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Abstract. A recent paper of Christopher and Lloyd reduces the computation

of the order of degeneracy of a weak focus for a polynomial Li�enard system

_x = y�F (x); _y = �g(x) to the computation of the multiplicity of a polynomial

map. In this paper, we �rst take advantage of that approach to obtain new

lower and upper bounds for the maximum order of degeneracy of the origin

in terms of the degrees of F

0

and g. Later on, we implement an algorithm to

compute this maximum order for concrete values of these degrees. As far as we

know we enlarge the set of degrees for which this maximum order was known.

Finally we extend the Christopher and Lloyd's result to analytic degenerate (or

not) Li�enard equations.

1. Introduction.

One of the second order di�erential equations that has attracted the interest of

the mathematicians during these last decades is the equation of Li�enard

�x + f(x) _x+ g(x) = 0; (1)

or its equivalent �rst order system

_x = y � F (x); _y = �g(x); (2)

where y = _x + F (x), and F (x) =

R

x

0

f(s)ds. Apart from the fact that (1) fre-

quently appears in applications, it is studied because many other systems can be

transformed into this form, see for instance [11] and [16].

One of the most studied problems concerns the number of limit cycles that (2)

can have in terms of some properties of F and g.

By one side, a large number of criteria for the non existence, existence, unique-

ness, : : : of periodic orbits have been found, see [7], [16] and [17]. On the other

side, after �xing some class of functions F and g, lower bounds for its number of

limit cycles are given. These bounds are obtained either by perturbing weak foci

(see for instance [5] and [18]) or by perturbing centers (see [12]).

Assume that the origin of (2) is a weak focus. In this paper we contribute to the

study of its maximum order of degeneracy when F (x) and g(x) are polynomials of

�xed degree. Our results include some of the previous ones obtained by Lloyd and

Lynch in [13], [14], [15] and also by Chistopher and Lloyd in [9]. Our technique is

based on a nice theorem of these last authors which we enunciate in an equivalent
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form below, after some preliminary de�nitions. We also have been able to extend

that theorem to more general F and g.

Remember that, given a system of the form

_x = �x+ y + p(x; y); _y = �x + �y + q(x; y); (3)

where p and q are analytic functions beginning with at least second order terms,

it is said that the origin is a weak focus if � = 0. It is known that there exists

an analytic function V (x; y) de�ned in a neighbourhood of the origin such that

d

dt

V (x(t); y(t)) =

_

V has the form �

2

r

2

+ �

4

r

4

+ : : : where r

2

= x

2

+ y

2

. The order

of the weak focus is k if and only if

�

2l

= 0 for l � k and �

2k+2

6= 0:

It is also known that at most k limit cycles can bifurcate from a weak focus of

order k. The values �

2k

de�ned previously are called Lyapunov constants.

When p and q are constrained to be polynomials of a �xed degree it is well-

known that the origin of system (3) is either a center or a weak focus of bounded

order.

In the case of Li�enard system, following [9], we denote by @f the degree of a

polynomial f(x) and by L(n;m) the class of maps

L(n;m) = f(f; g) : f and g are polynomials,

@f = n; @g = m; f(0) = g(0) = 0 and g

0

(0) > 0g:

When (2) has a weak focus we denote by �(f; g) its order. When it has a center

we say that �(f; g) =1.

We also put

H(n;m) := max

f(f;g)2L(n;m);�(f;g)<1g

�(f; g); (4)

and de�ne F (x) =

R

x

0

f(s)ds and G(x) =

R

x

0

g(s)ds.

Consider a C

1

map h : R

n

�! R

n

such that h(0) = 0. As usual, we denote by

�

0

[h] its multiplicity at 0. Remember, for instance, that �

0

[h] is the number of

complex h-preimages near 0 of a regular value of h near 0, see [3] and [4].

Theorem 1.1. ([9]) Consider f; g 2 L(n;m). Set

�(f; g) = �

(0;0)

��

F (x)� F (y)

x� y

;

G(x)�G(y)

x� y

��

:

Then

(i) if �(f; g) =1, the origin of (2) is a center,

(ii) if �(f; g) <1, �(f; g) =

�(f;g)

2

.

A corollary of the above result is

Corollary 1.2.

H(n;m) =

1

2

max

f(f;g)2L(n;m);�(f;g)<1g

�(f; g):
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The above results give a way to estimate the order of a weak focus for system

(2) which is merely algebraic. In [9] this approach is used to improve previous

results on Li�enard systems.

The goals of this paper are: First, to give sharper bounds forH(n;m) for general

n and m (see Theorem 3.1); second, to take advantage of the properties of the

multiplicity to implement a new algorithm to compute H(n;m) for particular n

and m, (as far as we know this algorithm allows us to enlarge the values of n

and m for which H(n;m) was known, see [13], [14], [15] and Table 1); and �nally,

to prove an extension of Theorem 1.1 for analytic degenerate (or not) Li�enard

equations, see Theorem 5.3.

Most of the computations of this paper have been carried out using MAPLE

V.4.

This paper is organized as follows. In next section we introduce some more

notation and we give some preliminary results. Section 3 deals with the theoretical

study of H(n;m), while in Section 4 we describe the algorithm that we have

developed and the values H(n;m) obtained by using it. The last section is devoted

to study more general Li�enard equations.

2. Preliminary Results.

A key point to study the order of a weak focus is the study of the multiplicity

at zero of the map from R

2

into R

2

(

e

P (x; y);

e

Q(x; y)) :=

�

F (x)� F (y)

x� y

;

G(x)�G(y)

x� y

�

;

where F and G are the polynomials de�ned in Section 1. Observe that each

component can be developed as

e

P (x; y) =

n

X

i=1

e�

i

x

i+1

� y

i+1

x� y

;

e

Q(x; y) =

m

X

i=1

e

�

i

x

i+1

� y

i+1

x� y

; with

e

�

1

6= 0;

where the values e�

i

and

e

�

i

are easily obtained from the expressions of f(x) and

g(x).

To deal with the multiplicity will be useful to recall its properties. Next propo-

sition lists some of them.

Proposition 2.1 (See [1] and[3]). Let f : (R

n

; 0) �! (R

n

; 0) be a �nite multi-

plicity map. Then:

(i) The multiplicity of f at zero does not depend on the choice of coordinates.

