A RELATION BETWEEN SMALL AMPLITUDE AND BIG
LIMIT CYCLES.

ARMENGOL GASULL AND JOAN TORREGROSA

ABSTRACT. There are two well known methods for generating limit cycles
for planar systems with a non degenerate critical point of focus type: the
degenerate Hopf bifurcation, and the Poincaré-Melnikov method; that is, the
study of small perturbations of Hamiltonian systems. The first one gives the
so called small amplitude limit cycles, while the second one gives limit cycles
which tend to some concrete periodic orbits of the Hamiltonian system when
the perturbation goes to zero (big limit cycles for short). The goal of this
paper is to relate both methods. In fact, in all the families of differential
equations that we have studied both methods generate the same number of
limit cycles. The families studied include Liénard systems and systems with
homogeneous nonlinearities.

1. INTRODUCTION AND MAIN RESULTS

One of the most interesting and difficult problems in the theory of planar
differential equations is the control of the number of limit cycles that a differ-
ential equation or a family of differential equations can have. Two well-known
methods used for generating limit cycles and hence for giving lower bounds
for this number for a given family are: Degenerate Hopf bifurcation and the
Poincaré-Melnikov method; that is, the study of perturbations of Hamiltonian
systems.

Although the above two methods are usually considered as independent there
has been several attempts to relate both for concrete families of differential
equations. See the results of [3] on quadratic systems and the results of [4] on
Liénard systems.

The main goal of this paper is to relate both approaches when we study the
number of limit cycles surrounding a nondegenerate critical point. To be more
precise we need to introduce some notation.

Let F be a family of systems of the form

T=ar— y+p(xay7)‘)a

. 1
y=1+ay+q(,y,N), ®
where A € R™ and the lowest order terms of the analytic functions p(z,y, A)
and ¢(x,y, \) are second order.
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Remember that when o = 0 it is said that F has a weak focus at the origin.
We say that a weak focus at the origin of (1)), has cyclicity c()\o) inside F if:

(i) it is possible to find numbers 5 > 0 and J; > 0 such that every system
of the form (1), with ||A — A¢|| < ¢ cannot have more than ¢()\g) limit
cycles within the dy—neighborhood of the origin in R?, and

(ii) for any choice of positive numbers € < 9 and § < §p there exists A € R™
satisfying ||A — Ag|| < € and such that (1), has c(\p) limit cycles within
the d—neighborhood of the origin in R2.

Finally, we define C(F) = sup {c(\)}.
AeRm

In the sequel we describe the usual approach for the computation of C(F).
N.N. Bautin proved that the return map associated to the OX*—axis can be
written as

M(z,a,\) =z + ZVn(a, Az,
n=1
where each function V,, is an entire function in («, A), the coefficients of equa-
tion (1). Moreover, if a = 0, the function V,, := V,,(\) := V,,(0, A) is a polyno-
mial of degree n — 1, and V; = V5 = 0. S. Yakovenko [15], defined the Bautin
ideal, I, to be the ideal generated by these coefficients; that is,

I=(Va,Vi,...,V,...) €RAL.

Since the family F has finitely many coefficients, A\ € R™  from Hilbert Basis
Theorem, [ is finitely generated and hence there exists a minimum b € N such
that I = (V3, V4, ..., V).

In general, it is difficult to find explicit expressions for the V,,. Usually, instead
of these polynomials, people search for corresponding polynomials v,, such that

vy = V3, and

vp — Vi € (Va, Vi, oo, V1) = (U3, 04y« .., Uy 1), fOr m > 4.
The method that we develop to obtain an expression for v,, (see Theorem 2.8)
implies that for each [ > 2, vy; = 0, or in other words that

Vo € (vs, 05, ..., 09-1).

We call the polynomials v,, the Lyapunov constants of (1).

We consider the set {vs,vs,...,v9r41} where 2L +1 = b and we eliminate
from this set the polynomial vy if very1 € (v3,v5,...,v9_1). In this way, we
obtain I = (Vg 41, Vapy 41, - - Vag+1)- 1t is easy to see that B does not depend
on the choice of v,, and we call it the Bautin number of F, B(F) = B. In this
situation,

B(F)
M@, 0,0) =2+ ) vy 02™ ' (1+0(2)). 2)
j=1

For fixed A = Ao, the return map in a neighborhood of the origin is either
[(z,0, ) = z or TI(x,0, \g) = T+ v2x41( M) KT (1+O0(x)), with var11(Ng) #
0. This K is called the order of the origin as a weak focus of (1)a=0,1=),- It is
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clear that the maximum order of the origin inside our family is smaller or equal
than Ig(#) (this value is not always attained, see Proposition 5.2).

