
CENTER PROBLEM FOR SEVERAL DIFFERENTIAL

EQUATIONS VIA CHERKAS METHOD
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Abstract. Cherkas method characterizes centers for analytic Li�enard di�er-

ential equations. We extend his method to degenerate Li�enard di�erential equa-

tions and we apply this extension to solve the center problem for several fam-

ilies of polynomial di�erential equations. In particular we give all centers for

some di�erential equations given by a vector �eld which is sum of two quasi-

homogeneous ones. Finally we make some remarks for C

1

Li�enard equations.

1. Introduction.

The characterization of centers for concrete families of di�erential equations is

a problem which has extensively been studied during the last decades. When the

critical point is non degenerate (it has purely imaginary eigenvalues) the method

of computing its Lyapunov constants solves theoretically the problem. In most

cases the procedure to study all centers follows next idea: compute several Lya-

punov constants and when you get one signi�cative constant which is zero, try

to prove that the system obtained indeed has a center. The described method

has two main di�culties: How are you sure that you have computed enough Lya-

punov constants? How do you prove that some system candidate to have a center,

has actually a center? Anyway, this procedure has been used to study (and in

some cases solve) the center problem for a lot of families of di�erential equations.

Among other we can quote: quadratic systems [4], systems with homogeneous

nonlinearities of degree 3, 4, 5 [25], [9], [10], Kukles system [14], quadratic-like

cubic systems [8], [20], : : : See also the paper [24].

There is a family, the Li�enard di�erential equations, for which the second prob-

lem stated above is much more easy. To be exact, Cherkas in [11] gave a result,

later developped in [13], (see also Theorem 2.6 of this paper) which characterizes

when the origin of an analytic di�erential equation of type

_x = '(y)� F (x); _y = �g(x); (1)

is a center, where '(y) = y +O(y

2

), F (x) = O(x), and g(x) = x+O(x

2

).

Remember that O(h(x)) and o(h(x)) denote functions such that lim

x!0

O(h(x))

h(x)

=

c 2 R and lim

x!0

o(h(x))

h(x)

= 0, respectively.
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We remark that while most methods to prove when a system has a center give

su�cient conditions (reversibility of the system, existence of an integrating factor,

: : : ) the method developped by Cherkas gives a necessary and su�cient condition.

This fact makes it very useful to study the center problem for di�erential equations

that can be transformed into (1). This idea has been already exploited by other

authors, see [12] and [21].

In this paper, �rst we will make a generalization of Cherkas result when g(x) =

x

2l�1

+ O(x

2l

) and l is a natural number. This generalization is made to apply

Cherkas method to characterize the centers for the next families of di�erential

equations,

_x = �y + a

1

xy + a

2

x

q+1

;

_y = x

2q�1

+ b

1

y

2

+ b

2

x

q

y + b

3

x

2q

; q 2 N

(2)

_x = y � (a

1

x+ a

2

x

2

+ a

3

x

3

+ a

4

x

4

+ a

5

x

5

);

_y = �(b

1

x + b

2

x

2

+ b

3

x

3

+ b

4

x

4

+ b

5

x

5

):

(3)

Observe that di�erential equation (2) is de�ned by a vector �eld which is sum

of two quasi-homogeneous vector �elds of degrees 1 and q (q � 2), see [6] or [7].

Furthermore, the study of the quadratic systems can be reduced (via a rotation)

to equation (2) with q = 1. In [7] system (2) is also studied for q � 2: In that

paper the authors give all families of (2) which admit a �rst integral which is sum

of quasi-homogeneous polynomials. Of course all the systems obtained in that

paper are centers. We prove that for all q � 2 there are more centers inside family

(2). In fact we give all centers for (2) when q is even, see Theorem 3.3, all centers

for q = 1 and several families of centers for q > 1, odd, see Theorem 3.5. We

remark that we have not been able to solve even the easiest odd case q = 3 due

to computational di�culties that will be described with more details in Section 3

of this paper.

We also note that our results give a new way to characterize all centers for qua-

dratic systems. This new way allows to study all cases with an uni�ed treatment,

see Theorem 3.5(ii) in contrast to other methods which classify the quadratic

systems in types: reversible, Hamiltonian, : : : .

All centers of di�erential equation (3) are already known when b

1

6= 0; see for

instance [23]. We continue the study to the case b

1

= 0: In this case, �rst we

characterize the cases in which the origin can be either a focus or a center and

�nally we solve the center problem, see Theorem 3.8.

Most of the computations have been carried out using MAPLE V.4.

This paper is organized as follows: in Section 2 we prove the main result con-

cerning the equivalent necessary and su�cient conditions for a degenerate (or not)

Li�enard di�erential equation to have a center at the origin, see Theorem 2.6. We

stress that some of these conditions are new. This section also contains some

preliminary results about Li�enard systems. Section 3 has two parts. The �rst one

deals with the system (2). First we show how to transform it into a degenerate

Li�enard di�erential equation and later we apply the results of the previous section
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to characterize the centers. This subsection is the one which involves more compli-

cated computations and for some cases we just give a scheme of the proofs. Some

more technical details are developped in the Appendix which is the last section of

the paper. The second part of Section 3 solves the center problem for system (3),

which is already in Li�enard form. In Section 4 we make some remarks on equation

(1) when the involved functions are just of class C

1

:

2. Li

�

enard systems.

In this section we present a generalization of results of Cherkas [11], later de-

velopped by Christopher, Lloyd and Pearson [13], about Li�enard di�erential equa-

tions. This generalization is needed to study systems (2) and (3), but we think

that it is interesting by itself.

We will deal with the Li�enard di�erential equation

_x =

dx

dt

= '(y)� F (x); _y =

dy

dt

= �g(x); (4)

where ', F and g are analytic functions satisfying

'(y) = y

2m�1

+O(y

2m

);

F (x) = a

k

x

k

+O(x

k+1

);

G(x) =

Z

x

0

g(s) ds =

x

2l

2l

+O(x

2l+1

);

with m; k; l 2 N being non zero. As far as we know, the case l > 1 is just studied

in some special situations, see for instance [28].

To study system (4) we need to introduce some notation and preliminary results.