(ii) Let f = (f

1

; f

2

; : : : ; f

n

) and f

i

= f

k

i

i

+ higher order terms. Then �

0

[f ] �

Q

n

i=1

k

i

and �

0

[f ] =

Q

n

i=1

k

i

if and only if the system f

k

i

i

= 0 , i = 1; : : : ; n

has only the trivial solution in C

n

( here f

k

i

i

is the homogeneous part of f

i

of

degree k

i

).
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(iii) If for some i 2 f1; : : : ; ng, f

i

can be described as f

i

= g

i

1

� g

i

2

and g

i

1

(0) =

g

i

2

(0) = 0, then �

0

[f ] = �

0

[g

1

] + �

0

[g

2

] where g

1

= (f

1

; : : : ; g

i

1

; : : : ; f

n

) and

g

2

= (f

1

; : : : ; g

i

2

; : : : ; f

n

).

(iv) Let g : (R

n

; 0) �! (R

n

; 0) also be a �nite multiplicity map. Then �

0

[f � g] =

�

0

[f ]�

0

[g].

(v) If g

i

= f

i

+

P

j<i

A

i

j

f

j

, then �

0

[f ] = �

0

[g].

(vi) If for some i 2 f1; : : : ; ng, f

i

can be described as f

i

= hg

i

with h(0) 6= 0,

then �

0

[f ] = �

0

[g] where g = (f

1

; : : : ; g

i

; : : : ; f

n

):

By using Proposition 2.1(i)-(vi) it turns out that we can compute �

0

[(

e

P;

e

Q)] by

taking the coordinates u = x + y, v = x� y and by studying the map

(P;Q) : R

2

�! R

2

;

where

P (u; v) =

n

X

i=1

�

i

R

i

(u; v);

Q(u; v) = u+

m

X

i=2

�

i

R

i

(u; v);

(5)

and

R

i

(u; v) =

�

u+v

2

�

i+1

�

�

u�v

2

�

i+1

v

; (6)

and �

i

= e�

i

, �

i

=

e

�

i

e

�

1

. Therefore

�

0

[(

e

P ;

e

Q)] = �

0

[(P;Q)]: (7)

Next lemma gives some properties of the polynomials R

i

(u; v) that we will need

in what follows. Note that they can easily be decomposed in product of complex

linear factors by using the roots of unity.

Lemma 2.2. (i) R

i

(u; v) is a homogeneous polynomial of degree i and satis�es

8

<

:

R

i

(�u;�v) = (�1)

i

R

i

(u; v);

R

i

(�u; v) = (�1)

i

R

i

(u; v);

R

i

(u;�v) = R

i

(u; v):

(ii) If i is odd R

i

(u; v) = uS

i�1

(u; v) where S

j

(u; v) is a homogeneous polynomial

of degree j.

(iii) (a) R

s

divides R

p

if and only if s+ 1 divides p+ 1.

(b) R

gcd(s+1;p+1)�1

divides R

s

and R

p

.

(iv) Let p; q be integer numbers greater than zero, p > q. Then

(p� q + 1)R

2p

� R

2q

S

2p�2q

= u

2

T

2p�2

;

where T

2p�2

(u; v) is a homogeneous polynomial of degree 2p � 2 such that

T

2p�2

(0; v) 6= 0, for v 6= 0.
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(v) For all k integer, k � 1,

k

X

i=0

�

i

�

k

i

�

R

nk�1+i

= (R

n�1

+ �R

n

)T

(n+1)(k�1)

;

where T

(n+1)(k�1)

(u; v) is a homogeneous polynomial of degree (n+1)(k� 1).

Proof. The proof of (i) and (ii) is straightforward; (iii) follows from the decom-

position of vR

i

(u; v) in terms of the roots of unity.

Let us prove (iv). From its de�nition it is clear that

(p� q + 1)R

2p

(0; v)� R

2q

(0; v)S

2p�2q

(0; v) = 0:

Property (i) implies that u = 0 is at least a double zero of the above expression.

Therefore we have already obtained that there exists T

2p�2

such that

(p� q + 1)R

2p

� R

2q

S

2p�2q

= u

2

T

2p�2

:

Let us prove that T

2p�2

(0; v) 6= 0. From their de�nition

R

2p

=

v

2p

2

2p

+

�

2p+ 1

2

�

v

2p�2

u

2

2

2p

+O(u

4

);

S

2r

=

�

2r + 2

1

�

v

2r

2

2r+1

+

�

2r + 2

3

�

v

2r�2

u

2

2

2r+1

+O(u

4

);

and direct computations putting r = p� q give the desired result.

Let us prove (v). In this case it is easier to prove the equivalent expression in

(x; y)�variables,

k

X

i=0

�

i

�

k

i

�

(x

nk+i

� y

nk+i

) =

�

x

n

� y

n

+ �

�

x

n+1

� y

n+1

��

T (x; y);

for some homogeneous polynomial T .

Observe that

P

k

i=0

�

k

i

�

(�x)

i

= (1 + �x)

k

:

Therefore the left-hand side of the above equation writes as

x

nk

(1 + �x)

k

� y

nk

(1 + �y)

k

;

which is equal to

�

x

n

� y

n

+ �

�

x

n+1

� y

n+1

��

T (x; y);

because

a

k

b

k

� c

k

d

k

= (ab� cd)T;

for some polynomial T (a; b; c; d) and a; b; c; d arbitrary real numbers. Hence the

expression is proved.
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3. On the maximum order of weak focus.

In [9, Thm 2.3] it is proved that for Li�enard systems (f; g) 2 L(n;m)

�

1

2

(n+m� 1)

�

� H(n;m) �

�

1

2

nm

�

; (8)

where [ ] denotes the integer part.

The �rst result of this section is an improvement of the above inequalities.

Given a positive natural number, for the sake of notation we denote by e(n)(resp.

o(n)), the biggest even (resp. odd) integer number smaller than or equal to n. As

usual �

ij

= 0 when i 6= j and �

ii

= 1 for all i.

