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Abstrat. There are two well known methods for generating limit yles

for planar systems with a non degenerate ritial point of fous type: the

degenerate Hopf bifuration, and the Poinar�e-Melnikov method; that is, the

study of small perturbations of Hamiltonian systems. The �rst one gives the

so alled small amplitude limit yles, while the seond one gives limit yles

whih tend to some onrete periodi orbits of the Hamiltonian system when

the perturbation goes to zero (big limit yles for short). The goal of this

paper is to relate both methods. In fat, in all the families of di�erential

equations that we have studied both methods generate the same number of

limit yles. The families studied inlude Li�enard systems and systems with

homogeneous nonlinearities.

1. Introdution and Main Results

One of the most interesting and diÆult problems in the theory of planar

di�erential equations is the ontrol of the number of limit yles that a di�er-

ential equation or a family of di�erential equations an have. Two well-known

methods used for generating limit yles and hene for giving lower bounds

for this number for a given family are: Degenerate Hopf bifuration and the

Poinar�e-Melnikov method; that is, the study of perturbations of Hamiltonian

systems.

Although the above two methods are usually onsidered as independent there

has been several attempts to relate both for onrete families of di�erential

equations. See the results of [3℄ on quadrati systems and the results of [4℄ on

Li�enard systems.

The main goal of this paper is to relate both approahes when we study the

number of limit yles surrounding a nondegenerate ritial point. To be more

preise we need to introdue some notation.

Let F be a family of systems of the form

_x = �x� y + p(x; y; �);

_y = x+ �y + q(x; y; �);

(1)

where � 2 R

m

and the lowest order terms of the analyti funtions p(x; y; �)

and q(x; y; �) are seond order.
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Remember that when � = 0 it is said that F has a weak fous at the origin.

We say that a weak fous at the origin of (1)

�

0

has yliity (�

0

) inside F if:

(i) it is possible to �nd numbers "

0

> 0 and Æ

0

> 0 suh that every system

of the form (1)

�

with jj� � �

0

jj < "

0

annot have more than (�

0

) limit

yles within the Æ

0

�neighborhood of the origin in R

2

; and

(ii) for any hoie of positive numbers " < "

0

and Æ < Æ

0

there exists � 2 R

m

satisfying jj� � �

0

jj < " and suh that (1)

�

has (�

0

) limit yles within

the Æ�neighborhood of the origin in R

2

:

Finally, we de�ne C(F) = sup

�2R

m

f(�)g:

In the sequel we desribe the usual approah for the omputation of C(F):

N.N. Bautin proved that the return map assoiated to the OX

+

�axis an be

written as

�(x; �; �) = x +

1

X

n=1

V

n

(�; �)x

n

;

where eah funtion V

n

is an entire funtion in (�; �); the oeÆients of equa-

tion (1). Moreover, if � = 0, the funtion V

n

:= V

n

(�) := V

n

(0; �) is a polyno-

mial of degree n � 1; and V

1

= V

2

= 0: S. Yakovenko [15℄, de�ned the Bautin

ideal, I, to be the ideal generated by these oeÆients; that is,

I = hV

3

; V

4

; : : : ; V

n

; : : :i 2 R[�℄:

Sine the family F has �nitely many oeÆients, � 2 R

m

, from Hilbert Basis

Theorem, I is �nitely generated and hene there exists a minimum b 2 N suh

that I = hV

3

; V

4

; : : : ; V

b

i.

In general, it is diÆult to �nd expliit expressions for the V

n

: Usually, instead

of these polynomials, people searh for orresponding polynomials v

n

suh that

v

3

= V

3

; and

v

n

� V

n

2 hV

3

; V

4

; : : : ; V

n�1

i = hv

3

; v

4

; : : : ; v

n�1

i; for n � 4:

The method that we develop to obtain an expression for v

n

(see Theorem 2.8)

implies that for eah l � 2; v

2l

= 0, or in other words that

V

2l

2 hv

3

; v

5

; : : : ; v

2l�1

i:

We all the polynomials v

n

the Lyapunov onstants of (1).

We onsider the set fv

3

; v

5

; : : : ; v

2L+1

g where 2L + 1 = b and we eliminate

from this set the polynomial v

2l+1

if v

2l+1

2 hv

3

; v

5

; : : : ; v

2l�1

i: In this way, we

obtain I = hv

2l

1

+1

; v

2l

2

+1

; : : : ; v

2l

B

+1

i. It is easy to see that B does not depend

on the hoie of v

n

; and we all it the Bautin number of F ; B(F) = B: In this

situation,

�(x; 0; �) = x +

B(F)

X

j=1

v

2l

j

+1

x

2l

j

+1

(1 +O(x)): (2)

For �xed � = �

0

; the return map in a neighborhood of the origin is either

�(x; 0; �

0

) � x or �(x; 0; �

0

) = x+v

2K+1

(�

0

)x

2K+1

(1+O(x)), with v

2K+1

(�

0

) 6=

0. This K is alled the order of the origin as a weak fous of (1)

�=0;�=�

0

. It is
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lear that the maximum order of the origin inside our family is smaller or equal

than l

B(F)

(this value is not always attained, see Proposition 5.2).

Note that from expression (2) and the works of R. Roussarie [13℄, or C. Zuppa

[16℄, it is easy to see that the yliity of the origin for our family, C(F), is also

bounded above by B(F)� 1 (B(F) varying also �). If v

2l

1

+1

; : : : ; v

2l

B(F)

+1

an

take arbitrary values, then

C(F) = B(F)� 1: (3)

This is the situation for the families F = H

2

;H

3

; and L

n

, de�ned as follows:

(i) H

n

; the family of vetor �elds with homogeneous nonlinearities, whose

members are di�erential equations

_x = �y + P

n

(x; y);

_y = x+Q

n

(x; y)

where P

n

and Q

n

are homogeneous polynomials of degree n > 1, and

(ii) L

n

; the family of Li�enard systems given by

_x = �y + p

n

(x);

_y = x

(4)

where p

n

(x) is a polynomial of degree n without onstant and linear terms.