Following the ideas of [17] for l = 1, we de�ne u as

u := �(x) := sign(x)

2l

p

2lG(x) = x

2l

r

2l

G(x)

x

2l

= x

2l

p

1 +O(x):

This function is analytic at zero and has an analytic inverse which we call

�(u) = u(1 +O(u)): It turns out that

u = �(�(u)) = �(u)

2l

s

2l

G(�(u))

�(u)

2l

: (5)

Next lemma is a generalization of well-known results, see for instance [17] or

[26].

Lemma 2.1. With the change of variables

u = x

2l

r

2l

G(x)

x

2l

; y = y;

and the change of time

dt

ds

=

u

2l�1

g(x)

, system (4) writes in a neighbourhood of (0; 0)

as

u

0

=

du

ds

= '(y)� F (�(u)); y

0

=

dy

ds

= �u

2l�1

: (6)
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Proof. Direct computations give

_u = u

1�2l

g(x)('(y)� F (x));

_y = �g(x);

and hence

du

ds

=

du

dt

dt

ds

= '(y)� F (�(u));

dy

ds

=

dy

dt

dt

ds

= �u

2l�1

:

Notice that from the expressions of g(x) = x

2l�1

+O(x

2l

) and u = x+O(x

2

) it is

clear that

dt

ds

6= 0 in a neighbourhood of the origin.

Next lemma is similar to Lemma 2.1 of [19].

Lemma 2.2. Consider system (6) with '(y) = y

2m�1

+ d

2m

y

2m

+ O(y

2m+1

),

F (�(u)) = f

k

u

k

+ O(u

k+1

) and mk + l � 2ml > 0. Then its origin is a center

if and only if F (�(u)) is an even function.

Proof. In the �rst part of the proof we will show that near the origin the orbits

turn around it. To do this we use the Lyapunov polar coordinates r; � given by

u = r

m

Cs(�); y = r

l

Sn(�);

where the functions z(�) = Cs(�) and w(�) = Sn(�) are the solutions of the

Cauchy problem

_z = �w

2m�1

; z(0) = (1=m)

1=(2l)

;

_w = z

2l�1

; w(0) = 0;

see [16] or [22] for more details. In particular we will use that mCs

2l

(�) +

lSn

2m

(�) = 1:

In these new coordinates and with a new time variable � given by

dt

d�

= r

l+m�2ml

the expression of (6) is

dr

d�

= r

l+m+1�4ml

[u

2l�1

_u+ y

2m�1

_y];

d�

d�

= r

�2ml

[m _yu� l _uy];

that is

dr

d�

= O(r

p+1

);

d�

d�

= �1 + Ar

p

+O(r

p+1

);

where

p =

(

l when k � 2l � 0;

mk + l � 2ml when k � 2l < 0;



CENTER PROBLEM VIA CHERKAS METHOD 5

and

A =

8

>

<

>

:

�ld

2m

Sn

2m+1

(�) when k � 2l > 0;

�ld

2m

Sn

2m+1

(�) + lf

k

Sn(�)Cs

k

(�) when k � 2l = 0;

lf

k

Sn(�)Cs

k

(�) when k � 2l < 0:

In any case, by using that mk + l � 2ml > 0 we have proved that the origin

is either a focus or a center. At this point the proof follows like the proof of

Lemma 2.1 of [13]. In fact it su�ces to compare the orbits of (6) taking instead

of F (�(u)), its even part

F (�(u))+F (�(�u))

2

. Observe that this latest case has a center

at the origin.

Remark 2.3. (i) Observe that when in the statement of Lemma 2.2, mk + l �

2ml < 0, the origin cannot be either a focus or a center because the origin has

some trajectories which reach or leave it with directions � satisfying Sn(�) =

0:

(ii) The case mk + l� 2ml = 0 is much more delicate. The type of critical point

depends on the value f

s

. In fact if the function H(�) := �1+ lf

k

Sn(�)Cs

k

(�)

is always negative the origin is either a focus or a center and the same results

of Lemma 2.2 hold. When the function H changes sign we are in the same

situation than in (i). The case H(�) � 0 is more complicated. We just study

the case m = 1 in Lemma 2.5.

Remark 2.4. The results of Lemma 2.2 also follow from Theorem A.(a) of [15].

Finally note that these results, when l = 1 and '(y) = y, are also a consequence

of the fact that the (2k + 1)-th Lyapunov constant of system (6) is a multiple of

f

2k+1

for k � 1, see [5] or [29].

Lemma 2.5. Consider equation (4) with m = 1 and a more general g(x) of the

form g(x) = b

n

x

n

+ O(x

n+1

): Then its origin is either a center or a focus if and

only if one of the following three conditions is satis�ed

(i) n = 1, a

2

1

� 4b

1

< 0;

(ii) n > 1, odd, a

1

= 0, n < 2k � 1; b

n

> 0;

(iii) n > 1, n = 2k � 1; ka

2

k

� 4b

n

< 0:

Proof. Let X denote the vector �eld associated to (4). When n = 1, DX(0) =

�

�a

1

1

�b

1

0

�

. By imposing that the eigenvalues of the matrix are complex we are

done. When n > 1, DX(0) =

�

�a

1

1

0 0

�

. If a

1

6= 0, the theorem of classi�cation

of such kind of critical points (Theorem 65 of [2]) implies that there are neither

foci nor centers. When a

1

= 0, the results of [1] characterize the points which are

either center or focus. Straightforward computations prove the lemma.

Next theorem is the main result of this section. The �rst three points are a

generalization of known results for l = 1, see [11] and [13]. As far as we know

points (iv-v) are new equivalent characterizations of centers. As we will see in the

last section, the most useful of the given characterizations turns out to be (v).
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Theorem 2.6. Consider system (4), that is

_x = '(y)� F (x); _y = �g(x); (7)

where all the involved functions are analytic and satisfy

'(y) = y

2m�1

+O(y

2m

);

F (x) = a

k

x

k

+O(x

k+1

);

G(x) =

Z

x

0

g(s) ds =

x

2l

2l

+O(x

2l+1

);

with m; k; l 2 N being non zero. Consider

F (�(u)) = f

k

u

k

+O(u

k+1

);

where �(u) is de�ned as the inverse of u = �(x) = x

2l

q

2l

G(x)

x

2l

, and assume that

k > l(2m � 1)=m. Then it has a center at the origin if and only if one of the

following conditions is satis�ed:

(i) F (�(u)) is an even function (including F (�(u)) � 0).