Note that from expression (2) and the works of R. Roussarie [13], or C. Zuppa
[16], it is easy to see that the cyclicity of the origin for our family, C(F), is also
bounded above by B(F) — 1 (B(F) varying also a). If vg;, 11, ..., Vaig ;- +1 Can
take arbitrary values, then

C(F)=B(F)-1. (3)
This is the situation for the families F = Hy, H3, and L,,, defined as follows:
(i) My, the family of vector fields with homogeneous nonlinearities, whose
members are differential equations
y = T+ Qn (l‘, y)
where P, and @), are homogeneous polynomials of degree n > 1, and
(ii) L,, the family of Liénard systems given by
T = —y—l—pn(a:), (4)
y =
where p,(x) is a polynomial of degree n without constant and linear terms.
In fact, C(H2) = 2, C(H3) = 4, and C(L,) = [%2], where [ ] denotes the

2
integer part function. These values are calculated in [1], [14], and [2, 16], respec-

tively. We want to stress that (3) is not always true as shown in Proposition 5.2
where there is a family with C(F) = 2 and B(F) = 4.

From now on, we consider families F of the form (1), with o = 0, for which
p and q satisfy

p(z,y,a+bp) = ap(x,y,\) +bp(x,y, 1),
q(z,y,aX +bp) = aq(z,y,\) +bg(z,y, 1),

for all A, u € R™ and a,b € R. Notice that this is true for #, and L,.
We define the k-th order Melnikov number of F, MF¥(F), as the maximum

number of limit cycles for system
T = _Hy —|—p(fL’, Y, )\k(g))a
y = Hx+q(x7y7 )‘k(g))a
which bifurcate from the closed orbits of H = $(z? + y?) = h, when ¢ is small
enough and A\z(g) = A\ie + Xog? + - - + M\ieF, varying \; € R™ fori = 1,...,k,.
Note that the above differential equation is equivalent to
T = _Hy+€p(xaya)‘1)+€2p(xaya)‘2)+'“+€kp(xaya)‘k)a (5)
y - HZE + 8(](113', Y, )\1) + 5QQ($, Y, )\2) +oeeet SkQ(aja Y, )\k)
From Poincaré’s work it is well known that the first Melnikov number, M (F),
coincides with the maximum number of positive simple zeros of

Li(p) = /H_ (p(z,y, M)dy — q(z,y, \)dx).
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In Theorem 2.2 we give a generalization of J.P. Francoise’s results [5] (see also
[13, Chap. 4]) which allows us to compute the first nonzero term, L(p), of the
e-expansion of the return map associated with system (5) and the OX T-axis so
that

L(p,e) = p+"Li(p) + O(eF11).
Furthermore, we prove that Ly (p) is a polynomial in p.
For each £ € N, define M’“(}') to be one less than the number of nonzero

p—monomials that appear in L (p). In general, M*(F) < MF(F). As far as we
know there are few results about the computation of M*(F). In [3] all M*(#,)
are computed and it is proved that M*(#H,) = 2 for k > 6. In [11] it is proved
that M'(L,) = [252].
If
M(F) := sup MF(F) € NU {0}
keN
and F is a family with a bounded number of limit cycles, then

M(F) = M*(F)

for some ko and all k& > ko since M*(F) does not decrease with k. We also
define

M (F) = sup M*(F).
keN

In general M(F) < M(F). When we can guarantee that the coefficients of
Li(p) are such that it has at least as many zeros as one less than coefficients
then M(F) = M(F).
Remark 1.1. A more general perturbation of & = —H,, y = H,, than (5) would
be

T = —Hy+ep(z,y,\)+ep(z,y, Ao) + -+ cppr(x, v, Ak, (6)

gy = Hp+eq(r,y, ) +eaq(n,y, Ao) + -+ epqe(r,y, Ar),
where €; are small parameters and \; € R™ for v = 1,2,...,k. Note that if
we know M(F) for some family F, this number also bounds the number of
limit cycles that bifurcate from the level curves of H = %(xQ + y?) for each
perturbation of the form (6) where (€1,€9,...,€;) is on some analytic curve in
R passing through zero.

The goal of this paper is to determine the numbers B(F), C(F), MF(F),
MP*(F) and M(F) for several families .
Our first result is a complete solution of our problem for polynomial Liénard
systems.
Theorem A. Consider the family of Liénard differential equations, L, defined
by
T = —y+p, (x)a
y = Z,
where the polynomial p,(x) has no constant or linear terms. If k > 1, then

B(L,) — 1 = C(L,) = M(L,) = MF(L,) — {” . 3] .
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Observe that the above result reinforces the well-known Lins-Melo-Pugh
Conjecture that [252] is the maximum number of limit cycles for system (4)
(see also Remark 1.1).

On the other hand, we have the following result that reduces the relation

between the Melnikov and Bautin numbers for H,, to an algebraic problem.

Theorem B. Let vy for k > 1, be the Lyapunov constants of the system H,,
given by

g =  o+Qury)
where P, and @, are homogeneous polynomials of degree n. Assume that the

ideal generated by the Lyapunov constants veri1 @S generated by the first M
nonzero constants, i.e.