In fat, C(H

2

) = 2; C(H

3

) = 4; and C(L

n

) =

�

n�3

2

�

; where [ ℄ denotes the

integer part funtion. These values are alulated in [1℄, [14℄, and [2, 16℄, respe-

tively. We want to stress that (3) is not always true as shown in Proposition 5.2

where there is a family with C(F) = 2 and B(F) = 4:

From now on, we onsider families F of the form (1), with � = 0, for whih

p and q satisfy

p(x; y; a�+ b�) = ap(x; y; �) + bp(x; y; �);

q(x; y; a�+ b�) = aq(x; y; �) + bq(x; y; �);

for all �; � 2 R

m

and a; b 2 R. Notie that this is true for H

n

and L

n

:

We de�ne the k-th order Melnikov number of F , M

k

(F), as the maximum

number of limit yles for system

_x = �H

y

+ p(x; y; �

k

("));

_y = H

x

+ q(x; y; �

k

("));

whih bifurate from the losed orbits of H =

1

2

(x

2

+ y

2

) = h, when " is small

enough and �

k

(") = �

1

"+ �

2

"

2

+ � � �+ �

k

"

k

, varying �

i

2 R

m

for i = 1; : : : ; k;.

Note that the above di�erential equation is equivalent to

_x = �H

y

+ "p(x; y; �

1

) + "

2

p(x; y; �

2

) + � � �+ "

k

p(x; y; �

k

);

_y = H

x

+ "q(x; y; �

1

) + "

2

q(x; y; �

2

) + � � �+ "

k

q(x; y; �

k

):

(5)

From Poinar�e's work it is well known that the �rst Melnikov number,M

1

(F),

oinides with the maximum number of positive simple zeros of

L

1

(�) :=

Z

H=�

(p(x; y; �

1

)dy � q(x; y; �

1

)dx):
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In Theorem 2.2 we give a generalization of J.P. Fran�oise's results [5℄ (see also

[13, Chap. 4℄) whih allows us to ompute the �rst nonzero term, L

k

(�), of the

"-expansion of the return map assoiated with system (5) and the OX

+

-axis so

that

L(�; ") = � + "

k

L

k

(�) +O("

k+1

):

Furthermore, we prove that L

k

(�) is a polynomial in �:

For eah k 2 N ; de�ne

f

M

k

(F) to be one less than the number of nonzero

��monomials that appear in L

k

(�): In general, M

k

(F) �

f

M

k

(F): As far as we

know there are few results about the omputation ofM

k

(F): In [3℄ allM

k

(H

2

)

are omputed and it is proved that M

k

(H

2

) = 2 for k � 6. In [11℄ it is proved

that M

1

(L

n

) =

�

n�3

2

�

.

If

M(F) := sup

k2N

M

k

(F) 2 N [ f1g

and F is a family with a bounded number of limit yles, then

M(F) =M

k

0

(F)

for some k

0

and all k � k

0

sine M

k

(F) does not derease with k. We also

de�ne

f

M(F) = sup

k2N

f

M

k

(F):

In general M(F) �

f

M(F). When we an guarantee that the oeÆients of

L

k

(�) are suh that it has at least as many zeros as one less than oeÆients

then M(F) =

f

M(F).

Remark 1.1. A more general perturbation of _x = �H

y

; _y = H

x

than (5) would

be

_x = �H

y

+ "

1

p(x; y; �

1

) + "

2

p(x; y; �

2

) + � � �+ "

k

p

k

(x; y; �

k

);

_y = H

x

+ "

1

q(x; y; �

1

) + "

2

q(x; y; �

2

) + � � �+ "

k

q

k

(x; y; �

k

);

(6)

where "

i

are small parameters and �

i

2 R

m

for i = 1; 2; : : : ; k. Note that if

we know M(F) for some family F , this number also bounds the number of

limit yles that bifurate from the level urves of H =

1

2

(x

2

+ y

2

) for eah

perturbation of the form (6) where ("

1

; "

2

; : : : ; "

k

) is on some analyti urve in

R

k

passing through zero.

The goal of this paper is to determine the numbers B(F), C(F),

f

M

k

(F),

M

k

(F) and M(F) for several families F :

Our �rst result is a omplete solution of our problem for polynomial Li�enard

systems.

Theorem A. Consider the family of Li�enard di�erential equations, L

n

, de�ned

by

_x = �y + p

n

(x);

_y = x;

where the polynomial p

n

(x) has no onstant or linear terms. If k � 1, then

B(L

n

)� 1 = C(L

n

) =M(L

n

) =M

k

(L

n

) =

�

n� 3

2

�

:
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Observe that the above result reinfores the well{known Lins-Melo-Pugh

Conjeture that

�

n�3

2

�

is the maximum number of limit yles for system (4)

(see also Remark 1.1).

On the other hand, we have the following result that redues the relation

between the Melnikov and Bautin numbers for H

n

to an algebrai problem.

Theorem B. Let v

2k+1

for k � 1, be the Lyapunov onstants of the system H

n

given by

_x = �y + P

n

(x; y);

_y = x+Q

n

(x; y)

where P

n

and Q

n

are homogeneous polynomials of degree n: Assume that the

ideal generated by the Lyapunov onstants v

2k+1

is generated by the �rst M

nonzero onstants, i.e.

hv

n

; v

2n�1

; : : : ; v

n+i(n�1)

; : : :i = hv

n

; v

2n�1

; : : : ; v

n+M(n�1)

i

if n is odd;

hv

2n�1

; v

4n�3

; : : : ; v

n+(2j�1)(n�1)

; : : :i = hv

2n�1

; v

4n�3

; : : : ; v

n+(2M�1)(n�1)

i

if n is even; and that these onstants v

k

an take arbitrary values. Then,

B(H

n

)� 1 = C(H

n

) =M(H

n

):

For n = 2 Bautin [1℄ proved that

hv

3

; v

5

; : : : ; v

2k+1

; : : :i = hv

3

; v

5

; v

7

i;

and for n = 3 K.S. Sibirskii [14℄ proved that

hv

3

; v

5

; : : : ; v

2k+1

; : : :i = hv

3

; v

5

; v

7

; v

9

; v

11

i:

In both ases expressions for the onstants were given. Hene we have the

following orollary of the above theorem.

Corollary C. For the family H

n

of di�erential equations with homogeneous

nonlinearities of degree n;

M(H

2

) = C(H

2

) = 2;

M(H

3

) = C(H

3

) = 4:

In Setion 4 we will prove Theorem 4.1; it give results analogous to Theorem B

for several di�erent families.