(ii) There exists an analytic function 	; such that 	(0) = 0 and satisfying

F (x) = 	(G

1=l

(x)):

(iii) For any small enough x the system

F (x) = F (z); G(x) = G(z);

has a unique solution z(x) satisfying z(0) = 0 and z

0

(0) < 0:

(iv) There exist analytic functions �; � and h satisfying �(0) = 0; �(x) = bx +

O(x

2

); with b 6= 0; and such that

F (x) = �(h(x)); G

1=l

(x) = �(h(x)):

(v) There exist analytic functions �; 
 and h satisfying �(0) = 0; 
(x) = cx

l

+

O(x

l+1

); with c 6= 0, and such that

F (x) = �(h(x)); G(x) = 
(h(x)):

Proof. First notice that the fact that equation (7) has a center is equivalent to

condition (i). This fact is a direct consequence of Lemmas 2.1 and 2.2.

The proof that (i) is equivalent to (ii) follows from next chain of equalities

F (x) = F (�(u)) =

^

	(u

2

) =

^

	([2lG(x)]

1=l

) = 	(G

1=l

(x));

where

^

	 is de�ned from the fact that F (�(u)) is an even function of u:

Here we want to prove that (i) () (iii). First consider equation G(x) = G(z):

Observe that it writes as

x

2l

� z

2l

+G

2l+1

(x; z) = 0; (8)

for some analytic function G

2l+1

starting at least with terms of degree 2l + 1 in

x and y. From the Weirstrass' preparation Theorem and the results of Chapter

XIII, Section 32 of [3] we can assume that the above equation has only two real

solutions in a neighbourhood of (0; 0), z

1

(x) = x and z

2

(x) = �x +O(x

2

):
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Let us prove that (i) implies (iii). Since F (�(u)) = F (�(�u)) and u

2l

=

2lG(�(u)) = 2lG(�(�u)), we have that z

2

(x) = �(�u(x)) is the only solution

of equation (8) satisfying z

2

(0) = 0 and z

0

2

(0) < 0: The converse follows in a

similar way.

Let us prove that (ii)() (iv). The fact that (iv) implies (ii) follows just taking

�(x) = 	(x) and �(x) = x. The converse follows by taking 	 = ���

�1

�G, where

we have used that b 6= 0:

Finally we will prove that (iv) () (v). We see that (iv) implies (v) just by

taking 
 = �

l

: The other implication follows from the fact that 
(x) = cx

l

+O(x

l+1

)

implies that 


1=l

is also an analytic function and we can take � = 


1=l

:

Corollary 2.7. Let F (x) = a

2k

x

2k

+O(x

2k+1

), and ' analytic functions satisfying

'(0) = 0 and k 2 N. If G = '(F

1

k

) then the system (4) has a center at the origin.

Proof. We de�ne the next analytic functions,

�(x) = a

2k

x

k

; 
(x) = '(

k

p

a

2k

x) and h(x) =

k

s

F (x)

a

2k

:

It is clear that G(x) = '(sign(a

2k

)

k

p

ja

2k

jh(x)) and F (x) = �(h(x)) and from

Theorem 2.6(v) the system (4) has a center at the origin.

When l = m = 1, the characterization (iii) of the above theorem gives light to

a nice result proved in [13] which allows compute the order of a weak focus for

the Li�enard di�erential equation (4) in terms of the multiplicity the map ((F (x)�

F (y))=(x� y); (G(x)�G(y))=(x� y)). See also [18], for an extension to general l

and m:

Remark 2.8. Consider system (4). Associated to it, we can consider the analytic

function

F (�(u)) =

1

X

i=1

f

i

u

i

;

de�ned in the statement of Theorem 2.6. Result (i) of this theorem can be under-

stood in the following way: all the centers of (4) are characterized by the conditions

f

2i�1

= 0; i = 1; 2; : : :

Therefore, for all Li�enard equations (degenerate or not) there is a way to obtain

all centers consisting of the following steps:

(i) Compute the function �(u) satisfying u = �(u)

2l

q

2l

G(�(u))

�(u)

2l

. This can be done

by a formal substitution and then by solving recursively the linear system

obtained.

(ii) Substitute �(u) in F (x) to obtain F (�(u)) =

P

2M�1

i=1

f

i

u

i

, until some order

2M � 1.

(iii) Denote by f

�

2i�1

a simpli�ed expression of f

2i�1

taking into account that f

�

1

=

f

�

3

= � � � = f

�

2i�3

= 0; and f

�

1

:= f

1

: Solve the nonlinear system f

�

1

= f

�

3

=

� � � = f

�

2M

1

�1

= 0; for some M

1

< M . Verify that f

�

2i�1

= 0 for i = M

1

+

1; : : : ;M . If this is not the case return to item (ii) and enlarge M:
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(iv) Prove that the Li�enard systems associated to the solutions of f

�

1

= f

�

3

=

� � � = f

�

2M

1

�1

= 0 are centers by using one of the characterizations given in

Theorem 2.6.

Our computations for l = m = 1 show that this new algorithm is simpler than

the algorithms to compute Liapunov constants. Furthermore, observe that while

the methods for computing the Liapunov constants work just for l = m = 1, the

above algorithm works for all l and m.

3. Applications

3.1. Sum of two quasi-homogeneous vector �elds. This section has two

parts. In the �rst part we solve the center problem for system (2) when q is even.

In the second part we consider the case q odd.

We need some preliminary results.

Lemma 3.1 ([27]). Let p

0

(x); p

1

(x); q

0

(x); q

1

(x) and q

2

(x) be C

1

functions, such

that p

1

(0) 6= 0, then the system

_x = p

0

(x) + yp

1

(x)

_y = q

0

(x) + yq

1

(x) + y

2

q

2

(x)

(9)

can be transformed to a Li�enard system.