(U, Van—1s -+ s Unin—1)s - - -) = (Vny Van—15 - - Up e M(n—1))
if n 1s odd;
(UQn—l, U4n—35 - -+ » Unt(25—1)(n—1), - - > = (UQn—l, U4n—35-- -, Un+(2M—1)(n—1)>
if n 1s even; and that these constants vy can take arbitrary values. Then,
B(H,) —1=C(H,) = M(H,).
For n = 2 Bautin [1] proved that

<U3,U5a ceey U2k41y - > = <U3,U5,U7>;

and for n = 3 K.S. Sibirskii [14] proved that

<U37 Usy - ooy U241, - - > = <U37 Us, U7, V9, U11>-

In both cases expressions for the constants were given. Hence we have the
following corollary of the above theorem.

Corollary C. For the family ‘H, of differential equations with homogeneous
nonlinearities of degree n,

M (H,) = C(Hs) = 2,
M(H;) = C(Hs) = 4.

In Section 4 we will prove Theorem 4.1; it give results analogous to Theorem B
for several different families.

In Section 2 we give a generalization of the Francoise algorithm [5], see also
9, 10, 12, 13]. This result is useful to get the Poincaré-Melnikov functions and
the Lyapunov constants, see Theorem 2.8. Finally, Theorem 2.3 is the main
tool to relate the number of small and big limit cycles, and hence to prove
Theorems A and B.

This work was motivated by a guest for a family F where M(F) is different
than C(F). However, we have not been able to construct such a family. In fact,
in all cases for which we have obtained both numbers, they coincide.
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2. GENERAL FRANCOISE’S ALGORITHM

Consider the differential equation given by

dH + cw =0, (7)
where H(z,y) = 3(2* + y?) and w is an analytic 1-form. In every compact
region containing the origin, and for ¢ sufficiently small, it is possible to define,
given a transversal section X, the map L which associate to each point p of ¥

the first return L(p, e) induced by the flow of system (7):

L:p— L(p,¢).

By choosing H(z,y) as a parametrization of ¥, L can be expanded as a series:
L(p,e) = p+eLi(p) + €2 La(p) + - - - + " Li(p) + O("H). 8)

Poincaré already proved that the first derivative of L(p,¢) with respect to ¢, at

e=01is
Ll(p):—/ w.
H=p

This last integral expression is sometimes called first Poincaré-Melnikov func-
tion. Francoise in [5] developed a new method to compute the first nonzero
term in the expansion with respect to € of L(p,£). The next theorem states his
main result.

Theorem 2.1. Let L denote the return map associated with the solution of sys-
tem (7) and the transversal section 3. If L is given as the series (8) and L1(p) =
-+ = Lg_1(p) = 0, then there exist polynomials gy,...,g9x—1 and Sy,...,Sk 1
such that —w = gudH+dS1, —giw = godH+dSs, ..., —gp_ow = gr_1dH+dS;_1,

and
Lk(ﬂ) = —/ Gk—1W.
H=p

We remark that the definition of g; in Theorem 2.1 does not coincide exactly
with the definition in [5]; they differ by a minus sign. We have made this
inessential change to have a simpler statement of the following generalization.

Theorem 2.2. Let L(p,e) = p+cLi(p) +2La(p) + - - - + ¥ Ly (p) + O (") be
the return map associated with the differential equation

dH + cwy + 2wy + -+ efwp + - =0 (9)

and the transversal section 3. If Li(p) = -+ = Li_1(p) = 0, then there exist
polynomials hg = 1, hy,..., hy_1, and Sy, ..., Sk_1 such that

= Wil = hpdH + dS,,
7=1

for eachm=1,...,k—1 and

Lip = | S
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The proof of the above Theorem uses the same ideas as in the proof of
Theorem 2.1 (see also [9, 10, 12, 13]).

Theorem 2.2 gives an algorithm which allows us to determine the Melnikov
number at every order. In other words we have, at least theoretically, a method
to determine M*(F), and sometimes MF(F).

The above two theorems can be related. In fact, we will prove that the
computation of the derivatives of a general perturbation of dH = 0, as in
(9), can be obtained from the expressions given in Theorem 2.1 for system
(7). Hence both results are equivalent. This fact is formalized in the next
theorem. Before we state it, we note that our proof of the equivalence is based
on Theorem 2.2; and our computations for concrete families seem to show that
the use of Theorem 2.2 is in general more efficient than the use of Theorem 2.1.
Hence, from our point of view, the next theorem is more useful theoretically
than computationally.

Theorem 2.3. For k € N, let
L0 (p.2) = p-+ L0(p) + 2L () + -+ L (p) + O(H)

be the return map (8) associated with the dzﬁerentzal equation dH + cw = 0.
(Since Lg- )( ) depends on w, we will denote it by L( (p,w).) Also let

L®(p,e) = p+ L (p) + 2L (p) + -+ - + " LY (p) + O(F*Y)

be the return map associated with the differential equation (9).
Also, suppose that w;, j = 1,2,...,k, are arbitrary 1-forms and n is a positive
integer. If w = wy +cwy + -+ + e Lwp + O(e¥) and

k=0

then .
LP(p) = Lu—ki(p)
k=0

This last result is the key point for this paper; it will allow us to relate the
two problems under consideration. Before we use it, we need to prove some
preliminary results.