In Setion 2 we give a generalization of the Fran�oise algorithm [5℄, see also

[9, 10, 12, 13℄. This result is useful to get the Poinar�e-Melnikov funtions and

the Lyapunov onstants, see Theorem 2.8. Finally, Theorem 2.3 is the main

tool to relate the number of small and big limit yles, and hene to prove

Theorems A and B.

This work was motivated by a guest for a family F where M(F) is di�erent

than C(F): However, we have not been able to onstrut suh a family. In fat,

in all ases for whih we have obtained both numbers, they oinide.
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2. General Fran�oise's Algorithm

Consider the di�erential equation given by

dH + "! = 0; (7)

where H(x; y) =

1

2

(x

2

+ y

2

) and ! is an analyti 1-form. In every ompat

region ontaining the origin, and for " suÆiently small, it is possible to de�ne,

given a transversal setion �, the map L whih assoiate to eah point � of �

the �rst return L(�; ") indued by the ow of system (7):

L : � �! L(�; "):

By hoosing H(x; y) as a parametrization of �, L an be expanded as a series:

L(�; ") = �+ "L

1

(�) + "

2

L

2

(�) + � � �+ "

k

L

k

(�) +O("

k+1

): (8)

Poinar�e already proved that the �rst derivative of L(�; ") with respet to ", at

" = 0 is

L

1

(�) = �

Z

H=�

!:

This last integral expression is sometimes alled �rst Poinar�e-Melnikov fun-

tion. Fran�oise in [5℄ developed a new method to ompute the �rst nonzero

term in the expansion with respet to " of L(�; "). The next theorem states his

main result.

Theorem 2.1. Let L denote the return map assoiated with the solution of sys-

tem (7) and the transversal setion �: If L is given as the series (8) and L

1

(�) �

� � � � L

k�1

(�) � 0; then there exist polynomials g

1

; : : : ; g

k�1

and S

1

; : : : ; S

k�1

suh that �! = g

1

dH+dS

1

, �g

1

! = g

2

dH+dS

2

; : : : ;�g

k�2

! = g

k�1

dH+dS

k�1

,

and

L

k

(�) = �

Z

H=�

g

k�1

!:

We remark that the de�nition of g

k

in Theorem 2.1 does not oinide exatly

with the de�nition in [5℄; they di�er by a minus sign. We have made this

inessential hange to have a simpler statement of the following generalization.

Theorem 2.2. Let L(�; ") = �+ "L

1

(�)+ "

2

L

2

(�)+ � � �+ "

k

L

k

(�)+O("

k+1

) be

the return map assoiated with the di�erential equation

dH + "!

1

+ "

2

!

2

+ � � �+ "

k

!

k

+ � � � = 0 (9)

and the transversal setion �: If L

1

(�) � � � � � L

k�1

(�) � 0; then there exist

polynomials h

0

� 1; h

1

; : : : ; h

k�1

, and S

1

; : : : ; S

k�1

suh that

�

m

X

j=1

!

j

h

m�j

= h

m

dH + dS

m

for eah m = 1; : : : ; k � 1 and

L

k

(�) = �

Z

H=�

k

X

j=1

h

k�j

!

j

:
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The proof of the above Theorem uses the same ideas as in the proof of

Theorem 2.1 (see also [9, 10, 12, 13℄).

Theorem 2.2 gives an algorithm whih allows us to determine the Melnikov

number at every order. In other words we have, at least theoretially, a method

to determine

f

M

k

(F), and sometimes M

k

(F).

The above two theorems an be related. In fat, we will prove that the

omputation of the derivatives of a general perturbation of dH = 0, as in

(9), an be obtained from the expressions given in Theorem 2.1 for system

(7). Hene both results are equivalent. This fat is formalized in the next

theorem. Before we state it, we note that our proof of the equivalene is based

on Theorem 2.2; and our omputations for onrete families seem to show that

the use of Theorem 2.2 is in general more eÆient than the use of Theorem 2.1.

Hene, from our point of view, the next theorem is more useful theoretially

than omputationally.

Theorem 2.3. For k 2 N ; let

L

(1)

(�; ") = �+ "L

(1)

1

(�) + "

2

L

(1)

2

(�) + � � �+ "

k

L

(1)

k

(�) +O("

k+1

)

be the return map (8) assoiated with the di�erential equation dH + "! = 0:

(Sine L

(1)

j

(�) depends on !; we will denote it by L

(1)

j

(�; !):) Also let

L

(2)

(�; ") = �+ "L

(2)

1

(�) + "

2

L

(2)

2

(�) + � � �+ "

k

L

(2)

k

(�) +O("

k+1

)

be the return map assoiated with the di�erential equation (9).

Also, suppose that !

j

, j = 1; 2; : : : ; k; are arbitrary 1-forms and n is a positive

integer. If ! = !

1

+ "!

2

+ � � �+ "

k�1

!

k

+O("

k

) and

L

(1)

n

(�; !) = L

(1)

n

(�; !

1

+ !

2

"+ � � � ) =

1

X

k=0

L

n;k

(�)"

k

;

then

L

(2)

n

(�) =

n�1

X

k=0

L

n�k;k

(�):

This last result is the key point for this paper; it will allow us to relate the

two problems under onsideration. Before we use it, we need to prove some

preliminary results.

As in [6℄, we an deompose a real polynomial 1-form in a very useful way to

ompute

R

H=�

!.

Lemma 2.4. Let ! be a real polynomial 1-form,

! =

X

�

j;k

z

j

z

k

dz +

X

�

j;k

z

j

z

k

dz;

and suppose that ! is deomposed as follows:

!

h

=

X

k�j 6=1

�

j;k

z

j

z

k

dz +

X

k�j 6=1

�

j;k

z

j

z

k

dz; and

!

l

= ! � !

h

:

Then there exist polynomials h and S suh that



8 ARMENGOL GASULL AND JOAN TORREGROSA

(i) ! = !

l

+ !

h

;

(ii)

R

H=�

! �

R

H=�

!

l

;

(iii) �!

h

= hdH + dS:

Proof. From the de�nition of !

h

and !

l

, the proof of (i) is a simple veri�ation.

