] there exist
� ∈ N and� ∈ B such that

P1(s;�) = sr(�)
(
1+

�∑
i=1

sipQi(s;�)+ �(s;�)
)1/q

, (14)

where eachQi(s;�) is a polynomial of degree� i in � (s; 
1(�)) with its coefficients
polynomial in 
1(�), . . . , 
i+1(�). In particular one can easily verify thatQ1(s;�) =

2(�)� (s; 
1(�)). For eachi we consider the function

(s;�) �−→ sipQi(s;�). (15)

Assume first thatr(0) > 1, and note that in consequencep�2. Thusip�2 and hence,
by applying Lemma24, the function in (15) belongs toB for any i. On account of (14)
this easily shows that the assertion concerningP1(s;�) in (a) is true. In order to prove
the one in(b) note thatr(0) = 1 implies thatp = q = 1. According to (14), since
Q1(s;�) = 
2(�)� (s; 
1(�)) , it suffices to verify that the function in (15) belongs to
B for i�2. However, by applying Lemma 24, this is also clear because thenip�2.
Let us study next the time functionT1 associated to the passage through the saddle.

Notice thatT1(s;�) is precisely the time that spends the solution ofXN� passing through
(s,1) to reach{x = 1}. Consider the family of vector fieldsY� := x�x + yg(u;�)�y,
which it is clear that provides the same foliation asXN� . To study the solutions ofY�
we follow the same approach as Roussarie [12] for the Dulac map. We thus perform
the singular change of variables{x = x, u = xpyq}, which one can easily show that
brings Y� to

{
ẋ = x,

u̇ = ∑n+1
i=1 
i (�) ui .

Note that this differential system has separated variables. The solution of the first
equation isx(t, x0) = x0e

t . Let us denote byu(t, u0;�) the solution of the second
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equation passing throughu0 at t = 0. This solution can be expanded as

u(t, u0;�) =
∞∑
i=1

gi(t;�)ui0. (16)

In particular one can easily verify thatg1(t;�) = e
1(�) t . Moreover Lemma 19 in[12]
shows that there exist positive constantsC andC0 such that

|gi(t;�)|�C0
(
Cet/2

)i
for t�0 and� ≈ 0. (17)

This implies that (16) is convergent for|u0| < 1
Cet/2

and, since
∑∞
i=1 r

i < 1 for
0< r < 1/2, that

|u(t, u0;�)| < C0 if |u0| < 1

2Cet/2
. (18)

Note at this point that, on account ofx(− ln s, s) = 1 and Y� = f (u;�)XN� , we
have that

T1(s;�) =
∫ − ln s

0
f
(
u(t, sp;�);�

)
dt.

In order to study this function let us first note that

f (u(t, u0;�);�) = 1

�1(�)
+

∞∑
i=1

ai(t;�) ui0, (19)

with

ai(t) := �1 gi(t)+ �2
∑

m1+m2=i
gm1(t) gm2(t)

+ · · · + �n
∑

m1+...+mn=i
gm1(t) · · · gmn(t). (20)

In the above equality (and in the sequel when there is no risk of ambiguity) we omit the
parameter dependence for the sake of shortness. Note in particular thata1(t) = �1e


1t .
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The above expansion yields to

T1(s;�) = − 1

�1(�)
ln s +

∫ − ln s

0

∞∑
i=1

ai(t;�) spi dt.

Our next goal is to commute the sum and integral in the above expression ofT1(s;�).
To this end note that, sinceu �−→ f (u;�) is polynomial, the series in (19) has the
same radius of convergence than the one in (16). Consequently, on account of (18),
if we define C1 := sup{|f (u;�)| : |u|�C0,� ≈ 0} then by applying Lemma 6 with
R = 1

2Cet/2
it follows that

|ai(t;�)|�C1(2Cet/2)i for t�0 and� ≈ 0. (21)

This easily shows that the condition in Lemma4 is verified and hence that

T1(s;�) = − 1

�1(�)
ln s +

∞∑
i=1

spi
∫ − ln s

0
ai(t;�) dt (22)

for s > 0 small enough. In order to develop the above expression we take advantage of
Proposition 10 in[12], which shows thatgi(t) = e
1tQi(t) whereQi is a polynomial
of degree� i − 1 in

�(
1, t) :=
{
e
1t−1


1
if 
1 = 0,

t if 
1 = 0

with its coefficients polynomial in
1, . . . , 
i . Consequently from (20) it follows that

ai(t) = �1e

1tP 1

i (�)+ �2e
2
1tP 2

i (�)+ · · · + �ne
n
1tP ni (�),

where P ji is a polynomial of degreei − j in � with its coefficients polynomial in