Proof. We de�ne the functions f , g and  as

f = �(p

0

0

� p

0

p

0

1

p

�1

1

+ q

1

� 2p

0

p

�1

1

q

2

) ;

g = (p

0

q

1

� p

1

q

0

� p

2

0

q

�1

2

p

1

) 

2

;

and

 (x) = (p

1

(x))

�1

exp

�

�

Z

x

0

q

2

(s)(p

1

(s))

�1

ds

�

:

Under the transformation

(x; y; t) �! (x; (p

0

(x) + yp

1

(x)) (x); �);

where

dt

d�

=  ; the system (9) becomes

_x = y

_y = �g(x)� f(x)y

(10)

which is already in Li�enard form.

If we take p

0

(x) = a

2

x

q+1

; p

1

(x) = �1+a

1

x; q

0

(x) = x

2q+1

+b

3

x

2q

; q

1

(x) = b

2

x

q

;

q

2

(x) = b

1

; in the above lemma we obtain the next result.

Lemma 3.2. The system (2) can be transformed into a Li�enard system (4), and

the functions f , and g have the expressions

f = x

q

�

� a

2

q � a

2

� b

2

+ (a

1

a

2

q + a

1

b

2

� 2b

1

a

2

)x

�

(1� a

1

x)

�

b

1

a

1

�2

;

g = x

2q�1

�

1 + (�2a

1

+ b

3

)x + (�2a

1

b

3

+ a

2

1

+ a

2

b

2

)x

2

+

(a

2

1

b

3

� a

1

a

2

b

2

+ a

2

2

b

1

)x

3

�

(1� a

1

x)

�2

b

1

a

1

�3

;
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for the case a

1

6= 0 and

f = �x

q

(a

2

(q + 1) + b

2

+ 2b

1

a

2

x)e

2xb

1

;

g = x

2q�1

(1 + b

3

x+ a

2

b

2

x

2

+ b

1

a

2

2

x

3

)e

2xb

1

;

for the case a

1

= 0:

3.1.1. The even case. Next theorem solves the center problem for system (2) when

q is even. Notice that the family (iii) is not studied in [7].

Theorem 3.3. The system (2), for q even, has the next families of centers at the

origin,

(i) a

2

= b

2

= 0;

(ii) a

1

+ 2b

1

= b

2

+ (q + 1)a

2

= 0;

(iii) 2a

1

+ b

3

= b

2

+ (q + 1)a

2

= 2b

1

+ (q + 1)b

3

= 0:

For q = 2, there is a new family of centers,

(iv) a

1

� b

1

� b

3

= 6a

2

2

+ b

1

b

3

+ 2b

2

3

= b

2

+ 3a

2

= 0; and a

2

6= 0:

Furthermore, the previous four families are all the centers of (2) at the origin for

q even.

Proof. The cases (i) and (ii) are centers because F = 0: For the third case we can

apply Theorem 2.6(v) by taking the analytic functions �; 
 and h de�ned as

�(x) = �

a

1

a

2

(3 + 2q)

2 + q

x

q+2

2

;


(x) =

�

1

2q

�

1

2(q + 1)

(a

2

2

q + a

2

1

+ a

2

2

)x +

(q + 1)a

2

1

a

2

2

2(q + 2)

x

2

�

x

q

;

h(x) =

�

x

1� a

1

x

�

2

;

and therefore the origin has a center.

For the case (iv), with q = 2, we can assume that b

3

and b

2

are non zero

constants, and apply again Theorem 2.6.(v) with the functions

�(x) = �

b

2

(5b

2

3

+ 2b

2

2

)

12b

3

x

2

;


(x) = �

3b

3

b

2

(5b

2

3

+ 2b

2

2

)

x

2

+

(4b

2

2

+ 9b

2

3

) (b

2

2

+ 3b

2

3

)

9 (5b

2

3

+ 2b

2

2

)

2

x

4

;

h(x) =

�

6 ((27b

2

3

+(4b

2

2

+9b

2

3

) ((b

2

2

+3b

2

3

)(x

3

+3x

2

)+9b

3

x)) h

1

(x)�162b

2

3

)

(4b

2

2

+ 9b

2

3

) (b

2

2

+ 3b

2

3

)

�

1

2

;

h

1

(x) =

�

1 +

2b

2

2

+ 3b

2

3

3b

3

x

�

�

4b

2

2

+9b

2

3

2b

2

2

+3b

2

3

:

Notice that h(x) is an analytic function because h

1

(x) and h(x)

2

= x

4

+O(x

5

) are

analytic functions. Then the origin has a center.

Let us prove that the centers obtained above are all the centers for q even.
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From the method described in the Appendix, we can obtain the values

f

�

q+1

= �

1

q + 1

b

2

� a

2

;

f

�

q+3

=

(3qa

1

� qb

3

� a

1

� 3b

3

� 5b

1

)(a

1

+ 2b

1

)b

2

(2q + 1)(q + 3)(q + 1)

;

To obtain all the centers, we can solve the system f0 = f

�

q+1

= f

�

q+3

= : : : g; but

it is easier to study the three subcases f

�

q+3

= 0, namely: b

2

= 0, for which we

obtain the family (i); a

1

+ 2b

1

= 0 for which we obtain the family (ii); and �nally,

the case 3qa

1

� qb

3

� a

1

� 3b

3

� 5b

1

= 0 and b

2

+ (q + 1)a

2

= 0 which we nwxt

study in more detail under the assumptions b

2

6= 0 and a

1

+2b

1

6= 0. For this case

we compute the next values of f

�

2i+1

and we obtain:

f

�

q+5

=

2a

2

(b

3

+ 2a

1

)(3(2q + 1)a

1

� 2(q + 3)b

3

)

1875(2q + 3)(q + 5)

(75q

2

a

2

2

� 3qa

2

1

+ 32qa

1

b

3

+

375a

2

2

q + 23qb

2

3

+ 6a

2

1

+ 111a

1

b

3

+ 129b

2

3

);

f

�

q+7

=

8a

2

(b

3

+ 2a

1

)(3(2q + 1)a

1

� 2(q + 3)b

3

)

703125(2q + 5)(2q + 3)(q + 7)(q + 1)