To prove (ii), we have to see that

R

H=�

!

h

� 0: Note that the expression

�

�

�z

X

k�j 6=1

�

j;k

z

j

z

k

+

�

�z

X

k�j 6=1

�

j;k

z

j

z

k

has no terms of the form (zz)

k

: This fat, as in [5℄, allows us to prove the

existene of a polynomial funtion h suh that d(�!

h

) = d(hdH): Hene, there

is a polynomial S satisfying �!

h

= hdH + dS: �

In our study of Li�enard di�erential equations we need a more restritive

version of the above lemma in polar oordinates. We state it in the following

remark.

Remark 2.5. Let ! be a 1-form expressed in polar oordinates (r; �) as

! = �(r; �)dr + �(r; �)d�;

where � and � are 2�-periodi analyti funtions in � and H =

1

2

r

2

: If

R

H=�

! =

0; then there exists a funtion h given by h(r; �) = �

1

r

R

�

0

�

��

� 

�

��

�r

�

d suh

that d(!) = d(hdH); or in other words, there exist funtions h(r; �) and S(r; �)

suh that �! = hdH + dS.

Note that Lemma 2.4 allows us to give the following de�nition:

De�nition 2.6. For a sequene of polynomial 1-forms, !

1

; !

2

; !

3

; : : : ; we de�ne

the following sequene of assoiated polynomials:

l

1

(�) = �

Z

H=�

!

1

;

l

2

(�) = �

Z

H=�

(!

2

+ h

1

!

1

) ;

where �(!

1

)

h

= h

1

dH + dS

1

, and

l

k

(�) = �

Z

H=�

 

k

X

j=1

h

k�j

!

j

!

;

where �

 

m

X

j=1

h

m�j

!

j

!

h

= h

m

dH + dS

m

, for m = 1; : : : ; k � 1; and h

0

= 1:

Remark 2.7. (i) In the above de�nition, and in ontrast with Fran�oise's

method, the ondition

R

H=�

! � 0 is not needed to assoiate the funtions

h and S with !:
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(ii) If the above 1-forms, !

k

; oinide with those in Theorem 2.2, and further-

more if l

1

(�) � l

2

(�) � � � � � l

k�1

(�) � 0; then the return map assoiated

with � for system (9) an be written as

L(�; ") = � + "

k

l

k

(�) +O("

k+1

):

In other words, L

1

(�) � � � � � L

k�1

(�) � 0 and L

k

(�) = l

k

(�):

Proof of Theorem 2.3. In order to simplify the notation in this proof let us

denote by dS every 1-form ! suh that d! = 0: For instane, we will write

dS + dS = dS.

We will prove the theorem by indution. Consider �rst the ase n = 1: From

Theorem 2.1 we know that L

(1)

1

(�) = �

R

H=�

!: Hene, by using the (h; l)-de-

omposition given in De�nition 2.6 we have that ! = !

h

+ !

l

: Replaing ! by

! = !

1

+ "!

2

+ � � � , we get

L

(1)

1

(") = �

Z

H=�

(!

1

+ "!

2

+ � � � ) = �

Z

H=�

!

1

� "

Z

H=�

!

2

� � � �

= �

Z

H=�

!

1l

� "

Z

H=�

!

2l

� � � � = L

1;0

+ "L

1;1

+ � � � :

Furthermore, from the equality �!

h

= h

1

dH + dS; we get

�!

1h

� "!

2h

� � � � = h

1

(")dH + dS = (h

1;0

+ "h

11

+ � � � )dH + dS:

By equating the terms of their " expansions, we obtain that �!

jh

= h

1;j�1

dH+

dS for eah j 2 N :

Hene, from Theorem 2.2, it follows that

L

(2)

1

(�) = �

Z

H=�

!

1

= �

Z

H=�

!

1l

= L

1;0

:

Furthermore, beause �!

1h

=

~

h

1

dH + dS; we have that

~

h

1

= h

1;0

: Hene the

theorem follows for n = 1:

Before we onsider the general ase, to larify the proof let us study the ase

n = 2:

From Theorem 2.1 we have that L

(1)

2

(�) = �

R

H=�

!h

1

: By applying the

(h; l)-deomposition to h

1

!; it follows that h

1

! = (h

1

!)

h

+ (h

1

!)

l

: Putting
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! = !

1

+ "!

2

+ � � � we get

L

(1)

2

(") = �

Z

H=�

(!

1

+ "!

2

+ � � � )(h

1;0

+ "h

1;1

+ � � � )

= �

Z

H=�

!

1

h

1;0

� "

Z

H=�

(!

2

h

1;0

+ !

1

h

1;1

)

� "

2

Z

H=�

(!

3

h

1;0

+ !

2

h

1;1

+ !

1

h

1;2

)� � � �

= �

Z

H=�

(!

1

h

1;0

)

l

� "

Z

H=�

(!

2

h

1;0

+ !

1

h

1;1

)

l

� "

2

Z

H=�

(!

3

h

1;0

+ !

2

h

1;1

+ !

1

h

1;2

)

l

� � � �

= L

2;0

+ "L

2;1

+ "

2

L

2;2

+ � � � :

On the other hand, by using the equality �(h

1

!)

h

= h

2

dH+dS; by substituting

in this last equation the expression of !, and by equating the " terms, we �nd

that

�

 

j

X

k=0

!

j+1�k

h

1;k

!

h

= h

2;j

dH + dS;

for every j 2 N :

De�ne

~

h

1

:= h

1;0

and use Theorem 2.2 to see that

L

(2)

2

(�) = �

Z

H=�

(!

2

+ !

1

h

1

) = �

Z

H=�

(!

2

+ !

1

~

h

1

)

l

= L

1;1

+ L

2;0

:

Also, from the above deomposition we have that�(!

2

+!

1

~

h

1

)

h

= h

1;1

dH+dS+

h

2;0

dH+dS = (h

1;1

+h

2;0

)dH+dS =

~

h

2

dH+dS; and therefore

~

h

2

= h

1;1

+h

2;0

:

Hene our result follows for n = 2:

In order to onsider the general ase, we will make the following indution

hypothesis:

~

h

k

=

k�1

X

j=0

h

k�j;j

;

�

 

X

p+q=j

!

p

h

k;q

!

h

= h

k+1;j�1

dH + dS for j = 1; : : : ; k; and,

L

k;j

= �

Z

H=�

 

X

p+q=j+1

!

p

h

k�1;q

!

l

for j = 0; : : : ; k;

for k = 1; : : : ; n:

To prove it, �rst substitute ! = !