1, 
2, . . . , 
i for j� i and P ji ≡ 0 for j > i (here we use that whenj > i there is
not any combination ofj natural numbers verifyingm1+ . . .+mj = i). Note moreover
that the change� = �(
1, t) yields to

∫ − ln s

0
ej
1tP

j
i (�(
1, t)) dt =

∫ �(s;
1)

0
(
1� + 1)j−1P

j
i (�) d�

and accordingly this proves that

∫ − ln s

0
ai(t;�) dt = Ri (�(s; 
1)) , (23)
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whereRi is a polynomial of degreei with its coefficients polynomial in
1, . . . , 
i and
�1, . . . ,�i . Thus, if we define

�(s;�) :=
∞∑
i=3

spi
∫ − ln s

0
ai(t;�) dt, (24)

then, on account of the expression ofT1(s;�) in (22) and the relation in (23), we get

T1(s;�) = −1

�1(�)
ln s + spR1 (�(s; 
1))+ s2pR2 (�(s; 
1))+ �(s;�). (25)

Next we shall see that� ∈ B, and to this end we need the following:

Claim 1. There exists a positive constantC3 such that

∣∣∣∣�ai(t;�)

��

∣∣∣∣ < C3

(
8Cet/2

)i
for t�0 and � ≈ 0.

Since the proof of this claim is rather technical, for the sake of clarity in the
exposition we defer it until we show the assertions concerning the time function. Some
computations, using the above claim and (21), show that if� ≈ 0 then

∣∣∣∣spi ∫ − ln s

0
ai(t;�) dt

∣∣∣∣ �C1(2Csp)i ∫ − ln s

0
eit/2dt�4C1(2Cs

p−1/2)i , (26)

∣∣∣∣ dd�
(
spi

∫ − ln s

0
ai(t;�) dt

)∣∣∣∣ �spi ∫ − ln s

0

∣∣∣∣�ai(t;�)

��

∣∣∣∣ dt�4C3(8Cs
p−1/2)i (27)

and ∣∣∣∣ dds
(
spi

∫ − ln s

0
ai(t;�) dt

)∣∣∣∣ = spi−1
∣∣∣∣pi ∫ − ln s

0
ai(t;�) dt − ai(− ln s;�)

∣∣∣∣
� C1

4pi + 1

s

(
2Csp−1/2

)i
. (28)

(To obtain these inequalities we assume that 0< s < 1.) Define�(0;�) := 0 for all �.
Note that from (26) we get that, for�0 ≈ 0,

lim
s−→0

∣∣∣∣�(s;�0)
s

∣∣∣∣ �4C1 lim
s−→0

1

s

∞∑
i=3

(
2Csp−1/2

)i = 4C1 lim
s−→0

1

s

(
2Csp−1/2

)3
1− 2Csp−1/2 = 0
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becausep�1. Therefore ��(0;�0)
�s = 0. The inequality in (28) shows on the other

hand that we can compute��
�s derivating (24) term by term and that��(s;�)

�s −→ 0 as

(s,�) −→ (0,�0). Accordingly
��
�s is continuous at(0,�0). Exactly the same way but

using (27) one can easily verify that��
��

is also continuous. This proves that� ∈ B as

desired.
We are now in position to conclude the proof of the assertions concerning the time

function. Suppose first thatr(0) > 1 (i.e., p/q > 1). Then p�2 and Lemma 24
shows thatspR1 (�(s; 
1)) and s2pR2 (�(s; 
1)) belong toB. On account of (25) this
proves (a). Assume finally thatr(0) = 1. Then p = 1 and, again by Lemma 24,
s2R2 (�(s; 
1)) ∈ B. This proves(b) because, due tog1(t;�) = e
1(�)t , it is easy to
check thatsR1 (�(s; 
1)) = �1s�(s; 
1).
Finally we must show Claim 1, and to this end we use an intermediate step:

Claim 2. For any t�0 and � ≈ 0, the functionu0 �−→ �u(t,u0;�)
��

can be written as a

power series inu0 with radius of convergence greater than1
4Cet/2

and there exists a
positive constantC2 such that

∣∣∣∣�u(t, u0;�)

��

∣∣∣∣ < C2 if |u0| < 1

8Cet/2
. (29)