(�387000b

2

3

a

2

2

+ 112q

2

b

4

3

�

16q

3

b

4

3

� 564qb

4

3

� 1125000a

4

2

q + 90750qa

1

b

3

a

2

2

+ 52308b

4

3

+ 25092a

2

1

b

2

3

+

172q

3

a

1

b

3

3

� 10494b

3

a

3

1

� 972a

4

1

+ 85914a

1

b

3

3

� 334q

3

a

2

1

b

2

3

+ 609q

2

b

3

a

3

1

�

108q

2

a

4

1

� 162q

3

b

3

a

3

1

+ 144q

3

a

4

1

� 737q

2

a

2

1

b

2

3

� 154q

2

a

1

b

3

3

+ 2514qa

2

1

b

2

3

+

1038qa

1

b

3

3

+ 126qa

4

1

� 1698qb

3

a

3

1

� 18000a

2

1

a

2

2

� 333000a

1

b

3

a

2

2

+

160500b

2

3

a

2

2

q � 29250qa

2

1

a

2

2

):

From the expression of f

�

q+5

, it is clear that it is necessary to study the next three

subcases:

� b

3

+ 2a

1

= 0, which lead us to the family (iii) of the statement,

� 3(2q + 1)a

1

� 2(q + 3)b

3

= 0, which is incompatible with the assumption

a

1

+ 2b

1

6= 0, and

� 75q

2

a

2

2

� 3qa

2

1

+ 32qa

1

b

3

+ 375a

2

2

q + 23qb

2

3

+ 6a

2

1

+ 111a

1

b

3

+ 129b

2

3

= 0.

If we consider the lastest subcase, we only obtain four solutions of the system

ff

�

q+5

= f

�

q+7

= 0g:

� q = 2; 6a

2

2

+ a

1

b

3

+ b

2

3

,

� a

1

=

1

3

b

3

; and a

2

=

2

3

�b

3

with q�

2

+ 1 = 0;

� a

1

= 2b

3

; and a

2

=

2

3

�b

3

with q�

2

+ 1 = 0;

� a

1

= �b

3

and a

2

= �b

3

, with � and � satisfying

(40q

3

+ 350q

2

+ 700q)�

2

+ (19q

2

+ 132q + 180)�+ 12q

2

+ 116q + 240 = 0;

(24q

2

+ 210q + 420)�

2

+ (29q

2

+ 1020 + 335q)�� 4q

2

� 10q + 30 = 0:

The �rst family is the family (iv) of the statement. The other three families never

give rise to real solutions of the system considered previously. Hence the theorem

follows.
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3.1.2. The odd case. In this subsection we solve the center problem for q = 1 and

we give some families of centers for q odd, q � 3.

Proposition 3.4. The system (2), for q odd, has the next families of centers at

the origin,

(i) a

2

= b

2

= 0;

(ii) a

2

= b

1

+ b

3

= a

1

� b

3

= 0 and b

2

6= 0;

(iii) a

2

= 2b

1

+ (q + 1)b

3

= 2a

1

+ b

3

= 0 and b

2

6= 0;

(iv) a

2

= b

1

+ qb

3

= a

1

+ 2b

3

= 0 and b

2

6= 0;

(v) a

1

+ 2b

1

= b

2

+ (q + 1)a

2

= 0;

(vi) b

1

= b

3

= a

1

= 0:

Furthermore, for q = 1, there are six new families of centers,

(vii) a

1

+ b

3

= b

2

� 3a

2

= b

1

+ 2b

3

= 0 and a

2

6= 0;

(viii) b

3

= a

1

� 3b

1

= b

2

� 3a

2

= 0 and b

1

a

2

6= 0;

(ix) b

3

= a

1

+ b

2

= a

2

+ b

1

= 0 and a

1

+ 2b

1

6= 0;

(x) b

3

= a

1

� b

2

= a

2

� b

1

= 0 and a

1

+ 2b

1

6= 0;

(xi) a

2

2

(2b

3

� a

1

+ b

3

)� (�a

1

+ b

1

)(b

1

+ b

3

)

2

= a

2

(a

1

� 2b

3

)� b

2

(b

1

+ b

3

) = 0 and

(a

1

+ 2b

1

)(a

1

� b

1

) 6= 0;

(xii) a

2

= b

1

+ b

3

= 0 and b

2

6= 0.

In the next theorem we characterize all the centers for some particular cases.

Observe that it provides an uni�ed treatment of all quadratic systems.

Theorem 3.5. (i) For q � 3, the families (i-iv) of Proposition 3.4 are all the

centers of system (2) when a

2

= 0.

(ii) For q = 1, the families (i-xii) of Proposition 3.4 are all the centers of system

(2). Furthermore, if we transform it to a Li�enard equation, there exist A;

B; C and D real numbers such that either F = 0 or G = AF + BF

2

+

C(

p

1�DF � 1):

Proof of Proposition 3.4. The cases (i) and (v) are centers because F = 0:

The other cases, (ii), (iii), (iv) and (vi), are centers because there exist analytic

functions �(x); 
(x) and h(x) which allow us to apply Theorem 2.6(v). Those

functions are

�(x) = �

b

2

q + 1

x

q+1

2

; 
(x) =

1

2q

x

q

�

1

2(q + 1)

b

2

3

x

q+1

and h(x) = x

2

;

for the case (ii);

�(x) = �

b

2

2

q+1

q + 1

x

q+1

2

; 
(x) = 2

2q

�

1

q

x

q

�

b

3

q + 1

x

q+1

�

and h(x) =

�

x

2 + b

3

x

�

;

for the case (iii);

�(x) =

�b

2

2

q

b

q+1

3

q�1

2

X

i=0

�

q�1

2

i

�

4

i

q � i

x

q�i

; 
(x) =

1

2q

�

x

2

+ 4x

4b

2

3

�

q

and

h(x) = 2

�

1 + b

3

x

p

1 + 2b

3

x

� 1

�

;
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A B C D

(vi)

�1

2a

2

+ b

2

a

2

b

2

(2a

2

+ b

2

)

2

0 0

(vii)

�1

5a

2

3

25

0 0

(viii)

�a

2

5b

2

1

2

25

b

2

1

� a

2

2

2b

4

1

4b

2

1

5a

2

(ix)

1

a

1

+ 2b

1

(b

1

+ a

1

)b

1

2(a

1

+ 2b

1

)

2

0 0

(x)

�1

a

1

+ 2b

1

(b

1

+ a

1

)b

1

2(a

1

+ 2b

1

)

2

0 0

(xi) �sgn (�)

s

j�j

(a

1

+ 2b

1

)

2

b

1

(a

1

+ b

1

)

2(a

1

+ 2b

1

)

2

0 0

(xii)

�1

b

2

�b

3

(a

1

+ a

3

)

b

2

2

0 0

Table 1. The coe�cients A, B, C and D of (11), where � =

a

1

�b

1

�2b

3

a

1

�b

1

:

for the case (iv); and

�(x) = �a

2

x

q+1

2

; 
(x) =

1

2q

x

q

and h(x) = x

q

;

for the case (vi).

