RATIONAL PERIODIC SEQUENCES FOR THE LYNESS RECURRENCE

Armengol Gasull
Dept. de Matemàtiques, Universitat Autònoma de Barcelona
Edifici C, 08193 Bellaterra, Barcelona, Spain
Víctor Mañosa
Dept. de Matemàtica Aplicada III (MA3)
Control, Dynamics and Applications Group (CoDALab)
Universitat Politècnica de Catalunya (UPC)
Colom 1, 08222 Terrassa, Spain
Xavier Xarles
Dept. de Matemàtiques, Universitat Autònoma de Barcelona
Edifici C, 08193 Bellaterra, Barcelona, Spain

(Communicated by Dmitry Kleinbock)

Abstract

Consider the celebrated Lyness recurrence $x_{n+2}=\left(a+x_{n+1}\right) / x_{n}$ with $a \in \mathbb{Q}$. First we prove that there exist initial conditions and values of a for which it generates periodic sequences of rational numbers with prime periods $1,2,3,5,6,7,8,9,10$ or 12 and that these are the only periods that rational sequences $\left\{x_{n}\right\}_{n}$ can have. It is known that if we restrict our attention to positive rational values of a and positive rational initial conditions the only possible periods are 1,5 and 9 . Moreover 1-periodic and 5 -periodic sequences are easily obtained. We prove that for infinitely many positive values of a, positive 9 -period rational sequences occur. This last result is our main contribution and answers an open question left in previous works of Bastien \& Rogalski and Zeeman. We also prove that the level sets of the invariant associated to the Lyness map is a two-parameter family of elliptic curves that is a universal family of the elliptic curves with a point of order $n, n \geq 5$, including n infinity. This fact implies that the Lyness map is a universal normal form for most birational maps on elliptic curves.

1. Introduction and main results. The dynamics of the Lyness recurrence

$$
\begin{equation*}
x_{n+2}=\frac{a+x_{n+1}}{x_{n}} \tag{1}
\end{equation*}
$$

specially when $a>0$, has focused the attention of many researchers in the last years and it is now completely understood in its main features after the independent research of Bastien \& Rogalski [3] and Zeeman [21], and the later work of Beukers \& Cushman [5]. See also [2, 11]. In particular all possible periods of the recurrences

[^0]
[^0]: 2000 Mathematics Subject Classification. Primary: 39A20; Secondary: 39A11,14H52.
 Key words and phrases. Lyness difference equations, rational points over elliptic curves, periodic points, universal family of elliptic curves.

 The authors are partially supported by MCYT through grants MTM2008-03437 (first author), DPI2008-06699-C02-02 (second author) and MTM2009-10359 (third author). The authors are also supported by the Government of Catalonia through the SGR program.