To see this note that, settingp(u;�):=
∑n+1
i=1 i
i (�)u

i−1 andq(u;�):=
∑n+1
i=1 
′

i (�)u
i,

then the functiont �−→ �u(t,u0;�)
��

is the solution of the linear differential equation

x′(t)− p (u(t, u0;�);�) x(t) = q (u(t, u0;�);�)

with initial condition x(0) = 0. (Here we apply the theorem on differentiability of
solutions with respect to parameters.) Consequently one can verify that

�u(t, u0;�)

��
= exp

(∫ t

0
p (u(s, u0)) ds

)

×
{∫ t

0
q (u(s, u0))exp

(
−
∫ s

0
p
(
u(�, u0)

)
d�
)
ds

}
. (30)

Notice that, sinceu �−→ p(u;�) is polynomial, the seriesp
(
u(�, u0)

) = ∑∞
i=1pi(�)u

i
0

is convergent for|u0| < 1
Ce�/2

. In addition, if we defineC′
2 := sup{|p(u;�)| : |u|�C0,

� ≈ 0} , then from (18) we have that|p (u(�, u0)) | < C′
2 for |u0| < 1

2Ce�/2
. Thus,

by applying Lemma 6 withR = 1
2Ce�/2

, we can assert that|pi(�)| < C′
2(2Ce

�/2)i .
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Therefore

∣∣∣∣∫ s

0
p
(
u(�, u0)

)
d�

∣∣∣∣ �
∞∑
i=1

∫ s

0
|pi(�)ui0| d��C′

2

∞∑
i=1

∫ s

0

(
2Ce�/2|u0|

)i
d�

= 2C′
2

∞∑
i=1

eis/2 − 1

i
(2C|u0|)i

� 4C′
2

∞∑
i=1

(
2Ces/2|u0|

)i
. (31)

(Here we use Lemma5 in the first inequality.) In particular, by applying Lemma 4,
this shows that the series

∫ s

0
p
(
u(�, u0)

)
d� =

∞∑
i=1

(∫ s

0
pi(�) d�

)
ui0

is convergent for|u0| < 1
2Ces/2

. Consequently, sincex �−→ e−x is an entire function,
the series

exp

(
−
∫ s

0
p
(
u(�, u0)

)
d�
)

=
∞∑
i=1

p̄i(s)u
i
0

is also convergent for|u0| < 1
2Ces/2

. On the other hand, since
∑∞
i=1 r

i < 1 in case
that 0< r < 1/2, from (31) it is also clear that the above function is bounded by
e4C

′
2 for |u0| < 1

4Ces/2
. Notice moreover thatq(u(s, u0)) = ∑∞

i=1 qi(s)u
i
0 has radius of

convergence greater than1
Ces/2

becauseu �−→ q(u;�) is polynomial. We can conclude
therefore that

q(u(s, u0))exp

(
−
∫ s

0
p
(
u(�, u0)

)
d�
)

=
∞∑
i=1

q̄i (s)u
i
0

is convergent for|u0| < 1
2Ces/2

. Note also that if we defineC′′
2 := sup{|q(u;�)| : |u|�C0,

� ≈ 0} then, due to (18), this function is bounded byC′′
2e

4C′
2 for |u0| < 1

4Ces/2
.

Thus by applying Lemma 6 again, now withR = 1
4Ces/2

, it turns out that|q̄i (s)| <
C′′
2e

4C′
2
(
4Ces/2

)i
. In addition,∣∣∣∣∣

∫ t

0

∞∑
i=1

q̄i (s)u
i
0 ds

∣∣∣∣∣ �
∞∑
i=1

∫ t

0
|q̄i (s)ui0| ds�C′′

2e
4C′

2

∞∑
i=1

∫ t

0

(
4Ces/2|u0|

)i
ds
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= 2C′′
2e

4C′
2

∞∑
i=1

eit/2 − 1

i
(4C|u0|)i

� 4C′′
2e

4C′
2

∞∑
i=1

(
4Cet/2|u0|

)i
. (32)

(Here we use Lemma5 in the first inequality.) According to Lemma 4 this shows that
the series

∫ t

0
q(u(s, u0))exp

(
−
∫ s

0
p
(
u(�, u0)

)
d�
)
ds =

∞∑
i=1

(∫ t

0
q̄i (s) ds

)
ui0

is convergent for|u0| < 1
4Cet/2

. It is clear then that the function between brackets in

(30) can be written as a convergent series inu0 = 0 for |u0| < 1
4Cet/2

. Note in addition

that, on account of (32), it is bounded by 4C′′
2e

4C′
2 for |u0| < 1

8Cet/2
. On the other

hand, from (31) takings = t, it follows that

exp

(∫ t

0
p(u(s, u0)) ds

)
< e4C

′
2 for |u0| < 1

4Cet/2

and, sincex �−→ ex is entire, that this function can be written as a series inu0 = 0 with
radius of convergence greater than1

