
A RELATION BETWEEN SMALL AMPLITUDE AND BIG

LIMIT CYCLES.

ARMENGOL GASULL AND JOAN TORREGROSA

Abstra
t. There are two well known methods for generating limit 
y
les

for planar systems with a non degenerate 
riti
al point of fo
us type: the

degenerate Hopf bifur
ation, and the Poin
ar�e-Melnikov method; that is, the

study of small perturbations of Hamiltonian systems. The �rst one gives the

so 
alled small amplitude limit 
y
les, while the se
ond one gives limit 
y
les

whi
h tend to some 
on
rete periodi
 orbits of the Hamiltonian system when

the perturbation goes to zero (big limit 
y
les for short). The goal of this

paper is to relate both methods. In fa
t, in all the families of di�erential

equations that we have studied both methods generate the same number of

limit 
y
les. The families studied in
lude Li�enard systems and systems with

homogeneous nonlinearities.

1. Introdu
tion and Main Results

One of the most interesting and diÆ
ult problems in the theory of planar

di�erential equations is the 
ontrol of the number of limit 
y
les that a di�er-

ential equation or a family of di�erential equations 
an have. Two well-known

methods used for generating limit 
y
les and hen
e for giving lower bounds

for this number for a given family are: Degenerate Hopf bifur
ation and the

Poin
ar�e-Melnikov method; that is, the study of perturbations of Hamiltonian

systems.

Although the above two methods are usually 
onsidered as independent there

has been several attempts to relate both for 
on
rete families of di�erential

equations. See the results of [3℄ on quadrati
 systems and the results of [4℄ on

Li�enard systems.

The main goal of this paper is to relate both approa
hes when we study the

number of limit 
y
les surrounding a nondegenerate 
riti
al point. To be more

pre
ise we need to introdu
e some notation.

Let F be a family of systems of the form

_x = �x� y + p(x; y; �);

_y = x+ �y + q(x; y; �);

(1)

where � 2 R

m

and the lowest order terms of the analyti
 fun
tions p(x; y; �)

and q(x; y; �) are se
ond order.
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Remember that when � = 0 it is said that F has a weak fo
us at the origin.

We say that a weak fo
us at the origin of (1)

�

0

has 
y
li
ity 
(�

0

) inside F if:

(i) it is possible to �nd numbers "

0

> 0 and Æ

0

> 0 su
h that every system

of the form (1)

�

with jj� � �

0

jj < "

0


annot have more than 
(�

0

) limit


y
les within the Æ

0

�neighborhood of the origin in R

2

; and

(ii) for any 
hoi
e of positive numbers " < "

0

and Æ < Æ

0

there exists � 2 R

m

satisfying jj� � �

0

jj < " and su
h that (1)

�

has 
(�

0

) limit 
y
les within

the Æ�neighborhood of the origin in R

2

:

Finally, we de�ne C(F) = sup

�2R

m

f
(�)g:

In the sequel we des
ribe the usual approa
h for the 
omputation of C(F):

N.N. Bautin proved that the return map asso
iated to the OX

+

�axis 
an be

written as

�(x; �; �) = x +

1

X

n=1

V

n

(�; �)x

n

;

where ea
h fun
tion V

n

is an entire fun
tion in (�; �); the 
oeÆ
ients of equa-

tion (1). Moreover, if � = 0, the fun
tion V

n

:= V

n

(�) := V

n

(0; �) is a polyno-

mial of degree n � 1; and V

1

= V

2

= 0: S. Yakovenko [15℄, de�ned the Bautin

ideal, I, to be the ideal generated by these 
oeÆ
ients; that is,

I = hV

3

; V

4

; : : : ; V

n

; : : :i 2 R[�℄:

Sin
e the family F has �nitely many 
oeÆ
ients, � 2 R

m

, from Hilbert Basis

Theorem, I is �nitely generated and hen
e there exists a minimum b 2 N su
h

that I = hV

3

; V

4

; : : : ; V

b

i.

In general, it is diÆ
ult to �nd expli
it expressions for the V

n

: Usually, instead

of these polynomials, people sear
h for 
orresponding polynomials v

n

su
h that

v

3

= V

3

; and

v

n

� V

n

2 hV

3

; V

4

; : : : ; V

n�1

i = hv

3

; v

4

; : : : ; v

n�1

i; for n � 4:

The method that we develop to obtain an expression for v

n

(see Theorem 2.8)

implies that for ea
h l � 2; v

2l

= 0, or in other words that

V

2l

2 hv

3

; v

5

; : : : ; v

2l�1

i:

We 
all the polynomials v

n

the Lyapunov 
onstants of (1).