Now, we study the case q = 1. Notice that, the cases (ii), (iii) and (iv) are

included in the case (xii). For the case (vi) we consider two subcases, 2a

2

+ b

2

= 0

and 2a

2

+ b

2

6= 0, in the �rst subcase F = 0 and for the second one there exist A

and B such that G = AF +BF

2

, see Table 1.

For all the new cases, (vii)-(xii), there exist A, B, C; and D real constants such

that the functions F and G satisfy

G = AF +BF

2

+ C(

p

1�DF � 1); (11)

and F = �

2a

2

+b

2

2

x

2

+O(x

3

), see the Table 1. Then, from Corollary 2.7, the origin

has a center. Notice that all values A and B of Table 1 are well de�ned.

Proof of Theorem 3.5. From the algorithm described in the Appendix we obtain,

for a

2

= 0 and q > 1 odd, the next values of f

�

2i�1

:

f

�

q+2

= �

(a

1

q � b

3

q � 3b

1

� a

1

� 2b

3

)b

2

(q + 2)(2q + 1)

;
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f

�

q+4

=

2b

2

(b

1

+ b

3

)

3(2q + 3)(q + 4)(q + 1)(2q + 1)

3

(16b

2

1

q

2

+ 164b

2

1

+ 72b

2

1

q + 24b

3

b

1

q

3

+

282b

3

b

1

q + 116b

3

b

1

q

2

+ 397b

3

b

1

+ 90a

1

b

1

+ 8b

2

3

q

4

+ 217b

2

3

q + 44b

2

3

q

3

+

12a

2

1

+ 192b

2

3

+ 120a

1

b

3

+ 118b

2

3

q

2

);

f

�

q+6

= 0:

By solving the system ff

�

q+2

= f

�

q+4

= 0g we just obtain the cases (i-iv) of the

statement (i) of the theorem.

(ii) For the particular case q = 1, and by using again the method described in

Remark 2.8, we obtain

f

�

3

=

1

3

(�a

1

a

2

+ 2a

2

b

3

+ b

2

b

1

+ b

2

b

3

) ;

f

�

5

=

1

15

(�b

2

b

1

a

2

1

� b

2

a

2

1

b

3

+ 2b

2

b

2

1

a

1

� b

3

a

2

b

2

2

+ b

3

2

b

1

+ b

3

2

b

3

+ 12a

2

b

3

3

+

15b

2

b

1

b

2

3

+ 6b

2

b

3

3

+ 18a

2

b

1

b

2

3

+ 14b

2

b

2

1

b

3

+ 5b

2

b

3

1

� 6b

3

1

a

2

� 6b

3

a

2

2

b

2

+

5b

2

b

1

a

1

b

3

� 2b

2

2

b

1

a

2

+ 3b

2

a

1

b

2

3

+ 6b

1

a

3

2

� 5a

2

2

b

2

b

1

);

f

�

7

=

2b

3

7

(2b

3

+ b

1

) (�2b

3

1

a

2

+ b

2

b

3

1

+ 4b

2

b

2

1

b

3

+ b

2

b

2

1

a

1

+ 6a

2

b

1

b

2

3

+ 5b

2

b

1

b

2

3

+

2b

2

b

1

a

1

b

3

+ 2b

1

a

3

2

� a

2

2

b

2

b

1

� b

2

2

b

1

a

2

+ 4a

2

b

3

3

+ 2b

2

b

3

3

+ b

2

a

1

b

2

3

�

2b

3

a

2

2

b

2

� b

3

a

2

b

2

2

);

f

�

9

= 0:

To characterize the centers of this family, it is useful to consider also f

2

= 2a

2

+ b

2

and solve the two systems of equations, ff

2

= f

�

3

= f

�

5

= f

�

7

= 0g and ff

2

6=

0; f

�

3

= f

�

5

= f

�

7

= 0g: The �rst system has only two solutions, which are the ones

given in cases (i) and (v) of Proposition 3.4 for all q. The rest of cases are the

solutions of the second system. Hence, the proof is done.

To end this subsection we try to show the di�culties that the study of the rest

of the cases q > 1 and odd presents. From the method described in the Appendix,

we can obtain expressions for f

�

q+2

; f

�

q+4

; : : : ; but have not been able to solve the

system ff

�

q+4

= f

�

q+6

= : : : = 0g(we mean that Maple V.4 has not been able to

solve the system). For this reason we study it step by step.

We can restrict the problem to two cases:

� f

�

q+1

= �

1

q+1

b

2

� a

2

= 0: In this case the system ff

�

q+2

= f

�

q+4

= f

�

q+6

= 0g

has only two solutions, a

2

= b

2

= 0 and a

1

+ 2b

1

= b

2

+ (q + 1)a

2

= 0. The

two solutions give rise to cases (i) and (v) of Proposition 3.4. These are the

families described in [7].

� f

�

q+1

= �

1

q+1

b

2

� a

2

6= 0. In this situation there exists a trivial case, b

1

=

b

3

= 0 and a

1

= 0, which corresponds to the case (vi) of Proposition 3.4. The

particular case a

2

= 0 has been studied in Proposition 3.4. The general case

a

2

6= 0 is more complicated. We have a system of �ve equations (ff

�

q+2

=

f

�

q+4

= f

�

q+6

= f

�

q+8

= f

�

q+10

= 0g) and �ve variables of homogeneous degree
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2; 4; 6; 8; 10; respectively. Maple V.4 has not been able to solve it, even after

�xing q = 3:

As far as we know, for odd values of q > 1, the complete characterization of centers

of system (2) is an open question.