1

+ "!

2

+ � � � in the equality

L

(1)

n+1

(�) = �

Z

H=�

!h

n

;
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(whih follows from Theorem 2.1) and note that

L

(1)

n+1

(�; ") =

Z

H=�

(!

1

+ "!

2

+ � � � )(h

n;0

+ h

n;1

"+ � � � )

=

Z

H=�

(!

1

h

n;0

)

l

+ "

Z

H=�

(!

2

h

n;0

+ !

1

h

n;1

)

l

+ � � �+ "

k

Z

H=�

 

X

i+j=k+1

!

i

h

n;j

!

l

+ � � �

=

1

X

k=0

L

n+1;k

"

k

:

By de�ning

~

h

0

= 1 and by using the indution hypothesis and Theorem 2.2, we

have that

L

(2)

n+1

(�) = �

Z

H=�

X

i+j=n+1

!

i

h

j

= �

Z

H=�

X

i+j=n+1

!

i

~

h

j

= �

Z

H=�

(!

n+1

)

l

+ (!

n

h

1;0

)

l

+ � � �+

 

!

1

X

i+j=n

h

i;j

!

l

= �

Z

H=�

 

n+1

X

k=1

!

k

X

i+j=n�k+1

h

i;j

!

l

= �

Z

H=�

 

X

k+i+j=n+1

!

k

h

i;j

!

l

= �

Z

H=�

 

n+1

X

i=1

X

k+j=i

!

k

h

n+1�i;j

!

l

=

n+1

X

i=1

L

n+2�i;i�1

:

Moreover we have that

�

 

X

i+j=n+1

!

i

~

h

j

!

h

= �

 

n+1

X

k=1

!

k

X

i+j=n�k+1

h

i;j

!

h

= �

 

X

k+i+j=n+1

!

k

h

i;j

!

h

=

 

n+1

X

i=1

�

X

k+j=i

!

k

h

n+1�i;j

!

h

=

n+1

X

i=1

(h

n+2�i;i�1

dH + dS)

=

~

h

n+1

dH + dS:

Hene

~

h

n+1

=

P

i+j=n+1

h

i;j

; and therefore the theorem is proved. �

Theorem 2.2 an also be used to ompute the Lyapunov onstants for system

(1) with � = 0: See [8, Theorem A℄ for a proof of the following result.

Theorem 2.8. The di�erential equation (1) with � = 0 an be written as

dH + !

1

+ !

2

+ !

3

� � � = 0;

where H =

1

2

(x

2

+ y

2

) and !

k

= !

k

(x; y) are homogeneous polynomial 1-forms

of degree k + 1.
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(i) The K-th Lyapunov onstant of this di�erential equation is given by

v

K

= �

1

(

p

2�)

K+1

Z

H=�

K�1

X

l=1

!

l

h

K�1�l

where h

0

= 1 and, for m = 1; : : : ; K � 1; the polynomials h

m

are de�ned

by the reurrene relation

d

 

m

X

l=1

!

l

h

m�l

!

= �d(h

m

dH):

Also,

(ii) v

2l

= 0 for l � 2:

It an be seen that, although in the expression of theK-th Lyapunov onstant

given in the �rst statement of the above theorem there appear the variable �,

it anels one the formula is developed, see again [8℄.

3. Li

�

enard Equations

Consider a new family F = G

n

; whih inludes the Li�enard di�erential equa-

tions L

n

: This family is given by the di�erential equations

_x = �y + a

1

X

1

(x; y) +X

2

(x; y) + a

3

X

3

(x; y) + � � �+ a

n

X

n

(x; y);

_y = x+ a

1

Y

1

(x; y) + Y

2

(x; y) + a

3

Y

3

(x; y) + � � �+ a

n

Y

n

(x; y);

(10)

where X

i

(x; y) and Y

i

(x; y) are homogeneous polynomials of degree i: Further-

more, X

2j

(�x; y) = X

2j

(x; y) and Y

2j

(�x; y) = �Y

2j

(x; y) for eah j = 1; 2; : : :

Here a

n

= 1 if n is even. Note that if a

1

= a

3

= � � � = a

2k+1

= � � � = 0; then the

origin of (10) is a reversible enter.

Theorem 3.1. Let G

n

denote the family of di�erential equations de�ned in

(10). Then M(G

n

) = [

n�1

2

℄; where [ ℄ denotes the integer part funtion.

As an easy orollary of the above result we an prove Theorem A.

Proof of Theorem A. Consider the subfamily F

n

� G

n

given by the Li�enard

equations, where (X

j

(x; y); Y

j

(x; y)) = (b

j

x

j

; 0) for j = 1; : : : , and b

2j+1

= 1

for j � 0: Taking a

1

= 0;(remember that F

n

has no linear terms) we get that

M(L

n

) = [

n�3

2

℄: �

Let us prove Theorem 3.1.

Proof of Theorem 3.1. In order to simplify the proof we introdue the operator

� that ats on funtions of the form f(r; �) = r

a

os

b

� sin



� as follows:

� : fAr

a

os

b

� sin



� : A 2 R n f0gg �! N � (Z=2Z)� (Z=2Z);

f 7�! (a; b + ; ):

It has the following properties:

(i) � (fg) = � (f) + � (g) ;

(ii) �

�

�

�r

f

�

= � (f)� (1; 0; 0);

(iii) �

�
R

fd�

�

= � (f) + (0; 0; 1);

(iv) if �(f) = (�; �; 1); then

R

H=�

fd� = 0;
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(v) if �(f) = (�; 1; 0); then

R

H=�

fd� = 0;

(vi) if �(f) = (2k; 0; 0); then

R

H=�

fd� = �

k

C

2k

; with C

2k

6= 0:

In the above expressions � denotes an arbitrary integer. Furthermore, if f is

given by f =

P

A

a;b;

r

a

os

b

� sin



�; then

�(f) =

X

A

a;b;

�(r

a

os

b

� sin



�) =

X

A

a;b;

(a; b+ ; );

and if ! = fdr + gd�; then

�(!) = �(f)dr + �(g)d�:

Let us start the proof. In polar oordinates the di�erential 1-form assoiated

with system (5) is

rdr + "!

1

+ "

2

!