We 
onsider the set fv

3

; v

5

; : : : ; v

2L+1

g where 2L + 1 = b and we eliminate

from this set the polynomial v

2l+1

if v

2l+1

2 hv

3

; v

5

; : : : ; v

2l�1

i: In this way, we

obtain I = hv

2l

1

+1

; v

2l

2

+1

; : : : ; v

2l

B

+1

i. It is easy to see that B does not depend

on the 
hoi
e of v

n

; and we 
all it the Bautin number of F ; B(F) = B: In this

situation,

�(x; 0; �) = x +

B(F)

X

j=1

v

2l

j

+1

x

2l

j

+1

(1 +O(x)): (2)

For �xed � = �

0

; the return map in a neighborhood of the origin is either

�(x; 0; �

0

) � x or �(x; 0; �

0

) = x+v

2K+1

(�

0

)x

2K+1

(1+O(x)), with v

2K+1

(�

0

) 6=

0. This K is 
alled the order of the origin as a weak fo
us of (1)

�=0;�=�

0

. It is
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lear that the maximum order of the origin inside our family is smaller or equal

than l

B(F)

(this value is not always attained, see Proposition 5.2).

Note that from expression (2) and the works of R. Roussarie [13℄, or C. Zuppa

[16℄, it is easy to see that the 
y
li
ity of the origin for our family, C(F), is also

bounded above by B(F)� 1 (B(F) varying also �). If v

2l

1

+1

; : : : ; v

2l

B(F)

+1


an

take arbitrary values, then

C(F) = B(F)� 1: (3)

This is the situation for the families F = H

2

;H

3

; and L

n

, de�ned as follows:

(i) H

n

; the family of ve
tor �elds with homogeneous nonlinearities, whose

members are di�erential equations

_x = �y + P

n

(x; y);

_y = x+Q

n

(x; y)

where P

n

and Q

n

are homogeneous polynomials of degree n > 1, and

(ii) L

n

; the family of Li�enard systems given by

_x = �y + p

n

(x);

_y = x

(4)

where p

n

(x) is a polynomial of degree n without 
onstant and linear terms.

In fa
t, C(H

2

) = 2; C(H

3

) = 4; and C(L

n

) =

�

n�3

2

�

; where [ ℄ denotes the

integer part fun
tion. These values are 
al
ulated in [1℄, [14℄, and [2, 16℄, respe
-

tively. We want to stress that (3) is not always true as shown in Proposition 5.2

where there is a family with C(F) = 2 and B(F) = 4:

From now on, we 
onsider families F of the form (1), with � = 0, for whi
h

p and q satisfy

p(x; y; a�+ b�) = ap(x; y; �) + bp(x; y; �);

q(x; y; a�+ b�) = aq(x; y; �) + bq(x; y; �);

for all �; � 2 R

m

and a; b 2 R. Noti
e that this is true for H

n

and L

n

:

We de�ne the k-th order Melnikov number of F , M

k

(F), as the maximum

number of limit 
y
les for system

_x = �H

y

+ p(x; y; �

k

("));

_y = H

x

+ q(x; y; �

k

("));

whi
h bifur
ate from the 
losed orbits of H =

1

2

(x

2

+ y

2

) = h, when " is small

enough and �

k

(") = �

1

"+ �

2

"

2

+ � � �+ �

k

"

k

, varying �

i

2 R

m

for i = 1; : : : ; k;.

Note that the above di�erential equation is equivalent to

_x = �H

y

+ "p(x; y; �

1

) + "

2

p(x; y; �

2

) + � � �+ "

k

p(x; y; �

k

);

_y = H

x

+ "q(x; y; �

1

) + "

2

q(x; y; �

2

) + � � �+ "

k

q(x; y; �

k

):

(5)

From Poin
ar�e's work it is well known that the �rst Melnikov number,M

1

(F),


oin
ides with the maximum number of positive simple zeros of

L

1

(�) :=

Z

H=�

(p(x; y; �

1

)dy � q(x; y; �

1

)dx):
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In Theorem 2.2 we give a generalization of J.P. Fran�
oise's results [5℄ (see also

[13, Chap. 4℄) whi
h allows us to 
ompute the �rst nonzero term, L

k

(�), of the

"-expansion of the return map asso
iated with system (5) and the OX

+

-axis so

that

L(�; ") = � + "

k

L

k

(�) +O("

k+1

):

Furthermore, we prove that L

k

(�) is a polynomial in �:

For ea
h k 2 N ; de�ne

f

M

k

(F) to be one less than the number of nonzero

��monomials that appear in L

k

(�): In general, M

k

(F) �

f

M

k

(F): As far as we

know there are few results about the 
omputation ofM

k

(F): In [3℄ allM

k

(H

2

)

are 
omputed and it is proved that M

k

(H

2

) = 2 for k � 6. In [11℄ it is proved

that M

1

(L

n

) =

�

n�3

2

�

.