Theorem 3.1. Let H(n;m) be de�ned in (4). Then for n;m � 4

max

�

2min(e(n); e(m))+max(e(n); e(m))�2�4�

e(n);e(m)

2

;

e(m) + o(n)�1

2

�

�

H(n;m) �

�

nm� gcd(n + 1; m+ 1) + 1

2

�

:

Before proving the theorem and to try to clarify our improvement we enunciate

an immediate corollary corresponding to the case m = n.

Corollary 3.2. Let H(n; n) be de�ned in (4). Then for n > 1

max

��

3e(n)� 6

2

�

; n� 1

�

� H(n; n) �

�

n

2

� n

2

�

:

Observe that specially our lower bound (for n � 6) is sharper than the one given

in (8).

Proof of Theorem 3.1. By Theorem 1.1 and Corollary 1.2 it su�ces to study mul-

tiplicities of maps. We begin by proving the upper bound. Arguing as in the

proof of Christopher and Lloyd's paper [9], Bezout's Theorem implies that an up-

per bound for the multiplicity �

0

[(P;Q)] is nm. This result can be improved by

taking into account the common zeros at in�nity. Observe that the highest degree

terms of P and Q are �

n

R

n

and �

m

R

m

, respectively. When gcd(n+1; m+1) 6= 1,

Lemma 2.2(iii) implies that R

gcd(n+1;m+1)�1

divides both polynomials. Hence the

polynomials P and Q have gcd(n + 1; m + 1) � 1 zeros at in�nity in the projec-

tive plane. Again by Bezout's Theorem we deduce that �

0

[(P;Q)] can be at most

nm� gcd(n + 1; m+ 1) + 1.

Let us prove the lower bound e(m) + o(n) � 1 for n � 2; m � 3. By using

Lemma 2.2(ii) we write (5) as

P (u; v) = uA(u; v) +B(u; v);

Q(u; v) = uC(u; v) +D(u; v);
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where

A(u; v) =

o(n)

X

i�1;odd

�

i

S

i�1

(u; v); B(u; v) =

e(n)

X

i;even

�

i

R

i

(u; v);

C(u; v) = 1 +

o(m)

X

i�3;odd

�

i

S

i�1

(u; v); D(u; v) =

e(m)

X

i;even

�

i

R

i

(u; v):

Consider the case B = 0, D = �

e(m)

R

e(m)

(u; v) and A = �

o(n)

S

o(n)�1

(u; v). Then

�

0

[(uA; uC +D)]

(iii)

= �

0

[(u; uC +D)] + �

0

[(A; uC +D)] =

(v)

= �

0

[(u;D)] + �

0

[(A; uC +D)]

(ii)

� e(m) + o(n)� 1

where we write over each equality or inequality the item of Proposition 2.1 that

we have used. So we have proved H(n;m) � [e(m) + o(n)� 1]=2:

Let us prove the other lower bound. Consider integer numbers p > q � 2, and

de�ne the polynomials

P (u; v) = �uS

2p�2q

+ R

2p

;

Q(u; v) = u+ �R

2q

;

(9)

with  = ��(p� q + 1), and �� 6= 0:

Then

�

0

[(P;Q)] = �

0

[R

2p

� ��S

2p�2q

R

2q

; u+ �R

2q

];

where we have used Proposition 2.1(v) and we have changed P by P�Q(�S

2p�2q

).

By using the value of  we have by Lemma 2.2(iv) that

R

2p

� ��S

2p�2q

R

2q

= ��u

2

T

2p�2

;

with T

2p�2

(0; v) 6= 0 for v 6= 0: Therefore, using the same notation than in the

previous proof,

�

0

[(P;Q)]

(iii)

= �

0

[(u

2

T

2p�2

; u+ �R

2q

)]

(iii)

= 2�

0

[(u; u+ �R

2q

)] + �

0

[(T

2p�2

; u+ �R

2q

)]

(iv)

= 2�

0

[(u; �R

2q

)] + �

0

[(T

2p�2

; u+ �R

2q

)]

(iii)

= 2(2q) + 2p� 2:

Given n;m � 4, consider e(n) and e(m). De�ne

2p = maxfe(n); e(m)g;

2q = minfe(n); e(m)g � 2�

e(n);e(m)

:

Therefore if we consider the couple (P;Q) when e(n) � e(m) or the couple (Q;Q+

P ) when e(n) < e(m); we can construct a couple (f; g) 2 L(n;m) such that its

multiplicity is

2minfe(n); e(m)g+maxfe(n); e(m)g � 2� 4�

e(n);e(m)

;

as we wanted to prove.
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A property of the function H(n;m) which has already been observed in all

previous papers and that our computations in next section also con�rm is that

H(n;m) is equal toH(m;n). The approach of [9] gives almost the complete answer

to this problem. To be precise, let L

0

(n;m) denote the subset of L(n;m) de�ned

by L

0

(n;m) = f(f; g) 2 L(n;m); f

0

(0) > 0g: Denote by H

0

(n;m) the maximum

�nite multiplicity inside L

0

(n;m), then

Theorem 3.3. ([9])

(i) For n;m > 1, H

0

(n;m) = H

0

(m;n).

(ii) For n � m, H(n;m) = H

0

(n;m) � H(m;n).

(iii) H(1; m) = [

m

2

].

A key idea for proving the above theorem is that in general �

0

[(f; g)] = �

0

[(g; f)]

and that the only antisymmetric feature between f and g is that g is restricted

to be g

0

(0) > 0. By considering the additional assumption that f

0

(0) > 0 the

antisymmetry is broken.

From now on we will give some more properties of H(n;m) addressed to study

it without the assumption f

0

(0) > 0.

Lemma 3.4. The maximum multiplicity for a map of the form

P = R

n�1

+ �R

n

;

Q = u+

m

X

i=2

�

i

R

i

;

(10)

is attained for a map of the same form with �

(n+1)k�1

= 0 for any k(k 6= 1 just

for the case n = 2) such that 2 � (n+ 1)k � 1 � m:

Proof. Let us �x � and �

2

; : : : ; �

m

such that the multiplicity of (P;Q) is �nite and

�

0

[(P;Q)] is the maximum inside this family.

