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We obtain an affine classification of quadratic systems with degenerate infinity
in eight types and prove that they present 13 phase portraits on the Poincaré
sphere. For cubic systems with degenerate infinity the situation is much more
complicated. We show that there are examples of such systems with at least three
concentric limit cycles and we give a criterion to ensure that, in some cases, this
number is less than or equal to two.  © 1996 Academic Press, Inc.

1. INTRODUCTION

We consider vector fields X associated with two-dimensional au-
tonomous systems of differential equations of the form

dx
k== Py(x,y) + Pi(x,y) + Py(x,y) + P5(x,y).

(1
d
§ = == 0)(1.3) + 0i(x¥) + 0(x¥) + 0s(x.¥),

where P, and Q, are real homogeneous polynomials of degree k, satisfy-
ing

x0;(x,y) —yP3(x,y) =0 (resp. xQ,(x,y) —yPy(x,y) =0) (2)

whenever P} + Q3 # 0 (resp. P} + Q3 = 0 and P} + Q3 # 0). Such sys-
tems will be called cubic systems (resp. quadratic systems) with degenerate
infinity, CSDI (resp. QSDI) for short. This terminology is due to the fact
that, in the Poincaré compactification of (1), the equator of S2, i.e., the
circle at infinity, consists entirely of critical points; see [9].
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We are interested in determining all possible QSDI (modulus affine
transformations and changes of the scale of the independent variable f)
and in obtaining all their phase portraits on the Poincaré sphere. We get
exactly eight affine equivalent classes (each of them with zero or one
parameter) for QSDI. Furthermore, we show that QSDI can only have 13
different phase portraits on the Poincaré sphere (reversing the time
variable ¢ if necessary). See Fig. 1 and Theorem Q in next section for more
details.

Directly related with our work is the paper [2]. In that paper, entitled
“Affine Classification for the Quadratic Vector Fields without the Critical
Points at Infinity,” the authors study a subfamily of QSDI. At this point we
want to comment that it is well known that any quadratic system has
critical points at infinity when we make its Poincaré compactification. So,
what is the meaning of the title of the above paper? The answer is that, in
their paper, the authors only consider the subclass of QSDI such that a
reparametrization of its Poincaré compactification does not have critical
points at infinity.

On the other hand, we also consider CSDI. Such systems appear, for
instance, in a mathematical model of catalytic networks formed by two
members; see [7] for more details. Here we show that CSDI are much
more complicated than QSDI. In fact we give an example exhibiting at
least three limit cycles surrounding the same critical point and prove a
criterion that asserts that a certain subfamily of CSDI has at most two
limit cycles. See Theorem C in the last section.

The organization of this paper is as follows. Section 2 contains all the
material concerning QSDI, and in Section 3 we consider CSDI.

2. ON QUADRATIC SYSTEMS WITH
DEGENERATE INFINITY

THEOREM Q. Consider the vector field X associated with a quadratic
system with degenerate infinity. Denote by p( X ) its Poincaré compactification
on S*. Then:

(i) there is an affine change of coordinates of X such that in some local
chart of S?, centered at infinity, a parametrization of p(X) is a linear vector
field,

(ii) there is an affine change of coordinates plus a rescaling of the time
variable t such that the quadratic system with degenerate infinity has one of the
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following forms:

=xy,

(A)
y=14+dy+y*,0<d<2,

X=xy,
y=x+1+dy+y>,.0<d<2,

(B)

y=-ny-1,r<1,

f
|
(©) {x‘xy’
f
g
o {;

D e

(D) =x+(y—-r)(y—1,0<r<1,
x_.xy, jC:xya

(E) (F) {._ 2
y=y% y=x+y",
=x2, i=x+x2
=1+ux, (H) {y=1+xy;

(iii)  phase portraits on the Poincaré sphere, of the systems given in (ii),
are plotted in Fig. 1 according to the values of their parameters.

CoroLLARY. Consider a quadratic system with degenerate infinity. Then
the following holds:

(1) it has, at least, one invariant straight line,

(i) its orbits (without the parametrization with respect to time) can be
expressed as the level curves of a function F(x, y). This function is obtained by
integrating a linear differential equation associated with the quadratic system.