If

M(F) := sup

k2N

M

k

(F) 2 N [ f1g

and F is a family with a bounded number of limit 
y
les, then

M(F) =M

k

0

(F)

for some k

0

and all k � k

0

sin
e M

k

(F) does not de
rease with k. We also

de�ne

f

M(F) = sup

k2N

f

M

k

(F):

In general M(F) �

f

M(F). When we 
an guarantee that the 
oeÆ
ients of

L

k

(�) are su
h that it has at least as many zeros as one less than 
oeÆ
ients

then M(F) =

f

M(F).

Remark 1.1. A more general perturbation of _x = �H

y

; _y = H

x

than (5) would

be

_x = �H

y

+ "

1

p(x; y; �

1

) + "

2

p(x; y; �

2

) + � � �+ "

k

p

k

(x; y; �

k

);

_y = H

x

+ "

1

q(x; y; �

1

) + "

2

q(x; y; �

2

) + � � �+ "

k

q

k

(x; y; �

k

);

(6)

where "

i

are small parameters and �

i

2 R

m

for i = 1; 2; : : : ; k. Note that if

we know M(F) for some family F , this number also bounds the number of

limit 
y
les that bifur
ate from the level 
urves of H =

1

2

(x

2

+ y

2

) for ea
h

perturbation of the form (6) where ("

1

; "

2

; : : : ; "

k

) is on some analyti
 
urve in

R

k

passing through zero.

The goal of this paper is to determine the numbers B(F), C(F),

f

M

k

(F),

M

k

(F) and M(F) for several families F :

Our �rst result is a 
omplete solution of our problem for polynomial Li�enard

systems.

Theorem A. Consider the family of Li�enard di�erential equations, L

n

, de�ned

by

_x = �y + p

n

(x);

_y = x;

where the polynomial p

n

(x) has no 
onstant or linear terms. If k � 1, then

B(L

n

)� 1 = C(L

n

) =M(L

n

) =M

k

(L

n

) =

�

n� 3

2

�

:
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Observe that the above result reinfor
es the well{known Lins-Melo-Pugh

Conje
ture that

�

n�3

2

�

is the maximum number of limit 
y
les for system (4)

(see also Remark 1.1).

On the other hand, we have the following result that redu
es the relation

between the Melnikov and Bautin numbers for H

n

to an algebrai
 problem.

Theorem B. Let v

2k+1

for k � 1, be the Lyapunov 
onstants of the system H

n

given by

_x = �y + P

n

(x; y);

_y = x+Q

n

(x; y)

where P

n

and Q

n

are homogeneous polynomials of degree n: Assume that the

ideal generated by the Lyapunov 
onstants v

2k+1

is generated by the �rst M

nonzero 
onstants, i.e.

hv

n

; v

2n�1

; : : : ; v

n+i(n�1)

; : : :i = hv

n

; v

2n�1

; : : : ; v

n+M(n�1)

i

if n is odd;

hv

2n�1

; v

4n�3

; : : : ; v

n+(2j�1)(n�1)

; : : :i = hv

2n�1

; v

4n�3

; : : : ; v

n+(2M�1)(n�1)

i

if n is even; and that these 
onstants v

k


an take arbitrary values. Then,

B(H

n

)� 1 = C(H

n

) =M(H

n

):

For n = 2 Bautin [1℄ proved that

hv

3

; v

5

; : : : ; v

2k+1

; : : :i = hv

3

; v

5

; v

7

i;

and for n = 3 K.S. Sibirskii [14℄ proved that

hv

3

; v

5

; : : : ; v

2k+1

; : : :i = hv

3

; v

5

; v

7

; v

9

; v

11

i:

In both 
ases expressions for the 
onstants were given. Hen
e we have the

following 
orollary of the above theorem.

Corollary C. For the family H

n

of di�erential equations with homogeneous

nonlinearities of degree n;

M(H

2

) = C(H

2

) = 2;

M(H

3

) = C(H

3

) = 4:

In Se
tion 4 we will prove Theorem 4.1; it give results analogous to Theorem B

for several di�erent families.

In Se
tion 2 we give a generalization of the Fran�
oise algorithm [5℄, see also

[9, 10, 12, 13℄. This result is useful to get the Poin
ar�e-Melnikov fun
tions and

the Lyapunov 
onstants, see Theorem 2.8. Finally, Theorem 2.3 is the main

tool to relate the number of small and big limit 
y
les, and hen
e to prove

Theorems A and B.