Consider the biggest k satisfying (n+1)k�1�m and call itK. By Lemma 2.2(v)

(R

n�1

+ �R

n

)T

(n+1)(K�1)

=

K

X

i=0

�

i

�

K

i

�

R

nK�1+i

;

and therefore by Proposition 2.1(v),

�

0

[(P;Q)] = �

0

[(R

n�1

+�R

n

; u+

m

X

i=2

�

i

R

i

�

�

(n+1)K�1

�

K

�

K

K

�

(R

n�1

+�R

n

)T

(n+1)(K�1)

)]

= �

0

[(P;Q)];

where (P;Q) are in the form (10) with �

(n+1)K�1

= 0, and the other values of �

j

with j less than this value, may be di�erent. Then we can continue the process but

taking the next value of K, in decreasing order, which satis�es (n+ 1)K � 1 � m

and cancelling it, and so on.

In the case n = 2 notice that if K = 1 then T

(n+1)(K�1)

= 0 and the previous

argument does not apply.

In [14] and [15] the following conjecture is made and it is proved until m = 12:
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Conjecture 3.5. ([14], [15]) H(2; m) = H(m; 2) = [

2m+1

3

]:

Observe that the above lemma supports the above conjecture. This is due to

the fact that if we count the number of parameters which cannot be cancelled by

using it for systems in L(2; m), we get that this number coincides with [

2m+1

3

]. We

also have proved next result which also supports the conjecture.

Lemma 3.6. Consider a system (2) with n = 2 and arbitrary m. The following

statements hold:

(i) To �nd H(2; m) it is not restrictive to study the multiplicity at (0; 0) of the

map

P (u; v) = u+ (3u

2

+ v

2

);

Q(u; v) = u+ �

2

R

2

(u; v) +

m

X

i=3;i+1-3

�

i

R

i

(u; v):

(11)

(ii) Consider H(u) := Q(u; v)j

v

2

=�u�3u

2

. Then either H(u) � 0 and system (2)

has a center at the origin or

H(u) = Ku

�(f;g)

+O(u

�(f;g)+1

); K 6= 0;

where recall that �(f; g) is the order of the weak focus at the origin for system

(2).

(iii) For m � 50; H(2; m) = [

2m+1

3

].

Proof. (i) It is easy to see that the maximum multiplicity has to be taken with

�

1

�

2

6= 0. By making a scaling of the variables u and v, if necessary, and by

applying Proposition 2.1 we can assume that �

1

= �

2

= 1. The fact that all

�

3k�1

; k � 2 can be taken as zero follows from Lemma 3.4.

(ii) From the above part P (u; v) = u+ 3u

2

+ v

2

and so

�(f; g) = �

0

[P;Q]=2 =

1

2

�

�

0

[v +

p

�u� 3u

2

; Q] + �

0

[v �

p

�u� 3u

2

; Q]

�

= �

0

[Q(u; v)j

v

2

=�u�3u

2

] = �

0

[H(u)];

where we have used that Q(u; v) is a function of v

2

. Hence the proof is done.

To prove (iii), observe that (ii) implies that the way of obtaining maximum mul-

tiplicity corresponds with the way of choosing �

i

such that its associated function

H(u) has the maximum multiplicity at zero. We can compute the functions

R

2

(u; v)j

v

2

=�u�3u

2

=

1

2

3

(�u);

R

3

(u; v)j

v

2

=�u�3u

2

=

1

2

4

(�8u

2

� 16u

3

);

R

4

(u; v)j

v

2

=�u�3u

2

=

1

2

5

(2u

2

� 8u

3

� 32u

4

); : : :

and then the problem of obtaining the maximum multiplicity at zero is reduced

to a problem of linear algebra. As an example we show all the computations for
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m = 10: The conditions for H(u) to have at least multiplicity 7 at the origin write

as

0

B

B

B

B

@

�8 2 0 0 0 0

�16 �8 �2 0 0 0

0 �32 24 �16 0 0

0 0 128 �32 20 �2

0 0 128 128 0 80

1

C

C

C

C

A

0

B

B

B

B

B

@



3



4



6



7



9



10

1

C

C

C

C

C

A

=

0

B

B

B

B

@

0

0

0

0

0

1

C

C

C

C

A

;

where 

i

= �

i

=2

i+1

. This system has its solutions of the form 

i

= K

i



3

for some

nonzero K

i

: For this values we obtain that

H(u) = Ku

7

+O(u

8

); K 6= 0;

and therefore H(2; 10) = 7, as we wanted to prove.

Unfortunately we have not been able to make the above computations for an

arbitrary m but we have proved that H(2; m) = [(2m + 1)=3] is true for m � 50:

To end this proof we want to comment that we have also obtained the values

H(2; m) for m � 50 by using the general algorithm developed in next section.

We also have proved next results. As far as we know, results (ii) and (iii:b) are

new. Result (i) is a corollary of known results, see [9].

Theorem 3.7. (i) H(1; m) = H(m; 1).

(ii) H(2; m) = H(m; 2).

(iii) (a) H(3; m) = H(m; 3), for m � 8.

(b) Assume that H(2; m) >

e(m)+2

2

. Then H(3; m) = H(m; 3).

Remark 3.8. (i) The lower bounds of Theorem 3.1 just imply that H(2; m) �

e(m)+2

2

:

(ii) For all m � 50 we have proved, in Lemma 3.6, that Conjecture 3.5 holds.

Therefore, for 9 � m � 50, H(2; m) = [

2m+1

3

] >

e(m)+2

2

, which proves that

H(3; m) = H(m; 3) for m � 50.

Proof of Theorem 3.7. For cases n andm less than 5 it is well-known thatH(n;m)

= H(m;n), see for instance [14], or next section.

So, from now on, we are just interested in the remainder cases.

Theorem 3.3(ii) implies that H(n;m) � H(m;n) for n = 1; 2; 3 and m > 4.

Therefore to end our proof we need to prove the converse inequality,

H(n;m) � H(m;n); (12)

when n = 1; 2; 3 and m > 4.

(i) Case n = 1. A system (f; g) 2 L(1; m) writes as

P = �

1

u;

Q = u+ �

2

R

2

+ : : :+ �

m

R

m

:

Therefore the maximum �nite multiplicity should be attained by a case with �

1

6= 0

which corresponds to a particular system in L(m; 1) obtained by considering the
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couple (Q;P=�

1

) instead of (P;Q). In other words

H(1; m) � H(m; 1);

as we wanted to prove.