3.2. A polynomial Li�enard system. In this section we characterize all centers

for system (3),

_x = y � (a

1

x+ a

2

x

2

+ a

3

x

3

+ a

4

x

4

+ a

5

x

5

);

_y = �(b

1

x + b

2

x

2

+ b

3

x

3

+ b

4

x

4

+ b

5

x

5

):

(12)

As a �rst step, in next lemma we classify all cases for which the origin is either

a center or a focus for the above system. Its proof is a straightforward corollary

of Lemma 2.5.

Lemma 3.6. A system of type (12) has either a center or a focus at the origin if

and only if one of the following three conditions hold.

(i) a

2

1

� 4b

1

< 0;

(ii) a

1

= b

1

= b

2

= 0; and 2a

2

2

� 4b

3

< 0;

(iii) a

1

= a

2

= b

1

= b

2

= b

3

= b

4

= 0; and 3a

2

3

� 4b

5

< 0:

Remark 3.7. From the above lemma it is clear that the only cases for which

the origin of (12) can be a center are the cases in which g(x) = b

2i�1

x

2i�1

+

O(x

2i

); b

2i�1

6= 0 for i = 1; 2; 3. From now on, and for the sake of simplicity, we

just will consider the cases either b

1

= 1, or b

1

= 0, b

3

= 1, or b

1

= b

3

= 0; b

5

= 1:

Theorem 3.8. A system of type (12) (taking into account the simpli�cations of

Remark 3.7 has a center at the origin if and only if one of the following conditions

holds:

(i) b

1

= 1 and

(a) a

3

= a

5

= b

2

= b

4

= 0;

(b) a

2

= a

3

= a

4

= a

5

= 0;

(c) a

4

= a

5

= 0; a

3

= 2a

2

b

2

=3; b

5

= 2b

2

2

b

3

=3 and b

4

= 5b

3

b

2

=3;

(d) b

5

= 0; a

3

= 2a

2

b

2

=3; a

4

= a

2

b

3

=2 and a

5

= 2a

2

b

4

=5:

(ii) b

1

= b

2

= 0, b

3

= 1; a

2

2

< 2; and

(a) a

3

= a

5

= 0 and b

4

= 0;

(b) a

2

= a

3

= a

4

= a

5

= 0;

(c) a

2

= a

3

= 0; a

5

= 4a

4

b

4

=5 and b

5

= 0;

(d) a

4

= a

5

= 0; a

3

= 2a

2

b

4

=5 and b

5

= 6b

2

4

=25:

(iii) b

1

= b

2

= b

3

= b

4

= 0, b

5

= 1; and a

1

= a

2

= a

3

= a

5

= 0:

Proof. (i) By Lemma 3.6 and by using the algorithm described in Remark 2.8 we

obtain the following necessary conditions to have a center:
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f

�

1

= a

1

;

f

�

3

= �

2

3

a

2

b

2

+ a

3

;

f

�

5

= �

4

3

a

4

b

2

+ a

3

b

3

+ a

5

�

2

5

a

2

b

4

;

f

�

7

=

2

3

a

5

b

2

2

�

2

5

a

3

b

4

b

2

+ a

5

b

3

+ a

3

b

5

�

4

5

a

4

b

4

;

f

�

9

=

11

9

a

5

b

2

3

+

22

45

a

5

b

4

b

2

�

44

45

a

4

b

4

b

3

�

22

75

a

3

b

2

4

+

11

9

a

3

b

3

b

5

+ a

5

b

5

;

f

�

11

= �

26

45

a

5

b

4

b

3

b

2

+

26

75

a

3

b

2

4

b

3

�

52

375

a

2

b

3

4

�

208

495

a

3

b

5

b

2

b

4

+

26

75

a

5

b

2

4

+

221

99

a

5

b

3

b

5

�

416

495

a

4

b

4

b

5

+

104

99

a

3

b

2

5

;

f

�

13

= �

34

75

a

5

b

2

4

b

3

+

136

375

a

4

b

3

4

�

782

495

a

5

b

5

b

2

b

4

+

68

55

a

4

b

4

b

3

b

5

+

102

275

a

3

b

2

4

b

5

�

17

11

a

3

b

3

b

2

5

�

175

121

a

5

b

2

5

;

f

�

15

=

19

2475

a

5

b

5

(75b

3

b

5

� 34b

2

4

):

By solving the non linear system f

�

1

= � � � = f

�

15

= 0 we exactly obtain the 4 cases

given in the statement. To end the proof of this case we need to prove that in

the four cases the origin is a center. This fact follows from Theorem 2.6 and next

claims which can be easily veri�ed:

(i.a) z(x) = �x is the only solution of system proposed in Theorem 2.6. (iii).

(i.b) F = 0.

(i.c) The functions de�ned in Theorem 2.6(v) are

�(x) =

1

3

a

2

x; 
(x) =

x(6 + b

3

x)

36

and h(x) = x

2

(3 + 2b

2

x):

(i.d) F (x) = 2a

2

G(x):

Now let us prove part (ii) of the theorem. As in the previous case and in order

to obtain necessary conditions to have a center, we will use again the algorithm

described in Remark 2.8 and Lemma 3.6. We get the conditions

f

�

3

= �

2

5

a

2

b

4

+ a

3

;

f

�

5

= a

3

b

5

�

6

25

a

3

b

2

4

+ a

5

�

4

5

a

4

b

4

;

f

�

7

=

88

375

a

4

b

3

4

+ a

5

b

5

�

22

75

a

5

b

2

4

;

f

�

9

= �

13

825

a

5

b

5

(�75b

5

+ 34b

2

4

);

f

�

11

=

912

3179

a

5

b

3

5

:

Arguing also as in the precedent case we prove that the �rst two cases, (ii.a) and

(ii.b), give centers for the degenerate Li�enard equation. For third and fourth cases,

(ii.c) and (ii.d), the analytic functions �, 
 and h are,

�(x) = a

4

x

2

; 
(x) =

1

4

x

2

; and h(x) = x

2

r

1 +

4

5

b

4

x;
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and

�(x) =

a

2

5

x; 
(x) =

1

100

x

2

; and h(x) = x

2

(5 + 2b

4

x);

respectively. Therefore, again by Theorem 2.6(v) we are done.