2

+ � � � = 0

where

!

i

=

�

os �Q

i

(r os �; r sin �)� sin �P

i

(r os �; r sin �)

�

dr

�

�

r os �P

i

(r os �; r sin �) + r sin �Q

i

(r os �; r sin �)

�

d�:

For the family G

n

given by (10), we have that

P

i

(x; y) = a

1;i

X

1;i

(x; y) +X

2;i

(x; y) + a

3;i

X

3;i

(x; y) + � � �+ a

n;i

X

n;i

(x; y)

and

Q

i

(x; y) = a

1;i

Y

1;i

(x; y) + Y

2;i

(x; y) + a

3;i

X

3;i

(x; y) + � � �+ a

n;i

Y

n;i

(x; y):

Let us study how the funtion � ats on the omponents of the vetor �eld

de�ned by system (5). We have that

�(P

i

) =a

1;i

(1; 1; �) + (2; 0; 0) + a

3;i

(3; 1; �) + (4; 0; 0)

+ � � �+ a

n;i

�

n;

1� (�1)

n

2

;

1� (�1)

n

2

�

�

;

�(Q

i

) =a

1;i

(1; 1; �) + (2; 0; 1) + a

3;i

(3; 1; �) + (4; 0; 1)

+ � � �+ a

n;i

�

n;

1� (�1)

n

2

;

1� (�1)

n

2

�+1

�

:

Hene, for its assoiated 1-form, we have that

�(!

i

) =

�

a

1;i

(1; 0; �) + (2; 1; 1) + a

3;i

(3; 0; �) + � � �

+ a

n;i

�

n;

1 + (�1)

n

2

;

1� (�1)

n

2

�+1

��

dr

+

�

a

1;i

(2; 0; �) + (3; 1; 0) + a

3;i

(4; 0; �) + � � �

+ a

n;i

�

n + 1;

1 + (�1)

n

2

;

1� (�1)

n

2

�

��

d�:
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From Theorem 2.2 and the fat that

R

H=�

fdr = 0 for every regular funtion f ,

we have that

L

1

(�) =

Z

H=�

!

1

= a

1;1

�C

2

+ a

3;1

�

2

C

4

+ a

5;1

�

3

C

6

+ � � �+ a

n;1

C

[(n+1)=2℄

�

[(n+1)=2℄

;

(11)

and hene L

1

(�) is a polynomial of degree [(n + 1)=2℄ without onstant term.

Choosing suitable values for a

2k+1;1

, it is possible to onstrut examples with

" as small as we like, and with [(n + 1)=2℄ � 1 = [(n � 1)=2℄ hyperboli limit

yles, as required.

Our objetive is to show that for a perturbation of arbitrary order in " all

the polynomials appearing in the omputation of the �rst nonzero Poinar�e-

Melnikov funtion L

k

(�) are like (11). In other words, and sine by Theorem 2.2

L

k

(�) = �

Z

H=�

k

X

j=1

h

k�j

!

j

;

when L

1

(�) � L

2

(�) � � � � � L

k�1

(�) � 0; if we an prove that

R

H=�

h

j

!

i

= 0

for all even i and j 6= 0, then L

k

=

R

H=�

!

k

for eah k and the theorem will

follow. To omplete the proof, we will show that L

k

=

R

H=�

!

k

:

In the proof of the above fat, we will not take into aount the degree with

respet to r of the involved funtions h

j

; beause this degree is irrelevant to

prove that some of the integrals that appear are zero. We also introdue the

notation e

�

(resp. o

�

) for an arbitrary even (resp. odd) number.

Assume that L

1

(�) =

R

H=�

!

1

� 0; that is, a

i;1

= 0 for all i. Remark 2.5

states that if !

1

= A

1

dr +B

1

d�; then h

1

= �

A

1

r

+

R

B

1r

r

d�: Hene, we have

�(h

1

) = (1; 1; 1) + (3; 1; 1) + � � �+ (o

�

; 1; 1):

It follows that

�(!

1

) =

�

(2; 1; 1) + (4; 1; 1) + � � �+ (e

�

; 1; 1)

�

dr

+

�

(3; 1; 0) + (5; 1; 0) + � � �+ (o

�

; 1; 0)

�

d�;

and

�(h

1

!

1

) =

�

(3; 0; 0) + (5; 0; 0) + � � �+ (o

�

; 0; 0)

�

dr

+

�

(4; 0; 1) + (6; 0; 1) + � � �+ (e

�

; 0; 1)

�

d�:

From the properties of the funtion �,

Z

H=�

h

1

!

1

= 0

and

�(h

2

) = (1; 1; 1) + (2; 0; 0) + (3; 1; 1) + (4; 0; 0) + � � �+ (o

�

; 1; 1) + (e

�

; 0; 0):

Hene we an assume as an indution hypotheses that

�(h

j

) = (1; 1; 1) + (2; 0; 0) + (3; 1; 1) + (4; 0; 0) + � � �+ (o

�

; 1; 1) + (e

�

; 0; 0);
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and

�(!

j

) =

�

(2; 1; 1) + (4; 1; 1) + � � �+ (e

�

; 1; 1)

�

dr

+

�

(3; 1; 0) + (5; 1; 0) + � � �+ (o

�

; 1; 0)

�

d�;

for j = 1; : : : ; k � 1: To get �(h

k

) and �(w

k

) we will use again Theorem 2.2.

Hene we have to study �(!

k�j

h

j

): We obtain that

�(!

k�j

h

j

) =

�

(3; 0; 0) + (4; 1; 1) + (5; 0; 0) + (6; 1; 1) + � � �

+ (o

�

; 0; 0) + (e

�

; 1; 1)

�

dr

+

�

(4; 0; 1) + (5; 1; 0) + (6; 0; 1) + (7; 1; 0) + � � �

+ (e

�

; 0; 1) + (o

�

; 1; 0)

�

d�;

and as a onsequene,

R

H=�

!

k�j

h

j

= 0 for every j = 1; : : : ; k � 1. From the

above equality we have that

L

k

=

Z

H=�

(!

k

+ !

k�1

h

1

+ !

k�2

h

2

+ � � �+ !