(ii) Case n = 2. As before, if a system (f; g) 2 L(2; m), it writes as

P = �

1

u+ �

2

R

2

;

Q = u+ �

2

R

2

+ : : :+ �

m

R

m

:

If the system with (�nite) maximum multiplicity had �

1

= 0 this multiplicity

would be

�

0

[(P;Q)] = �

0

[(�

2

R

2

; u+ �

2

R

2

+ : : :+ �

m

R

m

)];

which by Proposition 2.1(ii) is 2. This fact is in contradiction with the lower

bounds given in Theorem 3.1. Therefore �

1

has to be di�erent from zero and

arguing as in the case n = 1 we obtain that

H(2; m) � H(m; 2);

and the proof is ended.

(iii) Case n = 3. The proof for cases m � 8 is done in next section. Let us

consider m > 8. Let

P = �

1

u+ �

2

R

2

+ �

3

R

3

;

Q = u+ �

2

R

2

+ : : :+ �

m

R

m

;

be a system inside L(3; m) with maximum (�nite) multiplicity. If �

1

6= 0 arguing

as in cases (i); (ii) we are done. Assume that the maximum multiplicity is when

�

1

= 0. Then �

2

= 0 (if not Proposition 2.1(ii) would imply that the maximum

multiplicity is 2). Therefore the maximum multiplicity is

�

0

[(�

3

R

3

; Q)] = �

0

[(uS

2

; Q)] = �

0

[(u;Q)] + �

0

[(S

2

; Q)] � e(m) + 2;

which is in contradiction with our assumption. So we are done.

Although we are convinced that the maximum multiplicity of a map in L(n;m),

n < m, is always taken with �

1

6= 0 we have not been able to prove it. Note that

this fact would imply that H(n;m) = H(m;n).

Before ending this section we give some miscellaneous results with the aim to

show the di�culty to �nd a general rule to obtain H(n;m) for general n and m.

See also Table 1 in next section.

Proposition 3.9. (i) H(n; n) = maxfH(n� 1; n); H(n; n� 1)g;

(ii) H(4; m) � m+ 1�

�

m+1

5

�

for 6 � m � 20;

(iii) H(n;m) = maxfH(m;n); H

0

(n;m)g:

Proof. (i) Consider the system (f; g) 2 L(n; n) with maximum(�nite) multiplicity,

P =

n

X

i=1

�

i

R

i

;

Q = u+

n

X

i=2

�

i

R

i

:
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If some �

n

or �

n

is zero we are done. Otherwise,

�

0

[(P;Q)] = �

0

[(P �

�

n

�

n

Q;Q)]:

Observe that this last map corresponds to some (f; g) 2 L(n� 1; n) and therefore

H(n� 1; n) � H(n; n):

Since obviously H(n; n) � H(n� 1; n), we are done.

(ii) This lower bound for n = 4 follows by studying the case �

1

= �

2

= 0, �

3

= 1

and �

4

= � in the expression of P: To obtain it we �rst apply Lemma 3.4 and

later the algorithm developed in next section.

(iii) The value H(n;m) can be obtained from a system with either �

1

= 0 or �

1

6=

0. In the �rst case H(n;m) = H

0

(n;m); and in the second case we can interchange

the functions P and Q to obtain the same multiplicity and so H(n;m) = H(m;n):

Remark 3.10. The same idea used in Proposition 3.9.(ii) can be applied to give

lower bounds for H(2k;m):

4. An algorithm for computing the multiplicity with applications.

In the �rst part of this section we describe an algorithm which takes advantage

of the results of Theorem 1.1 and of the properties of the multiplicity (see Propo-

sition 2.1) to compute the order of degeneracy of the origin of system (2). In the

second part we use it to obtain the function H(n;m) for several n and m. These

results are summarized in Table 1. Afterwards, we detail the computation made

to obtain H(6; 6) as an example of the way in which Table 1 is �lled up. As a

consequence of the algorithm we also characterize all the centers for system (2)

when n = m = 6:

4.1. The Algorithm. Let P , Q be polynomials in (u; v) of degree n and m

respectively. We de�ne the following functions:

(i) small(P ) := homogeneous part of less degree of P .

(ii) subtract(P;Q) := P �

small(P )

u

Q.

(iii) coeffv(P ) := small(P )j

u=0

.

Notice that small(P ) is a polynomial and subtract(P;Q) is a polynomial if

coeffv(P ) = 0:

To obtain the multiplicity of (P;Q) at the origin, i.e. �

0

[(P;Q)], we use the

properties of Proposition 2.1 as follows: if coeffv(P ) 6= 0 then �

0

[(P;Q)] =

deg(small(P )); otherwise, we rede�ne the polynomial P as P = subtract(P;Q),

and observe whether coeffv(P ) is or not null. In the �rst case we can repeat

the algorithm until we obtain a non null term. In the second case the algorithm

�nishes and the multiplicity is the degree of small(P ). The algorithm is �nite

because when we obtain the degree of P greater than nm then the multiplicity has

to be in�nity, by Bezout's Theorem. See also Figure 1.
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YES

NO

P =substract(P;Q)

coeffv(P ) 6= 0

� = deg(small(P ))

Input (P;Q)

?

Start

n = deg(P ), m = deg(Q)

?

?

YES

?

?

Display �

?

End

deg(P ) > nm

-

?

-

� =1

�

NO

?

Figure 1. The Algorithm's Diagram for computing the multiplicity

of (P;Q). The functions, coeffv, substract and small are de�ned

in Section 4.1

Remark 4.1. Observe that our algorithm does not give either the stability of the

origin or its cyclicity. Although we are convinced that all this information is

included in it, we do not consider these problems in this paper. In particular we

think that in all the cases for which H(n;m) is computed, this number coincides

with the maximum cyclicity of the weak focus inside L(n;m):

4.2. Some values of H(n;m). The above algorithm allows to compute H(n;m)

for several values of n and m: The results obtained are shown in Table 1. In

that table the numbers between parentheses give lower bounds for H(n;m). As

an example of the di�culties involved, we will give the detailed computation of
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1 2 3 4 5 6 7 8 9 10 11 12 � � � 50 � � � n

1 0 1 1 2 2 3 3 4 4 5 5 6 � � � 25 � � � [

n

2

]

2 1 1 2 3 3 4 5 5 6 7 7 8 � � � 33

3 1 2 2 4 4 6 6 7 8 9 9 11

4 2 3 4 4 6 6 (8) (8)

5 2 3 4 6 6 7 (8) (9)

6 3 4 6 6 7 7 (9)

7 3 5 6 (8) (8) (9) (9)

8 4 5 7 (8)

9 4 6 8 (8)

10 5 7 9 (9)

.