2Cet/2
. In brief, we have shown that���

u(t, u0;�)

is the product of two series with radius of convergence greater than1
4Cet/2

and that

| �
��
u(t, u0;�)| < C2 for |u0| < 1

8Cet/2
with C2 := e4C

′
2

(
4C′′

2e
4C′

2

)
. This shows the

validity of Claim 2.
We are now in position to prove Claim 1. To do so note first that if we define

f1(u;�) := �f (u;�)
�u and f2(u;�) := �f (u;�)

��
, then from (19) we obtain that

∞∑
i=1

�ai(t;�)

��
ui0 = f1 (u(t, u0;�))

�u(t, u0;�)

��
+ f2 (u(t, u0;�))+ �′

1(�)
�1(�)2

. (33)

Recall in addition thatu(t, u0;�) and �u(t,u0;�)
��

can be written as a series inu0 = 0

with radius of convergence greater than1
4Cet/2

. (This follows from (17) and Claim 2
respectively.) Consequently the series in (33) has also radius of convergence greater
than 1

4Cet/2
because eachfi is polynomial inu. Now if we define

C3 := sup

{
|f1(u;�)|C2 +

∣∣∣∣f2(u;�)+ �′
1(�)

�1(�)2

∣∣∣∣ : |u| < C0,� ≈ 0

}
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then, taking the upper bounds in (18) and (29) into account and applying Lemma 6
with R = 1

8Cet/2
, the claim follows. �

Proof of Theorem 16. Since the transversal sections�1 and�2 areCk, with k�1, it
is well known thatP2 and T2 are Ck functions ats = 0 (see Fig.2). It is also clear
that if

P2(s;�) = a0(�)+ a1(�)s + o(s) and T2(s;�) = b0(�)+ b1(�)s + o(s)

are the respective Taylor’s developments ats = 0, then it holdsa0(0) = 0, a1(0) > 0
and b0(0) > 0. The (generic) assumption that we make is thata′

0(0) = 0.
Let us consider first the caser(0) > 1 and define

F(s;�) := P1(s;�)− P2(s;�) and T (s;�) := T1(s;�)+ T2(s;�).

Thus, for�0 ≈ 0, the periodic orbits ofX�0 near the saddle connection� are precisely
the positive roots ofF(s;�0) = 0 nears = 0. In addition, ifF(s0;�0) = 0 then the
period of the corresponding periodic orbit is given byT (s0;�0). The idea will be to
track down the periodic orbits by applying the Implicit Function Theorem toF . To
this end note that, by (a) in Proposition23, P1 is the restriction tos > 0 of a function,
say P̃1, which is C1 on neighbourhood of(s;�) = (0;0) and verifies

P̃1(0;0) = �P̃1(0;0)
�s

= �P̃1(0;0)
��

= 0.

(Here we took Definition21 into account.) To be precise, we shall apply the Implicit
Function Theorem using this “extended” function instead of the original one. However,
to avoid introducing new notation, let us maintain the name ofF . Thus, since

F(0;0) = 0, Fs(0;0) = −a1(0) = 0 andF�(0;0) = a′
0(0) = 0,

by the Implicit Function Theorem, there exists aC1 function xl(�), defined for� ∈
(−ε, ε), verifying thatF (xl(�);�) ≡ 0. We can assert in addition that

xl(�) = c� + o(�) with c := −a
′
0(0)

a1(0)
.

Consequently, ifc > 0 (respectivelyc < 0) then the solution ofX� passing through
� (xl(�),1) is a limit cycle for � ∈ (0, ε) (respectively� ∈ (−ε,0)). It is also clear
that, in each case, the period of this limit cycle is given byT (�) := T (xl(�);�).
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Finally, by applying (a) in Proposition23, some computations show that

T (�) = −1

�1(0)
ln |�| +O(1).

In order to prove the assertion whenr(0) < 1 we take the family of vector fields
X̃� := −X�. Following the obvious notation, it is clear that̃�1(�) = −�2(�) and
�̃2(�) = −�1(�). Consequentlỹr(�) = 1/r(�), and so the assertion follows by applying
the result in case of ratio of hyperbolicity greater than one.�
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