1

h

k�1

) =

Z

H=�

!

k

:

Therefore, L

k

(�) has the same expression as L

1

(�). Furthermore, it is easy to

see that in the ase L

k

� 0; and by using again Remark 2.5, we have

�(h

k

) = (1; 1; 1) + (2; 0; 0) + (3; 1; 1) + (4; 0; 0) + � � �+ (o

�

; 1; 1) + (e

�

; 0; 0):

and

�(!

k

) =

�

(2; 1; 1) + (4; 1; 1) + � � �+ (e

�

; 1; 1)

�

dr

+

�

(3; 1; 0) + (5; 1; 0) + � � �+ (o

�

; 1; 0)

�

d�:

Hene the indution step follows and the proof is omplete. �

4. Systems with homogeneous nonlinearities

The next theorem implies our result for H

n

as stated in Theorem B. We

introdue the following notation:

Given a sequene of polynomials l

i

(�) 2 R[�℄; i 2 N , we say that they satisfy

the property (P

N

) if there exist homogeneous polynomials

e

l

i

(�) 2 R[�℄ of degree

k

i

; i 2 N ; suh that

(i)

~

l

1

(�) = l

1

(�);

(ii)

~

l

i

(�) = l

i

(�) +

P

j<i

p

j

(�)

~

l

j

(�) for i � 2; where p

j

(�) 2 R[�℄:

(iii) J = hl

1

(�); l

2

(�); : : : ; l

n

(�); : : :i = h

~

l

1

(�);

~

l

2

(�); : : : ;

~

l

N

(�)i;

(iv) k

1

< k

2

< � � � < k

N

:

Theorem 4.1. Consider a family of di�erential equations F and

dH + "! = 0; (12)

where ! is a di�erential 1-form, suh that (12) is in F . Assume that the

sequene of polynomials l

k

(�); k � 1; given in De�nition 2.6 and assoiated to

(12), satis�es the property (P

N

).
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Let L(�; ") = �+ "L

1

(�) + � � � be the return map assoiated with the solution

of

dH + "!

1

+ "

2

!

2

+ � � � = 0; (13)

where dH + "!

k

2 F for every k. Then the following holds,

L

j

(�) =

j

X

i=1

a

k

i

�

k

i

; when j � N;

L

j

(�) =

N

X

i=1

a

k

i

�

k

i

; when j > N;

where eah a

k

i

is a polynomial whose variables are the oeÆients of (13). In

other words,

f

M

j

(F) = j � 1 for j � N; and

f

M

j

(F) =

f

M(F) = N � 1 for

j > N:

Remark 4.2. (i) If we add to the hypotheses of the above theorem, the hypo-

thesis that

~

l

i

(�) an take arbitrary values, then

f

M(F) =M(F):

(ii) If the family F has �nitely many nonzero oeÆients, then the Hilbert Ba-

sis Theorem guarantees that the ideal J is �nitely generated. In the above

theorem we also request that it is generated by the �rst N elements, and

furthermore, that these elements an be replaed by homogeneous polyno-

mials in �; with inreasing degrees.

As a orollary of the above result we an prove Theorem B.

Proof of Theorem B. Assume �rst that n is odd. It is easy to see that the only

nonzero Lyapunov onstants are v

n+i(n�1)

for i � 0. If in equation (13) we take

all !

i

� 0 exept !

n�1

, then we get, with "

1

:= "

n�1

and using Theorem 2.8,

that there is the following relation between the return map assoiated to dH +

"

1

!

n�1

= 0 and the Lyapunov onstants of dH + !

n�1

= 0 :

l

i

(�) = v

n+(i�1)(n�1)

(2�)

(n+1)+(i�1)(n�1)

2

:

Hene, the polynomials l

i

(�) are homogeneous in the variable �, with these

degrees, k

i

, all di�erent. So we an take l

i

(�) �

~

l

i

(�): Therefore, from Theo-

rem 4.1 we have as many nonzero oeÆients of the polynomial L

j

(�) as number

of nonzero Lyapunov onstants. So, the theorem is proved in this ase.

For n even, and using the same omputations, we get that the polynomials

l

i

with i odd are zero. So the ideal J of Theorem 4.1 an be redued to take

just the polynomials l

2i

: The proof then follows in a similar way. �
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Proof of Theorem 4.1. From our hypotheses there exist polynomials p

i;j

suh

that

l

1

=

~

l

1

;

l

i

=

X

j<i

p

i;j

~

l

j

for any i = 2; : : : ; N;

l

i

=

N

X

j=1

p

i;j

~

l

j

for any i > N:

(14)

As in the proof of Theorem 2.3, we substitute ! by ! = !

1

+"!

2

+"

2

!

3

+ � � � ;

in the expressions of l

j

(�) assoiated to (14). Then the above equalities (14)

are given by

l

1;0

+ "l

1;1

+ "

2

l

1;2

+ � � � =

~

l

1;0

+ "

~

l

1;1

+ "

2

~

l

1;2

+ � � � :

Hene l

1;i

=

~

l

1;i

for any i = 0; 1; 2; : : : ; and

l

i;0

+ "l

i;1

+ "

2

l

i;2

+ � � � = (

~

l

i;0

+ "

~

l

i;1

+ � � � )

+

X

j<i

(p

0

i;j

+ p

1

i;j

"+ � � � )(

~

l

j;0

+ "

~

l

j;1

+ � � � ):

After equating the oeÆients with the same " power we get the following

equalities:

l

i;0

=

~

l

i;0

+

X

j<i

p

0

i;j

~

l

j;0

;

l

i;1

=

~

l

i;1

+

X

j<i

p

0

i;j

~

l

j;1

+ p

1

i;j

~

l

j;0

=

~

l

i;1

+

X

0<k<i

0�m�1

q

i;1

k;m

~

l

k;m

:

In general, for eah l

i;j

we an write:

l

i;j

=

~

l

i;j

+

X

0<k<i

0�m�j

q

i;j

k;m

~

l

k;m

;

where the q

i;j

k;m

are again polynomials in the oeÆients of the system and �:

Hene we have for

~

l

i;j

similar expression to the expressions for l

i;j

: Moreover, in

the ase i � N; the

~

l

i;j

are zero.