As in [6], we can decompose a real polynomial 1-form in a very useful way to

compute [ ey W

Lemma 2.4. Let w be a real polynomial 1-form,

w= E ;22 dz + E a7 2 dz,
and suppose that w is decomposed as follows:
wp, = E aj,kzjfkdz + E Ej,k?zkdi, and
k—j#1 k—j#1
W) = W — Wy.

Then there exist polynomials h and S such that
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(i) w=w; + wp,

(ZZ) fH:pwEfH:pwl,
(iii) —wy = hdH + dS.

Proof. From the definition of w;, and w;, the proof of (i) is a simple verification.
To prove (ii), we have to see that fH:p wp, = 0. Note that the expression

- E a]kz]z +— g a]kzj

k J#1 . —j#1

has no terms of the form (2%)*. This fact, as in [5], allows us to prove the
existence of a polynomial function h such that d(—wy) = d(hdH). Hence, there
is a polynomial S satisfying —w;, = hdH + dS. O

In our study of Liénard differential equations we need a more restrictive
version of the above lemma in polar coordinates. We state it in the following
remark.

Remark 2.5. Let w be a I-form expressed in polar coordinates (r,0) as
w = a(r,0)dr + p(r,0)do

where o and B are 2w -periodic analytic functions in @ and H = 1r?. If fH pw =

0, then there exists a function h given by h(r,0) fo (‘9—0‘ — —) dvy such

that d(w) = d(hdH), or in other words, there exist functions h(r,0) and S(r,0)
such that —w = hdH + dS.

Note that Lemma 2.4 allows us to give the following definition:

Definition 2.6. For a sequence of polynomial 1-forms, wq,ws, ws, ..., we define
the following sequence of associated polynomials:

li(p) = — /FI:pwl,

bp) == [t bun),
H=p
where —(wy)y, = hidH + dSy, and

lk(p) = — /H:p (22 hkj%’) )

where — (Z hmjwj> = hpdH +dS,,, form=1,...,k—1, and hy = 1.
Jj=1 h
Remark 2.7. (i) In the above definition, and in contrast with Frangoise’s

method, the condition fH:pw = 0 is not needed to associate the functions
h and S with w.
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(i1) If the above 1-forms, wy, coincide with those in Theorem 2.2, and further-
more if l1(p) = la(p) = -+ = lxg_1(p) = 0, then the return map associated
with ¥ for system (9) can be written as

L(p,e) = p+e¥li(p) + O(e" ).

In other words, Li(p) = -+ = Li_1(p) =0 and Li(p) = lx(p).

Proof of Theorem 2.3. In order to simplify the notation in this proof let us
denote by dS every 1-form w such that dw = 0. For instance, we will write
dS +dS =dS.

We will prove the theorem by induction. Consider first the case n = 1. From
Theorem 2.1 we know that Lgl)(p) = — fH:pw. Hence, by using the (h,1)-de-
composition given in Definition 2.6 we have that w = wy, + w;. Replacing w by
Ww=w; +ews+---, we get

Lgl)(s):—/ (w1+5w2+---):—/ wl—e/ Wy — -
H=p H=p H=p

:—/ wu—a/ wo —--=Lig+elyg+---.
H=p H=p

Furthermore, from the equality —w;, = hidH + dS, we get
—Wip — EWop — = = hl(S)dH + dS = (hl’o + 8h11 + - )dH + ds.

By equating the terms of their € expansions, we obtain that —w;;, = hy ;_1dH +
dS for each j € N.
Hence, from Theorem 2.2, it follows that

LY (p) = —/ wr = —/ wi = Lip.
H:p H:p

Furthermore, because —wy; = BldH + dS, we have that Bl = hy . Hence the
theorem follows for n = 1.

Before we consider the general case, to clarify the proof let us study the case
n=2.

From Theorem 2.1 we have that Lél)(p) = —fH:p why. By applying the
(h,l)-decomposition to hjw, it follows that hijw = (hjw), + (hiw);. Putting
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w=wi +Ecws+ -+ we get

Lgl)(&‘):—L (w1+8w2+---)(h1’0+5h1’1+...)
=p

= —/ wihio — 5/ (wahio + wihig)
H=p H=p

— 52/ (wshi,0 +wohi g +wihy2) — - -
H=p

= —/ (wihio) — 5/ (wahi,0 + wihig);
H=p H=p
- 52/ (wshio + wohy1 +wihyg) — - -
H=p

= Lyo+clyy + 52L2,2 +ee

On the other hand, by using the equality —(hiw), = hedH +dS, by substituting
in this last equation the expression of w, and by equating the £ terms, we find

that
J
— <Z wj+1_kh1,k> = hg,jdH + dS,
k=0 h

for every j € N.
Define hy := hy and use Theorem 2.2 to see that

LgQ)(P) = - /H (wo +wihy) = — /H (wo + wihy); = L1y + Lag.
=p =p

Also, from the above decomposition we have that —(wy+w; ﬁl)h = hy 1 dH+dS+
hoodH 4dS = (hi 1+ hyo)dH +dS = hodH +dS, and therefore hy = hy  + hoy.
Hence our result follows for n = 2.