Proof of the Corollary. (i) Follows from (ii) of Theorem Q, because
x = 0 is always an invariant straight line. Part (ii) is an easy consequence
of (i) of Theorem Q. |

Remarks. (i) For a lot of cases of QSDI it is also possible to determine
their trajectories (that is, the orbits with their parametrization) using (ii) of
the above theorem. For instance in cases (A), (C), (E), (G), and (H).

(ii) Observe that Figs. 1, 2, 3, 4, and 5 of [2] correspond with F; B,
d=0;,B,0<d<2,D,r=0,and D,0 <r < 1, of Fig. 1, respectively.
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F1G. 1. QSDI except perhaps the orientation, according to (i) of Theorem Q.

Proof of Theorem Q. (i) Any QSDI can be written as

¥=a+ax + by +x(kk +my),

y=B+cx+dy+y(lx +my), where >+ m?*+0.

Changing, if necessary, x with y and vice versa, we can assume that / # 0.
Furthermore, taking the new coordinates x, = Ix + my, y, =y, the QSDI
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can be written as

= a+ax+ by +x?, 3)
y=B+cx+dy+xy,

where the constants are, perhaps, different from the previous ones and
where we have omitted the subscripts.

It is easy to check that system (3) has the straight line y = px + bp* +
(a — d)p — c, invariant if p is a real root of

—b’p* + b(2d — a)p* + (da + bc —d* — a)p + B — dc = 0.

Therefore if b # 0;or b=0and a #d(a —d);or b=0, o = d(a — d),
and B — dc = 0, such a real root always exists. Let us call it p. Hence, in
the new coordinates x, =d —pb + x, y, =y — px — bp* + (d — a)p + c,
system (3) can be written as

i=a +dx+by+x?

y=x,

where we have omitted the subscripts. Finally, calling x, =y, y, =x,
renaming the constants, and again omitting the subscripts, we get

r=x, )
y=B+cw+dy+y’.

In the case in which we cannot assure the existence of a real root of the
cubic equation, we have in (3) that b = 0, @ = d(a — d), and B — dc + 0;
that is,

i=d(a—d)+ax+x%,
y=B+cx+dy+x, where B — dc # 0.
taking z =x + d, w = (¢ +y) /(B — dc), we obtain
z=(z+4+a—2d)z,
o=1+zo.
Calling x =z, y = w and renaming a — 2d as a, we get
X =ax + x?,

5
y=1+x, ®
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Therefore, any QSDI can be written as (4) or (5). The expressions of these
two systems in the local chart %, of the Poincaré compactification are

z, = A7) (¢ +dz, + Bz,), "
z,= A(2) (—z1),
z, = 2 (—az, +z,),
Az
) (5)
z, = (—1—az,),

A(z2)

respectively, where A(z) = (z7 + z3 + 1)'/2. Clearly, the above expres-
sions prove (i) taking a new time variable s, such that ds/dt = z, /A(2).

(ii) Consider system (4). Taking the new variables x, = gx, y, = py,
and t, = p~'t, we have

dx,

— =Xy,
d, 11

d ¢ d 1
% -5 +p2{B+ —y + —2y12}-
1 q p p
From the above expression it is easy to get systems from (A) to (F), with
¢ = 0 or ¢ # 0 and with the existence or not of real roots of 8 + dy + y?
= 0. In systems (C) and (D) we can assume that r < 1 because, otherwise,
the change x, = r %x, y, = r 'y, t, = 1t reduces the system to the previ-
ous case. Furthermore, in system (D) we can suppose 0 < r < 1, by using
the change x, =r/(r — D>+ (1/Gr — D)x — (/A =Dy, y, =r/(r —
D-Q/ =1y, t, =0 —r)t (esp. x,=x—y+ 1, y,=1—y, t, =
—t)if r < 0 (resp. r = 1). Finally, systems (G) and (H) came from (5) with
a =0 or a # 0, respectively, taking coordinates x, = a 'x, y, = ay, t, =
at, if necessary.