For the case (iii), we obtain that

f

�

3

= a

3

; f

�

5

= a

5

;

and in this case the solution of the system ff

�

3

= f

�

5

= 0g coincides with that of

the statement. Furthermore, if we take

�(x) = a

4

x

2

; 
(x) =

1

6

x

3

and h(x) = x

2

;

from Theorem 2.6(v) this family has a center at the origin. Hence the theorem is

proved.

Remark 3.9. Observe that the algorithm described in Remark 2.8 is also useful to

compute the maximum order of degeneracy of a weak focus for a Li�enard equation

when we �x the set of functions in which '; F; g vary. For instance, if we �x

'(y) � y and F;G polynomials of degree less or equal than 5, the computations

made to prove (i) of the previous theorem show that this number is 6 (we remark

that condition f

�

15

= 0 is redundant to �nd all centers). This result coincides with

the results obtained in [23] by other methods. In fact, the algorithm of Remark 2.8

could be applied to try to enlarge the values of the degrees of F and G for which the

maximum order of degeneracy of the origin is known (see again [23]). Anyway,

we think that the algorithm developed in [18] for l = m = 1 and suggested by the

results of the paper [13] is more powerful.

4. The C

1

-case

In this Section we make some remarks on the center problem in the case in

which the functions, '; F and g, involved in the Li�enard equation (1) are just C

1

functions. We have started to study this natural problem motivated by a question

formulated to us by our colleague J.J. Nieto after a talk given by the �rst author

about the �rst part of this paper.

For sake of simplicity, we just consider the nondegenerate case and we will

assume that ', F and g are C

1

functions that satisfy

'(y) = y + o(y);

F (x) = o(x);

g(x) = x + o(x):

As in (5) we can de�ne u = �(x) = x

q

2G(x)

x

2

= x

p

1 + o(1); which has a local C

1

inverse called x = �(u) = u + o(u). Hence F (�(u)) is also a C

1

function, that we

denote as F

�

(u).

Following the proofs of Lemmas 2.1 and 2.2 we can conclude that in the C

1

-case:

(i) Equation (1) has a center at the origin if F

�

(u) = F

�

(�u) in a neighbourhood

of u = 0.
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(ii) Equation (1) has not a center at the origin if

�

F

�

(u)�F

�

(�u)

2

�

u keeps sign �xed

in a neigbourhood of 0 for u 6= 0.

-0.002

-0.001

0

0.001

0.002

0.040.01 0.02 0.03 0.05

Figure 1. �(x)� x for system (13)

Although the above two statements are enough to give necessary and su�cient

conditions to have a center for equation (1) when all the involved functions are

analytic, they are not enough for the C

1

case. Take for instance the equation

(

_x = y � x

2

sin

1

x

_y = �x

; (13)

for which F

�

(u) =

F

�

(u)�F

�

(�u)

2

= u

2

sin

1

u

and note that it is not either under

condition (i) or under condition (ii). Therefore, the techniques developped in this

paper are not enough to solve the center problem for equation (13). Our numeric

simulations seem to show that (13) has at the origin a critical point of center-focus

type with in�nitely many limit cycles accumulating into it. See in Figure 1 the

plot of �(x)� x; where � is the Poincar�e return map associated to the OX

+

axis

obtained numerically. We do not study this problem here.

Appendix A. The general expressions of f

�

k

From the method described in Remark 2.8, we can obtain the results of the Sec-

tion 3 if we are able to calculate the values of f

�

q+1

; : : : ; f

�

q+7

. From the expression

of

u

2q

= 2qG(x) = x

2q

+ 2qG

2q+1

x

2q+1

+ : : :+ 2qG

2q+6

x

2q+6

+O(x

2q+7

); (14)

and in order to get the function �(u); it is necessary to use the Taylor expansion

of �(u) = u + u

2

u

2

+ : : : ; u

7

u

7

+ O(u

8

): If we denote by U

k

(l) the expressions of
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degree k of (�(u))

l

we obtain

U

0

(l) = 1;

U

1

(l) = lu

2

;

U

2

(l) = lu

3

+

l(l�1)

2

u

2

2

;

U

3

(l) = lu

4

+

l(l�1)

2

(2u

3

u

2

) +

l(l�1)(l�2)

3!

u

3

2

;

U

4

(l) = lu

5

+

l(l�1)

2

(2u

4

u

2

+ u

2

3

) +

l(l�1)(l�2)

3!

(3u

3

u

2

2

) +

l(l�1)(l�2)(l�3)

4!

u

4

2

;

U

5

(l) = lu

6

+

l(l�1)

2

(2u

5

u

2

+ 2u

4

u

3

) +

l(l�1)(l�2)

3!

(3u

2

3

u

2

+ 3u

4

u

2

2

) +

l(l�1)(l�2)(l�3)

4!

(4u

3

u

3

2

) +

l(l�1)(l�2)(l�3)(l�4)

5!

u

5

2

;

U

6

(l) = lu

7

+

l(l�1)

2

(2u

6

u

2

+ 2u

5

u

3

+ u

4

u

4

)+

l(l�1)(l�2)

3!

(3u

5

u

2

2

+ 32u

4

u

3

u

2

+ u

3

3

)+

l(l�1)(l�2)(l�3)

4!

(4u

4

u

3

2

+ 6u

2

3

u

2

2

) +

l(l�1)(l�2)(l�3)(l�4)

5!

(5u

3

u

4

2

) +

l(l�1)(l�2)(l�3)(l�4)(l�5)

6!

(u

6

2

):

From a formal substitution of �(u) in (14) we can obtain the values of u

2

; : : : ; u

7

from the solution of the linear system de�ned by the coe�cients of u

k

for k =

1; : : : ; 6, which are

k

X

i=0

G

2q+i

U

k�i

(2q + i) = 0; k = 1; : : : ; 6;

and where G

2q

:= 1:

Then if we substitute �(u) = u + u

2

u

2

+ : : : + u

7

u

7

in the Taylor expansion of

F (x) of degree q + 7; F

q+1

x

q+1

+ : : : + F

q+7

x

q+7

, we obtain the values of f

i

for

i = q + 1; : : : ; q + 7;

f

i

=

i

X

j=q+1

F

j

U

i�j

(j):

From the above expressions we obtain the f

�

i

, for i = q + 1; : : : ; q + 7 just by

simpli�cation.
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