In order to consider the general case, we will make the following induction
hypothesis:

k—1
he =Y hijj,
=0
- ( > wphk,q> = hgy1j1dH +dS for j =1,...,k, and,
h

p+q=j
Lk’j T / < Z wphk_LQ) fOI' J = 07 ey ka
H=p
l

pta=j+1
fork=1,...,n.
To prove it, first substitute w = wy + cws + - - - in the equality

Lho == [ wh,
H=p
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(which follows from Theorem 2.1) and note that

L) (p,e) = /H (@1 +2ws + Y (Bng + mae 4 -+
=p

= / (wihno) + 5/ (wohno + wihp1)i
H=p

H=p
+.“+6a/ ( ™ wmmo 4.
H=p \itj=k+1 ;
o
Z n+1k5
k=0

By defining ho = 1 and by using the induction hypothesis and Theorem 2.2, we

have that
LEZQ—l)—l(p) = —/H Z wih; = / Z wiﬁj
p

i+j=n-+1 Pitj=n+1
= [ Conead+ Cnhag) o (M 5 h,J>
H=p i+j=n I
n+1
:_/ down > hy :_/ > wihiy
k=1  itj=n—k+1 | H=p \gtitj=nt1 |
n+1 n+1
/ E g wkhn+1 —i,j = E Ln+2—i,i—1-
- i=1 k+j=1i ! i—=1

Moreover we have that

_( 3 wiﬁj>h=—<§wk > hm)}l( 2 wkhi’j>h

i+j=n+1 k=1 itj=n—k+1 k+itj=n-+1
n+1 n+1
= (Z — Z wkhn+1—i,j> = Z (hnto—ii—1dH + dS)
i=1  kdj=i p o i=l
= hpi1dH + dS.
Hence ian = Y. h;;, and therefore the theorem is proved. O

i+j=n-+1

Theorem 2.2 can also be used to compute the Lyapunov constants for system
(1) with @ = 0. See [8, Theorem A] for a proof of the following result.

Theorem 2.8. The differential equation (1) with o =0 can be written as
dH+u}1+WQ+W3"':0,

where H = %(xQ +y?) and wy = wi(w,y) are homogeneous polynomial 1-forms
of degree k + 1.
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(i) The K-th Lyapunov constant of this differential equation is given by

Vi = WorGEE E wihg—1-

H=p 4

where hg = 1 and, for m=1,...,K — 1, the polynomials h,, are defined
by the recurrence relation

d (i wlhml> = —d(hpndH).

Also,
(1i) vy =0 for l > 2.
It can be seen that, although in the expression of the K-th Lyapunov constant
given in the first statement of the above theorem there appear the variable p,
it cancels once the formula is developed, see again [8].

3. LIENARD EQUATIONS

Consider a new family F = G,,, which includes the Liénard differential equa-
tions L,. This family is given by the differential equations

i = —y+aXi(r,y)+ Xo(z,y) + a3 Xz(7,y) + - + a Xn(z,9),
y = x—i—alYI(x,y)ﬂLYg(x,y)+a31/},(:1:,y)++anYn(x,y),

where X;(x,y) and Yj(x,y) are homogeneous polynomials of degree i. Further-
more, Xoj(—2,y) = Xoj(z,y) and Ys;(—z,y) = —Y3;(z,y) for each j =1,2,...
Here a, = 1 if n is even. Note that if ay = a3 =+ = aggy; = -+ = 0, then the
origin of (10) is a reversible center.

Theorem 3.1. Let G, denote the family of differential equations defined in
(10). Then M(G,) = [%51], where | ] denotes the integer part function.

As an easy corollary of the above result we can prove Theorem A.

Proof of Theorem A. Consider the subfamily F, C G, given by the Liénard
equations, where (X;(z,v),Y;(z,y)) = (b;2?,0) for j = 1,..., and by = 1
for j > 0. Taking a; = 0,(remember that F,, has no linear terms) we get that
M(L,) = [3°]. m

2

(10)

Let us prove Theorem 3.1.

Proof of Theorem 3.1. In order to simplify the proof we introduce the operator
X that acts on functions of the form f(r,0) = r®cos®#sin®# as follows:

X {Ar®cos’fsin®f: A € R\ {0}} — Nx (Z/2Z)x (Z/2Z),
f — (a,b+c¢,c).
It has the following properties:

(i) x (fg) =x(f) +x(9);

(11) X(ar ) X(f)—(l,o,());

(iii) x ([ fd8) = x (f) + (0,0, 1);

(iv) if x(f) = (*,%,1), then [,_ fdf = 0;
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(v) if x(f) = (*,1,0), then fH:p fdo =0
(vi) if x(f) = (2k,0,0), then fH:p fdO = pFCyy,, with Cyy # 0.