This work was motivated by a guest for a family F where M(F) is di�erent

than C(F): However, we have not been able to 
onstru
t su
h a family. In fa
t,

in all 
ases for whi
h we have obtained both numbers, they 
oin
ide.
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2. General Fran
�oise's Algorithm

Consider the di�erential equation given by

dH + "! = 0; (7)

where H(x; y) =

1

2

(x

2

+ y

2

) and ! is an analyti
 1-form. In every 
ompa
t

region 
ontaining the origin, and for " suÆ
iently small, it is possible to de�ne,

given a transversal se
tion �, the map L whi
h asso
iate to ea
h point � of �

the �rst return L(�; ") indu
ed by the 
ow of system (7):

L : � �! L(�; "):

By 
hoosing H(x; y) as a parametrization of �, L 
an be expanded as a series:

L(�; ") = �+ "L

1

(�) + "

2

L

2

(�) + � � �+ "

k

L

k

(�) +O("

k+1

): (8)

Poin
ar�e already proved that the �rst derivative of L(�; ") with respe
t to ", at

" = 0 is

L

1

(�) = �

Z

H=�

!:

This last integral expression is sometimes 
alled �rst Poin
ar�e-Melnikov fun
-

tion. Fran�
oise in [5℄ developed a new method to 
ompute the �rst nonzero

term in the expansion with respe
t to " of L(�; "). The next theorem states his

main result.

Theorem 2.1. Let L denote the return map asso
iated with the solution of sys-

tem (7) and the transversal se
tion �: If L is given as the series (8) and L

1

(�) �

� � � � L

k�1

(�) � 0; then there exist polynomials g

1

; : : : ; g

k�1

and S

1

; : : : ; S

k�1

su
h that �! = g

1

dH+dS

1

, �g

1

! = g

2

dH+dS

2

; : : : ;�g

k�2

! = g

k�1

dH+dS

k�1

,

and

L

k

(�) = �

Z

H=�

g

k�1

!:

We remark that the de�nition of g

k

in Theorem 2.1 does not 
oin
ide exa
tly

with the de�nition in [5℄; they di�er by a minus sign. We have made this

inessential 
hange to have a simpler statement of the following generalization.

Theorem 2.2. Let L(�; ") = �+ "L

1

(�)+ "

2

L

2

(�)+ � � �+ "

k

L

k

(�)+O("

k+1

) be

the return map asso
iated with the di�erential equation

dH + "!

1

+ "

2

!

2

+ � � �+ "

k

!

k

+ � � � = 0 (9)

and the transversal se
tion �: If L

1

(�) � � � � � L

k�1

(�) � 0; then there exist

polynomials h

0

� 1; h

1

; : : : ; h

k�1

, and S

1

; : : : ; S

k�1

su
h that

�

m

X

j=1

!

j

h

m�j

= h

m

dH + dS

m

for ea
h m = 1; : : : ; k � 1 and

L

k

(�) = �

Z

H=�

k

X

j=1

h

k�j

!

j

:
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The proof of the above Theorem uses the same ideas as in the proof of

Theorem 2.1 (see also [9, 10, 12, 13℄).

Theorem 2.2 gives an algorithm whi
h allows us to determine the Melnikov

number at every order. In other words we have, at least theoreti
ally, a method

to determine

f

M

k

(F), and sometimes M

k

(F).

The above two theorems 
an be related. In fa
t, we will prove that the


omputation of the derivatives of a general perturbation of dH = 0, as in

(9), 
an be obtained from the expressions given in Theorem 2.1 for system

(7). Hen
e both results are equivalent. This fa
t is formalized in the next

theorem. Before we state it, we note that our proof of the equivalen
e is based

on Theorem 2.2; and our 
omputations for 
on
rete families seem to show that

the use of Theorem 2.2 is in general more eÆ
ient than the use of Theorem 2.1.

Hen
e, from our point of view, the next theorem is more useful theoreti
ally

than 
omputationally.

Theorem 2.3. For k 2 N ; let

L

(1)

(�; ") = �+ "L

(1)

1

(�) + "

2

L

(1)

2

(�) + � � �+ "

k

L

(1)

k

(�) +O("

k+1

)

be the return map (8) asso
iated with the di�erential equation dH + "! = 0:

(Sin
e L

(1)

j

(�) depends on !; we will denote it by L

(1)

j

(�; !):) Also let

L

(2)

(�; ") = �+ "L

(2)

1

(�) + "

2

L

(2)

2

(�) + � � �+ "

k

L

(2)

k

(�) +O("

k+1

)

be the return map asso
iated with the di�erential equation (9).