.

.

.

.

.

.

.

.

.

.

.

20 10 13 (17)

.

.

.

.

.

.

.

.

.

50 25 33

.

.

.

.

.

.

m [

m

2

]

Table 1. Values of H(n;m) de�ned in (4). The numbers between

parentheses are just lower bounds.

H(6; 6): Also as a corollary of the computations involved we give all the centers

for system (2) when (f; g) 2 L(6; 6):

As far as we know our main contributions are in the second row and column

for n or m bigger than 12 and for the other values n and m for which H(n;m) is

bigger than 6: See [13], [14] and [15].

Proposition 4.2. Consider the system (2) with f(x) and g(x) polynomials of

degree 6,

F (x) =

Z

x

0

f(s)ds = a

2

x

2

+ a

3

x

3

+ : : :+ a

7

x

7

;

g(x) = x + b

2

x

2

+ : : :+ b

6

x

6

:

It is not restrictive to assume that when b

2

6= 0 it is equal to

3

2

.

Then:

(a) It has a center at the origin if and only if one of the following set of conditions

hold:

(i) a

3

= a

5

= a

7

= b

4

= b

6

= 0 and b

2

= 0,

(ii) a

3

= 4a

4

� 2a

2

b

3

= 5a

5

� a

2

b

4

= 6a

6

� a

2

b

5

= 7a

7

� a

2

b

6

= 0 and b

2

= 0,

(iii) a

2

� a

3

= 4a

4

� 2a

3

b

3

= 5a

5

� 2a

3

b

4

= 6a

6

� 2a

3

b

5

= 7a

7

� 2a

3

b

6

= 0 and

b

2

=

3

2

,

(iv) 5b

3

� 2b

4

= 5b

5

� 3b

4

= b

6

= a

2

� a

3

= 2a

4

� a

5

= 2a

6

� a

5

= a

7

= 0 and

b

2

=

3

2

.

(b) The maximum order of degeneracy of the focus is 7, i.e. H(6; 6) = 7.



LIMIT CYCLES IN LI

�

ENARD SYSTEMS 15

Proof. To prove it we will use Theorem 1.1 and the notations introduced in (5).

Furthermore note that it is not restrictive to assume that �

2

=

2

3

b

2

is either 0 or

1, and that the proof of the theorem is reduced to the computation of �

0

[P;Q].

(a) In this part of the proof we also follow the same notations than in the

algorithm developed in Subsection 4.1. Therefore if j is the degree of small(P )

in each step of the algorithm and we put c

j

:=coeffv(P ), then c

2j

= 0 for j =

1; : : : ; J give necessary conditions to have a weak focus of order at least J + 1.

In the �rst case, �

2

= 0, we obtain,

c

2

=

1

2

2

�

2

;

c

4

= �

1

2

4

(�

1

�

4

� �

4

);

c

6

= �

1

2

6

(�2�

4

�

3

+ 2�

3

�

4

+ �

1

�

6

� �

6

);

c

8

= �

1

2

8

(�2�

6

�

3

+ 3�

5

�

4

� 3�

4

�

5

+ 2�

3

�

6

);

c

10

= �

3

2

10

(��

5

�

6

+ �

5

�

6

);

c

12

= �

5

2

13

�

4

(��

6

�

4

+ �

4

�

6

);

c

14

= �

17

2

15

3

�

6

(��

6

�

4

+ �

4

�

6

):

The system fc

2

= c

4

= : : : = c

12

= 0g has two solutions,

(i) �

2

= �

4

= �

6

= �

2

= �

4

= �

6

= 0; and

(ii) �

2

= �

3

� �

1

�

3

= �

4

� �

1

�

4

= �

5

� �

1

�

5

= �

6

� �

1

�

6

= �

2

= 0:

The �rst family, (i), has a center at the origin because the polynomials P and

Q, de�ned in (5) have the common factor u and therefore the multiplicity at the

origin of (P;Q) is in�nity. The second family, (ii), satis�es �

1

P = Q; and for

the same reason the system (2) has a center at the origin. From the de�nition of

�

i

= a

i+1

and �

i

=

2

i+1

b

i

we obtain the families (i-ii) of the statement.

In the second case, �

2

= 1, we obtain:

c

2

= �

1

2

2

(��

2

+ �

1

);

c

4

=

1

2

4

(�

4

� 2�

3

� �

2

�

4

+ 2�

2

�

3

);

c

6

= �

1

2

7

(�4�

4

�

3

+ 3�

2

�

4

+ 4�

3

�

4

� 6�

2

�

5

+ 2�

2

�

6

� 3�

4

+ 6�

5

� 2�

6

);

c

8

= �

1

2

10

(�8�

6

�

3

+ 11�

2

�

4

+ 12�

5

�

4

� 22�

2

�

5

� 12�

4

�

5

+ 22�

2

�

6

+

8�

3

�

6

� 11�

4

+ 22�

5

� 22�

6

);
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c

10

= �

1

2

13

(�104�

5

�

3

+ 169�

2

�

4

+ 156�

5

�

4

� 52�

6

�

4

� 338�

2

�

5

+ 104�

3

�

5

�

156�

4

�

5

� 24�

6

�

5

+ 286�

2

�

6

+ 52�

4

�

6

+ 24�

5

�

6

� 169�

4

+ 338�

5

�

286�

6

);

c

12

= �

1

2

16

13

2

(2873�

4

� 5746�

5

+ 5746�

6

� 2873�

2

�

4

+ 5746�

2

�

5

�

5746�

2

�

6

+ 45968�

5

�

4

+ 67652�

4

�

5

� 34476�

6

�

4

+ 96408�

6

�

5

�

53404�

4

�

6

+ 76752�

5

�

6

� 28730�

4

�

4

+ 28730�

2

�

2

4

� 112320�

5

�

5

+

112320�

2

�

2

5

� 65000�

6

�

6

+ 28080�

4

�

2

5

+ 65000�

2

�

2

6

� 6760�

6

�

2

4

+

87880�

2

�

4

�

6

� 113620�

2

�

4

�

5

� 173160�

2

�

5

�

6

� 28080�

5

�

5

�

4

+

6760�

4

�

4

�

6

� 28080�

4

�

5

�

6

� 9360�

6

�

4

�

6

+ 28080�

5

�

4

�

6

�

4320�

6

�

5

�

6

+ 9360�

4

�

2

6

+ 4320�

5

�

2

6

);