Note that the polynomials

~

l

i;j

are also homogeneous polynomials in � with

the same degree in �; that l

i;j

, l

i

, and

~

l

i

:

From Theorem 2.3 we have that the oeÆients of the expansion of the return

map assoiated to (13) are

l

(2)

k

(�) =

X

i+j=k

j<k

l

i;j

(�):
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Hene by using the above expressions for the funtions l

i;j

; we get that

l

(2)

1

= l

1;0

=

~

l

1;0

;

l

(2)

2

= l

2;0

+ l

1;1

=

~

l

2;0

+ q

2;0

1;0

~

l

1;0

+

~

l

1;1

;

l

(2)

3

= l

3;0

+ l

2;1

+ l

1;2

= (

~

l

3;0

+ q

3;0

2;0

~

l

2;0

+ q

3;0

1;0

~

l

1;0

) + (

~

l

2;1

+ q

2;1

1;0

~

l

1;0

+ q

2;1

1;1

~

l

1;1

) +

~

l

1;2

:

To determine the �rst nonzero oeÆient of the return map, we need to sim-

plify the above expressions under the assumption that the previous ones are

all zero. If l

(2)

1

=

~

l

1;0

� 0, then l

(2)

2

=

~

l

2;0

+

~

l

1;1

; and sine both summands are

homogeneous in � of di�erent degree,

~

l

(2)

2

is zero if and only if

~

l

2;0

are

~

l

1;1

also

zero. In this situation l

(2)

3

=

~

l

3;0

+

~

l

2;1

+

~

l

1;2

:

In general, we an prove that l

(2)

k

=

P

0�i+j=k

j<k

~

l

i;j

when l

(2)

1

� l

(2)

2

� � � � � l

(2)

k�1

�

0:

Observe that in eah step we get a polynomial in �; l

(2)

k

, where eah of its

monomials in �,

~

l

i;j

, is an homogeneous polynomial of degree k

i

. Moreover,

sine

~

l

i;j

= 0; for i > n, we have that the polynomial l

(2)

k

for k > n does not

augment its degree. This fat implies that

f

M

k

(F) = k � 1; if k � N and

f

M

k

(F) = N � 1; if k > N . Therefore, M(F) �

f

M(F) = N � 1 as we wanted

to prove. �

5. Other Families

This setion is devoted to give the numbersM(F) and B(F) for two onrete

families F . The �rst one is a new appliation of Theorem 4.1. The seond one

does not satisfy the hypotheses of the theorem; we are just able to ompute

some values of

f

M

k

(F) for small k:

Proposition 5.1. Consider the family F de�ned by system

_x = �y + a

2

x

2

+ a

3

x

3

;

_y = x + b

3

x

3

+ b

4

x

4

:

Then M(F) = C(F) = 1; and B(F) = 2:

Proof. Its �rst Lyapunov onstants are v

3

=

3�

4

a

3

and v

5

= �

�

2

a

2

b

4

: Further-

more, there are two set of solutions of the system v

3

= v

5

= 0: fa

3

= b

4

= 0g

(reversible enters) and fa

2

= a

3

= 0g (potential enters).

It is not diÆult to see that the ideal ha

3

; a

2

b

4

i is radial. From this fat we

have that I = hv

3

; v

5

i and so B(F) = 2:

On the other hand, following the notation of Theorem 4.1 we have that

~

l

1

= 3a

3

��

2

and

~

l

2

= �2a

2

b

4

��

3

: Sine if

~

l

1

�

~

l

2

� 0; then a

3

= a

2

b

4

= 0, by

using the above lassi�ation of the enters of F ; we have that dH + "! = 0

has a enter for eah ". Then

~

l

j

� 0 for j � 3 if

~

l

1

=

~

l

2

= 0. Hene we an

apply Theorem 4.1, the radiality of hv

3

; v

5

i; and the fat that

~

l

1

=

1

4

v

3

�

2

and

~

l

2

=

1

4

v

5

�

3

to onlude that J = h

~

l

1

;

~

l

2

i and

f

M(F) = B(F) � 1: From the
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fat that a

3

and a

2

b

4

an take arbitrary values it follows that

f

M(F) =M(F):

Finally, it is easy to see that C(F) = 1: �

Proposition 5.2. Consider the family, F , de�ned by

_x = �y + a

2

x

2

+ a

3

x

3

;

_y = x + b

2

y

2

+ b

3

y

3

:

Then B(F) = 4; C(F) = 2; the maximum order of the origin as a weak fous

is 3 and M

k

(F) =

8

>

<

>

:

0 if k = 1; 2;

1 if k = 3; 4; 5;

2 if k = 6; 7; : : : ; 10:

Proof. Its �rst Lyapunov onstants are

v

3

=

3�

4

(b

3

+ a

3

);

v

5

= �

�

12

(a

2

2

� b

2

2

)(6b

2

a

2

+ 5b

3

);

v

7

= �

5�

8

b

3

(a

4

2

� b

4

2

);

v

9

= �

382�

125

a

4

2

b

3

(a

2

2

� b

2

2

):

In [7℄ it is proved that if v

3

= v

5

= v

7

= 0; then the origin of F is a enter.

Sine v

9

is not zero when fv

3

= v

5

= v

7

= 0g in C [a

2

; b

2

; a

3

; b

3

℄, it follows that

hv

3

; v

5

; v

7

i 6= hv

3

; v

5

; v

7

; v

9

i:

Furthermore, the fat that hv

3

; v

5

; v

7

; v

9

i is a radial ideal (this is tested by

using the algebrai pakage MAGMA), and the fat that its zero set oinides

with the set of enters of F , we have that, for n � 10, v

n

2 rad(v

3

; v

5

; v

7

; v

9

) =

hv

3

; v

5

; v

7

; v

9

i and hene B(F) = 4.

Note also that on any real solution of v

3

= v

5

= v

7

= 0, v

9

is also 0: Then

the maximum order of the origin is 3:

The fat that v

3

; v

5

; v

7

an take arbitrary values and v

7

v

9

� 0 implies that

C(F) = 2:

On the other hand, to ompute the Melnikov number we have to study the

expression for the return map assoiated to dH + "! = 0: We obtain that

~

l

1

= 3�(b

3

+ a

3

)�

2

;

~

l

2

= 0;

~

l

3

=

5�

3

b

3

(a

2

2

� b

2

2

)�

3

;

~

l

4

= �2�a

2

b

2

(a

2

2

� b

2

2

)�

3

:

Sine the degrees in � of

~

l

3

and

~

l

4

oinide, we an not apply Theorem 4.1.

So we study diretly the equation dH + "! + "

2

! + � � � = 0 and we get the

values of

f

M

k

(F) given in the statement. We do not give here the details of the

omputations due to their length. �
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