In the above expressions % denotes an arbitrary integer. Furthermore, if f is
given by f =" A% cosb fsin 0, then

f) = Z Aupex(rt cos’ fsinf) = Z Aupela,b+c,c),
and if w = fdr 4+ ¢gdf, then
x(w) = x(f)dr + x(g)do.

Let us start the proof. In polar coordinates the differential 1-form associated
with system (5) is
rdr + ewy +e*wy + -+ =0
where
w; = (cos 0Q;(r cos B, rsin ) — sin OP;(r cosd, 7 sin ) ) dr
— (rcos@P;(rcosf,rsin ) + rsin 0Q;(r cos 6, 7 sin 6))df.
For the family G, given by (10), we have that
Pi(z,y) = a1; X1i(2, y) + Xoi(2,y) + a3, Xzi(z,y) + - + ani Xni(2,9)

and

Qi(z,y) = a1;Y1,i(x,y) + Yoz, y) + a3, Xs (2, y) + -+ + aniYni(2, ).

Let us study how the function y acts on the components of the vector field
defined by system (5). We have that

X(P;) =a1 (1,1, %) +(2,0,0) +as,(3,1,*) + (4,0,0)
o (p 2 )

X(Qi) =a1;(1,1,%) + (2,0,1) + as,(3,1,%) + (4,0,1)

SCIRES Y

2 ’ 2

Hence, for its associated 1-form, we have that
X(w;) = (al,i(l, 0,%) +(2,1,1) + as,(3,0,%) +

1 1) 1— (-
+ Qp (n, +(2 ), *+1> dr

)
+ (al,i(Z,O,*) (3,1,0) + as;(4,0,%) + - -
)

1 " 1—(-1)
—|—am~<n+1, +(2 ), ) dé.
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From Theorem 2.2 and the fact that [ Hep fdr = 0 for every regular function f,
we have that

Lte) = /H_,,wl (1)

= a1,1pCy + a3,1p2C’4 + CL5,1P306 ++ an,lc[(n+1)/2]p[(n+1)/2}7

and hence L;(p) is a polynomial of degree [(n + 1)/2] without constant term.
Choosing suitable values for agy1,1, it is possible to construct examples with
e as small as we like, and with [(n + 1)/2] — 1 = [(n — 1)/2] hyperbolic limit
cycles, as required.

Our objective is to show that for a perturbation of arbitrary order in ¢ all
the polynomials appearing in the computation of the first nonzero Poincaré-
Melnikov function Lg(p) are like (11). In other words, and since by Theorem 2.2

Lo =~ | S oy

=0 =
when Li(p) = La(p) = --- = Ly_1(p) = 0, if we can prove that fH:p hjw; =0
for all even ¢ and j # 0, then L, = fH:p wy for each k and the theorem will
follow. To complete the proof, we will show that L, = fH:p Wk

In the proof of the above fact, we will not take into account the degree with
respect to r of the involved functions h;, because this degree is irrelevant to
prove that some of the integrals that appear are zero. We also introduce the

notation e, (resp. o,) for an arbitrary even (resp. odd) number.
Assume that Li(p) = fH:p wy = 0, that is, a;; = 0 for all .. Remark 2.5

states that if wy = Adr + B1df, then h, = —% + f %dﬁ. Hence, we have
x(h) =(1,1,1) + (3,1,1) + - -+ + (04, 1,1).

It follows that

x(w) =((2,1,1) + (4,1,1) + -+ + (es, 1,1))dr

+((3,1,0) + (5,1,0) + - - - + (04, 1,0)) df,
and
x(hiwi) =((3,0,0) + (5,0,0) + - - - + (04, 0,0))dr
+((4,0,1) + (6,0,1) + - + (e, 0,1))df.

From the properties of the function y;,
/ h1w1 =0
H=p
and

x(h2) = (1,1,1) +(2,0,0) + (3,1,1) + (4,0,0) + - - - + (04, 1, 1) + (€., 0,0).
Hence we can assume as an induction hypotheses that
X(hj) = (lv 17 1) + (2v07 0) + (37 17 1) + (47 an) +eeet (0*7 17 1) + (6*707 0)7
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and
Xw;) =((2,1,1) + (4,1, 1) + -+ (es, 1, 1))dr
+((3,1,0) + (5,1,0) + - - + (0.,1,0))df,

for j = 1,...,k — 1. To get x(hy) and x(wy) we will use again Theorem 2.2.
Hence we have to study x(wg—;h;). We obtain that

X(wk—jh;) =((3,0,0) + (4,1,1) + (5,0,0) + (6,1,1) + - - -
+ (04,0,0) + (ex,1,1))dr

+ ((4,0,1) + (5,1,0) + (6,0,1) + (7,1,0) + - - -
+ (ex,0,1) + (04, 1,0))d8,
and as a consequence, fH:p wi—jh; = 0 for every j = 1,...,k — 1. From the

above equality we have that

Lk = / (wk + wk,1h1 + wk,2h2 + -+ wlhk,l) = / Wg .
H=p H

=p
Therefore, Li(p) has the same expression as L;(p). Furthermore, it is easy to
see that in the case L, = 0, and by using again Remark 2.5, we have

X(hi) = (1,1,1) 4 (2,0,0) + (3,1,1) + (4,0,0) + -+ + (0x, 1, 1) + (€4, 0,0).
and
x(@r) =((2,1,1) + (4, 1,1) + -+ (ea, 1,1))dr
+((3,1,0) + (5,1,0) + - - + (0., 1,0) ) df.