c

14

=

1

2

19

13

2

75

(�600457�

4

+ 1200914�

5

� 1200914�

6

+ 600457�

2

�

4

�

1200914�

2

�

5

+ 1200914�

2

�

6

+ 2401828�

5

�

4

� 3691168�

4

�

5

�

4803656�

6

�

4

+ 4106128�

6

�

5

+ 8913736�

4

�

6

� 14904968�

5

�

6

+

2578680�

5

�

5

� 2578680�

2

�

2

5

+ 7587840�

6

�

6

+ 4268160�

4

�

2

5

�

7587840�

2

�

2

6

� 3211000�

6

�

2

4

� 4110080�

2

�

4

�

6

+ 1289340�

2

�

4

�

5

+

10798840�

2

�

5

�

6

� 4268160�

5

�

5

�

4

+ 3211000�

4

�

4

�

6

� 4268160�

4

�

5

�

6

�

273520�

6

�

4

�

6

+ 7291440�

5

�

4

�

6

� 656640�

6

�

5

�

6

� 3023280�

6

�

4

�

5

�

2183480�

4

�

5

�

4

� 773600�

5

�

5

�

6

+ 273520�

4

�

2

6

+ 656640�

5

�

2

6

+

44773600�

6

�

2

5

+ 2183480�

5

�

2

4

);

c

16

= �

1

2

18

13

2

289

(�163761�

4

+ 327522�

5

� 327522�

6

+ 163761�

2

�

4

�

327522�

2

�

5

+ 327522�

2

�

6

+ 655044�

5

�

4

� 1744808�

4

�

5

�

1310088�

6

�

4

� 264784�

6

�

5

+ 5821543�

4

�

6

� 10937654�

5

�

6

+

2179528�

5

�

5

� 2179528�

2

�

2

5

+ 8286850�

6

�

6

+ 1529424�

4

�

2

5

�

8286850�

2

�

2

6

� 1605500�

6

�

2

4

� 4511455�

2

�

4

�

6

+ 1089764�

2

�

4

�

5

+

11202438�

2

�

5

�

6

� 1529424�

5

�

5

�

4

+ 1605500�

4

�

4

�

6

� 988�

4

�

5

�

6

+

1547260�

6

�

4

�

6

+ 4569500�

5

�

4

�

6

+ 1881000�

6

�

5

�

6

� 4568512�

6

�

4

�

5

�

2195856�

5

�

5

�

6

� 1547260�

4

�

2

6

� 1881000�

5

�

2

6

+ 2195856�

6

�

2

5

):

To obtain the possible centers we can solve the system fc

2

= : : : = c

16

= 0g,

and we obtain the next two families

(iii) �

1

� �

2

= �

3

� �

2

�

3

= �

4

� �

2

�

4

= �

5

� �

2

�

5

= �

6

� �

2

�

6

;

(iv) �

3

� 1=2�

4

= �

5

� 1=2�

4

= �

6

= 0 = �

1

� �

2

= �

3

� 1=2�

4

= �

5

� 1=2�

4

=

�

6

= 0:

For the above two families the system (2) has a center at the origin because in

both cases �

0

[P;Q] =1. In the �rst one this is due to the fact that �

2

P = Q. In
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the second case the reason is that (4u+3u

2

+ v

2

)jP and (4u+3u

2

+ v

2

)jQ. Hence

the proof of the �rst part of the theorem is done.

(b) It is easy to see that c

14

= 0, or c

16

= 0, if the parameters are in the families

(i-ii), or (iii-iv), respectively. In other words we have that the condition c

14

= 0

(resp. c

16

= 0) is redundant to characterize the centers of system (2) when �

2

= 0

(resp. �

2

= 1). This fact forces an upper bound for H(6; 6), i.e. H(6; 6) �

14

2

= 7.

To obtain a lower bound, we study the particular case

�

1

= 0; �

2

= 0; �

3

= 1; �

4

= 2; �

5

= �

988

189

; �

6

= �

715

63

;

�

1

= 1; �

2

= 1; �

3

= �

11

6

; �

4

= 0; �

5

= �5203441; �

6

= �25289882;

which satis�es c

2

= : : : = c

12

= 0 and c

14

= �

2737867

146313216

. This proves that H(6; 6) =

7:

5. Degenerate Li

�

enard equation

In this section we extend the results of Theorem 1.1 to analytic degenerate (or

not) Li�enard equations of the form

_x =

dx

dt

= '(y)� F (x); _y =

dy

dt

= �g(x); (13)

where ', F and g are analytic functions satisfying

'(y) = y

2m�1

+O(y

2m

);

F (x) = a

k

x

k

+O(x

k+1

);

G(x) =

Z

x

0

g(s) ds =

x

2l

2l

+O(x

2l+1

);

with m; k; l 2 N being non zero. As in the non degenerate polynomial case (m =

l = 1) we can de�ne

�(f; g) = �

(0;0)

��

F (x)� F (y)

x� y

;

G(x)�G(y)

x� y

��

:

Our aim is to relate �(f; g) to some qualitative property of equation (13). First

we need two technical lemmas.

Lemma 5.1. Consider G(x) given in equation (13). De�ne in a neighbourhood

of 0 the analytic function

u = �(x) = x

2l

r

2lG(x)

x

2l

= x +O(x

2

):

Let �

�1

(u) denote its inverse. Therefore

G(x)�G(y) =

0

@

Y

f�2C :�

2l

=1g

(�

�1

(��(x))� y)

1

A

e

G(x; y);
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where

e

G is an analytic function which does not vanish in a C

2

-neighbourhood of

0.