(iii) To obtain phase portraits, on the Poincaré sphere, of systems
from (A) to (H), as in Fig. 1, we find and draw their orbits. To do this it is
enough to integrate the expressions of these systems in the local chart Z,
given by (4') or (5'), to use the change z, =y /x, z, = 1 /x and to take into
account that x = 0 is an invariant straight line for all of them. The
integration of systems (4') and (5') can be done by reducing equation
dx,/dz, = (a,z, + b,z, + ¢,)/(a,z, + byz, + ¢,), to a homogeneous dif-
ferential equation whenever we have a,b, — a,b, # 0, or to the equation
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dz,/dz, = f(a,z, + b,z,), otherwise. Both equations are elementarily inte-
grable by separating variables. ||

3. ON CUBIC SYSTEMS WITH DEGENERATE INFINITY

In this section we will study some properties of CSDI. From its defini-
tion it is clear that they can be written as

X =P(x,y) +xH(x.y).
y=0(x.y) +yH(x,y),

where P and Q are arbitrarily polynomials of degree 2 and H is a
homogeneous polynomial of degree 2. We are interested in the problem of
periodic orbits; so it is not restrictive to assume that the above system has
at least a critical point and that it is the origin; that is, P(0,0) = Q(0,0) = 0.
Then, its expression in polar coordinates, x = rcos 6, y = r sin 6, is

iF=a(0)r+f(0)r*+ h(0)r’,

: (6)
0=>b(0)+g(0)r,
where a, b, f, g, and h are homogeneous trigonometric polynomials of
degrees 2, 2, 3, 3, and 4, respectively. Observe that the only difference
between this expression and the general expression of a cubic system with
a critical point at the origin is that in this latter case, the second
differential equation has a term of the form i(6)r?, with i trigonometrical
polynomial of degree 4.
We next consider the function

A(0) = (a(6)g(6) —b(6)f(0))g(6) +b*(0)h(6).  (7)

which is a homogeneous trigonometrical polynomial of degree 8 and
generalizes a function frequently used to study planar systems with homo-
geneous nonlinearities; see, for instance, [1].

Our main result is the following.

THEOREM C. (i) There are CSDI with at least three limit cycles surround-
ing the same critical point.

(ii) Consider a CSDI, written as in (6) and assume that the function A,
defined in (7), does not change sign. Then, this system has at most two limit
cycles and, when they exist, they surround the origin.
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Proof of Theorem C. (i) Taking z = x + iy = Re(z) + i Im(z2), it is not
difficult to check that the equation

22+ d(2° + %) + ez’z,

— 3 (= 3
;=(i+AN)z+2Bz>+Bz+ —|B+ =
4 47 dB

with d,e, A, £ € R, B C, dB # 0, corresponds to a CSDI.
Using [5], we obtain that the first Liapunov constants of this equation
are

v, =exp(2mA) — 1,

v, = 2me, when A = 0,
vy = £, when A =e =0,
_ 5 _ _
v; = oo 7BB Im(B*) + dH(Re(B).Im(B). d).

when A =e = &= 0,

where H(x,y, z) is a polynomial. Hence, taking B such that Im(B*) # 0
and d small enough, we get a system with v, # 0. Standard arguments
imply that if we take |A| <|e| <|£| and v,, &, &, and A alternating in
signs, we get a CSDI with three small-amplitude limit cycles.

(ii) Following similar arguments to those of [1 or 4], it can be proved
that any periodic orbit of system (6) surrounds the origin and does not cut
the set {(r, ) € R*|b(0) + g(8)r = 0}. Hence, if we assume that system
(6) has three limit cycles, they are positive solutions of the equation

a(0)r +f(0)r* + h(6)r’
b(0) +g(6)r

dr/d6 = S(r,0) =

satisfying r(6) = r(6 + 2m), and they can be written as r(0) > r,(0) >
r5(0). Following [8, p. 103], we consider

I T T N
1 2 1 3 2 3
+

e S S
Straightforward calculations show that this last expression coincides with

A(O)r(ry —13)
(b(0) +8(0)r)(b(0) +g(0)ry)(b(0) +g(0)r5)"
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and so,

2

0=1

o (rl(0)—r2(9))r3(0)}

L (n(8) = ra())r2(6)
2m A(O)r(ry —1ry) do

_fo (b(6) +g(0)r)(b(6) +8(6)r,)(b(6) +g(0)rs)’