Hence the induction step follows and the proof is complete. O

4. SYSTEMS WITH HOMOGENEOUS NONLINEARITIES

The next theorem implies our result for 4, as stated in Theorem B. We
introduce the following notation:
Given a sequence of polynomials [;(p) € R[p], i € N, we say that they satisfy

the property (Py) if there exist homogeneous polynomials /;(p) € R[p] of degree
ki, i € N, such that

(i) {1(0) = 11(p), _

(i) £(p) = (o) + X2 p () (o) for i 2 2, where py(p) € Rig].

1<t

(111) J = <l1(p)7l2(p)v - '7ln(p)7 - > = <ll(p)v12(p)v . '7lN(p)>v
(IV) ki <ko <. - <kn.

Theorem 4.1. Consider a family of differential equations F and
dH +cw =0, (12)

where w is a differential 1-form, such that (12) is in F. Assume that the
sequence of polynomials ly(p), k > 1, given in Definition 2.6 and associated to
(12), satisfies the property (Py).
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Let L(p,e) = p+eLi(p)+ -+ be the return map associated with the solution
of

dH + cw; + 2wy + - = 0, (13)
where dH + cswy, € F for every k. Then the following holds,

J

L](p) = Zakipkia wh’en’] < Na
1=1
N

L) = Y, whenj > N

i=1

where each ag, is a polynomial whose variables are the coefficients of (13). In
other words, M?(F) = j — 1 for j < N, and MJ(F) = M(F) = N — 1 for
j > N.

Remark 4.2. (i) If we add to the hypotheses of the above theorem, the hypo-
thesis that I;(p) can take arbitrary values, then M(F) = M(F).

(i1) If the family F has finitely many nonzero coefficients, then the Hilbert Ba-
sis Theorem guarantees that the ideal .J is finitely generated. In the above
theorem we also request that it is generated by the first N elements, and
furthermore, that these elements can be replaced by homogeneous polyno-
mials in p, with increasing degrees.

As a corollary of the above result we can prove Theorem B.

Proof of Theorem B. Assume first that n is odd. It is easy to see that the only
nonzero Lyapunov constants are v, ,—1) for 2 > 0. If in equation (13) we take
all w; = 0 except w,_1, then we get, with &, := e"! and using Theorem 2.8,
that there is the following relation between the return map associated to dH +
£1wp—1 = 0 and the Lyapunov constants of dH + w,,_1 =0:

(n+1)+(GE=1)(n—1)
2 .

li(p) = Vns(i—1)(n—1)(2p)

Hence, the polynomials [;(p) are homogeneous in the variable p, with these
degrees, k;, all different. So we can take I;(p) = I;(p). Therefore, from Theo-
rem 4.1 we have as many nonzero coefficients of the polynomial L;(p) as number
of nonzero Lyapunov constants. So, the theorem is proved in this case.

For n even, and using the same computations, we get that the polynomials
[; with 72 odd are zero. So the ideal .J of Theorem 4.1 can be reduced to take
just the polynomials /5;. The proof then follows in a similar way. O
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Proof of Theorem 4.1. From our hypotheses there exist polynomials p;; such
that

llzzla
li:me-l}- forany2=2,..., N,
j<i (14)

N
[; = Zpi,jl} for any 2 > N.

i=1

As in the proof of Theorem 2.3, we substitute w by w = w; +ews +c2wz+- -+,
in the expressions of /;(p) associated to (14). Then the above equalities (14)
are given by

11,0 + 8[1’1 + 5211’2 +---= l~1,0 + 8[1’1 + 52l~1,2 +---.

Hence [, ; = l~1,z~ forany ¢ =0,1,2,..., and

liog+elig+elig+ = (Zi,o + 5[2.’1 +.00)
+ > 00+ pige+ ) o +elin+--).
j<i

After equating the coefficients with the same ¢ power we get the following
equalities:

lip = lNi,0+Zp?,jl~j,Oa

j<i
7 07 17 7 il 7
lin = Lia+ g Piglin +pijlj0 =lig + E P
J<i 0<k<i

0<m<1

In general, for each [; ; we can write:

7 ij 7
lij =lij+ E a4 Dkm,
0<k<1
0<m<j

where the q;jm are again polynomials in the coefficients of the system and p.

Hence we have for lNH similar expression to the expressions for /; ;. Moreover, in
the case i > N, the lNH are zero.

Note that the polynomials l~” are also homogeneous polynomials in p with
the same degree in p, that [; ;, [;, and l;.