Proof. By Weirstrass' preparation Theorem and the results of Chapter XIII.32 of

[2] we have that

G(x)�G(y) =

�

y

2l

+ A

1

(x)y

2l�1

+ A

2

(x)y

2l�2

+ � � �+ A

2l

(x)

�

e

G(x; y);

for some analytic functions A

j

(x) and

e

G and with

e

G(0; 0) 6= 0. On the other hand

observe that by (13), u

2l

= 2lG (�

�1

(u)). By substituting in this last expression

u = ��(x) where � is a 2l root of unity we obtain, for all �, that

�

2l

(x) = 2lG

�

�

�1

(��(x))

�

= 2lG(x):

Therefore we have found the 2l roots of y

2l

+A

1

(x)y

2l�1

+A

2

(x)y

2l�2

+ � � �+A

2l

(x)

when we consider it as a polynomial in y and the proof follows.

Lemma 5.2. (see [10])

(i) Consider the change of variables and time

u = �(x); y = y;

dt

ds

=

u

2l�1

g(x)

;

where � is de�ned in the previous the lemma. Then system (13) writes in a

neighbourhood of (0; 0) as

u

0

= '(y)� F

�

�

�1

(u)

�

; y

0

= �u

2l�1

: (14)

(ii) Set F (�

�1

(u)) =

P

i�k

f

i

u

i

in system (14) and assume that k > l(2m � 1)=m.

Then it has a center at the origin if and only if F (�

�1

(u)) is an even function.

From the above lemma it seems natural to de�ne the order of degeneracy of the

origin for equation (13) as S := inffi : f

2i+1

6= 0g, where F (�

�1

(u)) =

P

i�k

f

i

u

i

.

When this order of degeneracy does not exist, we say that it is in�nity and the

point is a center. Observe that when l = m = 1 the above de�nition coincides with

the de�nition of order of a weak focus. Furthermore, it can be proved that if the

�rst odd term in F (�

�1

(u)) is f

2S+1

u

2S+1

then the sign of f

2S+1

determines the

stability of the origin. So F

2S+1

can be thought as a kind of Lyapunov constant

for degenerate critical points of Li�enard equations.

Our main result is given in the next theorem. Observe that it extends Theo-

rem 1.1, to analytic degenerate (or not) Li�enard equations.

Theorem 5.3. Consider the analytic Li�enard equation (13). Assume that asso-

ciated to it, we have F (�

�1

(u)) =

P

i�k

f

i

u

i

with k > l(2m � 1)=m, where �

�1

is

de�ned in Lemma 5.1. Let S be the order of degeneracy of the origin of (13).

Then

(i) If �(f; g) =1 then the origin of (13) is a center.
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(ii) If �(f; g) <1 then

S �

�(f; g)

2

� (k � 1)(l � 1):

Furthermore the above inequality is an equality if and only if either l = 1 or

l > 1 and k and 2l are coprime.

Proof. (i) The proof of �rst part follows from Lemma 5.1 and next assertion which

is proved in Theorem 2.6 of [10]: \Under the hypotheses of our theorem the origin

of (13) is a center if and only if for x small enough the system F (x) = F (y); G(x) =

G(y) has a unique solution y = z(x) satisfying z(0) = 0 and z

0

(0) < 0". This

result is a generalization of a well-known characterization of the centers for non

degenerate Li�enard equations, see [6] and [8].

(ii) Let us compute �(f; g). From Lemma 5.1 the equation (G(x)�G(y)) =(x�

y) = 0 has the same solutions in a neighbourhood of (0; 0) that

Y

f�2C :�

2l

=1gnf1g

�

�

�1

(��(x))� y

�

:

Therefore

�(f; g) = �

0

2

4

F (x)� F (y)

x� y

;

Y

f�2C :�

2l

=1gnf1g

(�

�1

(��(x))� y)

3

5

= �

0

�

F (x)� F (y)

x� y

; �

�1

(��(x))� y

�

+ (15)

X

f�2C :�

2l

=1gnf1;�1g

�

0

�

F (x)� F (y)

x� y

; �

�1

(��(x))� y

�

:

Let us compute the two terms of the last expression. The �rst one coincides

with the multiplicity at zero of the map

F (x)� F (�

�1

(��(x)))

x� �

�1

(��(x))

:

This multiplicity can be calculated by making the change of variables x = �

�1

(u) =

u+O(u

2

): With this new variables the above expression writes as

F (�

�1

(u))� F (�

�1

(�u))

2u+O(u

2

)

=

2f

2S+1

u

2S+1

+O(u

2S+2

)

2u+O(u

2

)

= f

2S+1

u

2S

+O(u

2S+1

):

Therefore the �rst term in (16) is 2S: Note that if l = 1 the second term in (16)

does not exist and we are done. So from now one we will assume that l > 1:

Arguing as in the previous situation, to get the second term in (16) we have to

compute the multiplicity at zero of

F (x)� F (�

�1

(��(x)))

x� �

�1

(��(x))

=

F (x)� F (�x+O(x

2

))

(1� �)x+O(x

2

)

= a

k

1� �

k

1� �

x

k�1

+O(x

k

):
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Observe that this multiplicity is greater or equal than k� 1 and that it is equal to

k � 1 if and only if �

k

6= 1. Recall that � is a complex number satisfying �

2l

= 1

and that � 6= 1;�1:

In other words we have proved that

�(f; g) � 2S + (2l � 2)(k � 1);

and that this last inequality is an equality if and only if k and 2l are coprime, as

we wanted to prove.

Remark 5.4. Observe that the proofs of the above theorem and Lemma 5.1 suggest

another algorithm, di�erent from the one developed in the previous section for

l = m = 1, to compute the multiplicity �(f; g). It consists of the following steps:

(i) De�ne �(x) as in Lemma 5.1

u = �(x) = x

2l

r

2lG(x)

x

2l

= x +O(x

2

):

(ii) De�ne another similar function associated to F

u =  (x) = x

k

s

F (x)

a

k

x

k

= x +O(x

2

):

(iii) The multiplicity is

�(f; g) =

X

(f�2C :�

2l

=1gnf1g)[(f!2C :!

k

=1gnf1g)

�

0

�

�

�1

(��(x)) +  

�1

(! (x))

�

:

Although the above algorithm reduces the computation of the multiplicity to a prob-

lem in just one variable we think that the algorithm developed in previous section

for l = m = 1 is more e�cient than this new approach.
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