0

because r;, i = 1,2,3, are 2m-periodic functions. Note that this last equal-
ity leads us to a contradiction because the integrating function does not
change sign and it is continuous. Hence, system (6) has at most two limit
cycles. |1

FINAL REMARKS

(a) Take a quadratic system & = P(x,y), y = O(x,y), with four
hyperbolic limit cycles in the configuration (3,1). It is clear that if we
consider (&, j) = (I3(x,y), Q(x,y)) + eH(x,y)-(x,y), with H a homoge-
neous polynomial of degree 2 and & small enough, we have constructed a
CSDI with configuration (3,1) and proved, again, Theorem C (i). At this
point we would like to present a problem for CSDI that seems interesting.
Which configuration of limit cycles (different from configurations that
quadratic systems have) can they present?

(b) Following again [4], it is also possible to show, adding to the
hypotheses of Theorem C (ii) the conditions b(8) does not vanish and that
{(r,0) € R%|b(#) + g(#)r = 0} is not a closed curve, that the sum of the
multiplicities of the limit cycles that system (6) can have is two. The key
point in the proof is the use of the formula for the derivatives of the
Poincaré return map, proved in [6], and the fact that

a3S 6A(60)b(6
S 19y - SA®RO)
ar (b(6) +g(0)r)

(c) Tt is easy to check that (x,7) = (Ax — y, x + Ay) + a(x? + y?)-
(x, y) is a CSDI that has A(#) = a. Therefore, it satisfies the hypotheses
of Theorem C (ii) and, so, it has at most two limit cycles. In fact, taking
polar coordinates it is clear that the limit cycle is x* + y*> = —\/a and
that it is unique. It is not difficult to construct other examples of CSDI
under the hypotheses of Theorem C (ii) with one limit cycle, but unfortu-
nately we have not found any of them with two limit cycles.
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(d) Another way of approaching a CSDI, written as (6), is to trans-

form it by using the change of variables p = r/(b(8) + g(6)r), to the Abel
equation
d_p _A(9)
a6 b(o) "
b(6)f(0) —2a(0)g(6) +b'(0)g(0) —b(6)g'(0) ,
+ P
b(6)
a(f) — b'(9)
(o) "

After this paper was written, Ref. [3] appeared. There the center

problem for CSDI is solved. The author’s proof uses results of [10] on the
Liapunov constants for such systems.

10.

REFERENCES

. M. Carbonell and J. Llibre, Limit cycles of polynomial systems with homogeneous
non-linearities, J. Math. Anal. Appl. 142, No. 2 (1989), 573—590.

. G.-Q. Chen and Z.-]J. Liang, Affine classification for the quadratic vector fields without
the critical points at infinity, J. Math. Anal. Appl. 172 (1993), 62—72.

. C. J. Christopher, Invariant algebraic curves and conditions for a centre, Proc. Roy. Soc.
Edinburgh A 124 (1994), 1209-1229.

. B. Coll, A. Gasull, and R. Prohens, Differential equations defined by the sum of two
quasihomogeneous vector fields, Canad. J. Math., to appear.

. A. Cima, A. Gasull, V. Manosa, and F. Mahosas, Algebraic properties of the Liapunov
and period constants, Rocky Mountain J. Math., to appear.

. N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,
J. London Math. Soc. 20 (1979), 277-286.

. J. C. Nufio, M. A. Andrade, F. Moran, and F. Montero, Study of a catalytic networks
formed by error-prone self-replicative species, in “Mathematics Applied to Biology and
Medicine (1993),” pp. 321-326 (J. Demongeot and V. Capasso, Eds.), Mathematical
Biology, Wuerz, Winnipeg, 1993.

. V. A. Pliss, “Non-local Problems of the Theory of Oscillations,” Academic Press, New
York, 1966.

. J. Sotomayor, “Curvas definidas por equagbes diferenciais no plano,” IMPA, Rio de

Janeiro., 1981.

N. Yasmin, “Closed Orbits for Certain Two-Dimensional Cubic Systems,” Ph.D. thesis,

University College of Wales, Aberystwyth, 1989.