From Theorem 2.3 we have that the coefficients of the expansion of the return
map associated to (13) are

20 =Y liilp).

i+j=Fk
i<k



18 ARMENGOL GASULL AND JOAN TORREGROSA

Hence by using the above expressions for the functions /; ;, we get that

1 =l =y,

l§2) =loo+ 1, = l~2,0 + q%jgl~1,o + l~1,1,

l:(f) =30+l +1lo= (l~3,0 + qg’:giz,o + qi’,’gl},o) + (i2,1 + ‘Ii’éil,o + Q%%ZII) + l~1,2-

To determine the first nonzero coefficient of the return map, we need to sim-
plify the above expressions under the assumption that the previous ones are
all zero. If ZEQ) = l~1,0 = 0, then ng) = l~2,0 + l~1,1, and since both summands are
homogeneous in p of different degree, 552’ is zero if and only if l~2,0 are l~1,1 also
zero. In this situation l§2) = l~3,0 + l~2,1 + l~1,2.

In general, we can prove that l,(f) = > lNl] when l§2) = 152) =...= l,(il =
0<i+j=k
i<k

0.

Observe that in each step we get a polynomial in p, l,(f), where each of its
monomials in p, [; ;, is an homogeneous polynomial of degree k;. Moreover,
since l~” = 0, for ¢ > n, we have that the polynomial l,(f) for £ > n does not
augment its degree. This fact implies that M’“(]-") =k—1,if k < N and
MF(F) = N — 1, if k > N. Therefore, M(F) < M(F) = N — 1 as we wanted
to prove. O

5. OTHER FAMILIES

This section is devoted to give the numbers M(F) and B(F) for two concrete
families F. The first one is a new application of Theorem 4.1. The second one
does not satisfy the hypotheses of the theorem; we are just able to compute

some values of Mk(f) for small k.

Proposition 5.1. Consider the family F defined by system

T = —y+ar? + azad,
y = x4+ bgr® + byt

Then M(F) = C(F) =1, and B(F) = 2.

Proof. Its first Lyapunov constants are vy = 3”a3 and vs = —Zasby. Further-

more, there are two set of solutions of the system vg = v5 = 0: {a3 = by = 0}
(reversible centers) and {as = a3 = 0} (potential centers).

It is not difficult to see that the ideal (a3, azbs) is radical. From this fact we
have that I = (vs,v5) and so B(F) = 2.

On the other hand, following the notation of Theorem 4.1 we have that
l1 = 3asmp® and l2 = —2aybymp>. Since if ll = l2 = 0, then a3 = axby = 0, by
using the above classification of the centers of F, we have that dH 4+ cw = 0
has a center for each €. Then lNJ =0 for j > 3 if l~1 = l~2 = (). Hence we can
apply Theorem 4.1, the radicality of (vs, vs), and the fact that I, = Tvsp? and

Iy = tvsp® to conclude that J = (I;,l,) and M(F) = B(F) — 1. From the
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fact that as and asby can take arbitrary values it follows that M(F) = M(F).

Finally, it is easy to see that C(F) = 1. O
Proposition 5.2. Consider the family, F, defined by
T = —y+ar? + aza?,
J o= x4 by’ + by’
Then B(F) = 4, C(F) = 2, the mazimum order of the origin as a weak focus
0 ifk=1,2,

is 3 and MF(F) =<1 ifk=3,4,5,
2 ifk=6,7,...10.

Proof. Tts first Lyapunov constants are

3T
V3 = Z(bg + a3),
T
Vs = —ﬁ(ag — bg)(6b202 + 5b3),
o
vr = ——-bs(az — b)),
3827
Vg = — 198 aébg(ag — b%)

In [7] it is proved that if v3 = vs = v; = 0, then the origin of F is a center.
Since vy is not zero when {vz = vs = v; = 0} in Clag, bo, a3, b3], it follows that

<U37 Us, U7> 7£ <U37 Vs, U7, U9>-
Furthermore, the fact that (vs,vs,v7,v9) is a radical ideal (this is tested by
using the algebraic package MAGMA), and the fact that its zero set coincides
with the set of centers of F, we have that, for n > 10, v, € rad(vs, vs,v7,v9) =
(vs, s, U7, v9) and hence B(F) = 4.
Note also that on any real solution of v3 = vs = v7 = 0, vg is also 0. Then
the maximum order of the origin is 3.
The fact that vs, vs,v; can take arbitrary values and v;vg > 0 implies that
C(F)=2.
On the other hand, to compute the Melnikov number we have to study the
expression for the return map associated to dH + cw = 0. We obtain that
I = 31 (b3 + a3)p’,

12 == 0,

~ o

I3 = gbs(ag — b3)p’,

Iy = —2mazby(a2 — b2)p°.

Since the degrees in p of I3 and Iy coincide, we can not apply Theorem 4.1
So we study directly the equation dH + cw + g2w + -+ = 0 and we get the
values of MF(F) given in the statement. We do not give here the details of the
computations due to their length. O
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