Also, suppose that !

j

, j = 1; 2; : : : ; k; are arbitrary 1-forms and n is a positive

integer. If ! = !

1

+ "!

2

+ � � �+ "

k�1

!

k

+O("

k

) and

L

(1)

n

(�; !) = L

(1)

n

(�; !

1

+ !

2

"+ � � � ) =

1

X

k=0

L

n;k

(�)"

k

;

then

L

(2)

n

(�) =

n�1

X

k=0

L

n�k;k

(�):

This last result is the key point for this paper; it will allow us to relate the

two problems under 
onsideration. Before we use it, we need to prove some

preliminary results.

As in [6℄, we 
an de
ompose a real polynomial 1-form in a very useful way to


ompute

R

H=�

!.

Lemma 2.4. Let ! be a real polynomial 1-form,

! =

X

�

j;k

z

j

z

k

dz +

X

�

j;k

z

j

z

k

dz;

and suppose that ! is de
omposed as follows:

!

h

=

X

k�j 6=1

�

j;k

z

j

z

k

dz +

X

k�j 6=1

�

j;k

z

j

z

k

dz; and

!

l

= ! � !

h

:

Then there exist polynomials h and S su
h that
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(i) ! = !

l

+ !

h

;

(ii)

R

H=�

! �

R

H=�

!

l

;

(iii) �!

h

= hdH + dS:

Proof. From the de�nition of !

h

and !

l

, the proof of (i) is a simple veri�
ation.

To prove (ii), we have to see that

R

H=�

!

h

� 0: Note that the expression

�

�

�z

X

k�j 6=1

�

j;k

z

j

z

k

+

�

�z

X

k�j 6=1

�

j;k

z

j

z

k

has no terms of the form (zz)

k

: This fa
t, as in [5℄, allows us to prove the

existen
e of a polynomial fun
tion h su
h that d(�!

h

) = d(hdH): Hen
e, there

is a polynomial S satisfying �!

h

= hdH + dS: �

In our study of Li�enard di�erential equations we need a more restri
tive

version of the above lemma in polar 
oordinates. We state it in the following

remark.

Remark 2.5. Let ! be a 1-form expressed in polar 
oordinates (r; �) as

! = �(r; �)dr + �(r; �)d�;

where � and � are 2�-periodi
 analyti
 fun
tions in � and H =

1

2

r

2

: If

R

H=�

! =

0; then there exists a fun
tion h given by h(r; �) = �

1

r

R

�

0

�

��

� 

�

��

�r

�

d su
h

that d(!) = d(hdH); or in other words, there exist fun
tions h(r; �) and S(r; �)

su
h that �! = hdH + dS.

Note that Lemma 2.4 allows us to give the following de�nition:

De�nition 2.6. For a sequen
e of polynomial 1-forms, !

1

; !

2

; !

3

; : : : ; we de�ne

the following sequen
e of asso
iated polynomials:

l

1

(�) = �

Z

H=�

!

1

;

l

2

(�) = �

Z

H=�

(!

2

+ h

1

!

1

) ;

where �(!

1

)

h

= h

1

dH + dS

1

, and

l

k

(�) = �

Z

H=�

 

k

X

j=1

h

k�j

!

j

!

;

where �

 

m

X

j=1

h

m�j

!

j

!

h

= h

m

dH + dS

m

, for m = 1; : : : ; k � 1; and h

0

= 1:

Remark 2.7. (i) In the above de�nition, and in 
ontrast with Fran�
oise's

method, the 
ondition

R

H=�

! � 0 is not needed to asso
iate the fun
tions

h and S with !:
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(ii) If the above 1-forms, !

k

; 
oin
ide with those in Theorem 2.2, and further-

more if l

1

(�) � l

2

(�) � � � � � l

k�1

(�) � 0; then the return map asso
iated

with � for system (9) 
an be written as

L(�; ") = � + "

k

l

k

(�) +O("

k+1

):

In other words, L

1

(�) � � � � � L

k�1

(�) � 0 and L

k

(�) = l

k

(�):

Proof of Theorem 2.3. In order to simplify the notation in this proof let us

denote by dS every 1-form ! su
h that d! = 0: For instan
e, we will write

dS + dS = dS.

We will prove the theorem by indu
tion. Consider �rst the 
ase n = 1: From

Theorem 2.1 we know that L

(1)

1

(�) = �

R

H=�

!: Hen
e, by using the (h; l)-de-


omposition given in De�nition 2.6 we have that ! = !

h

+ !

l

: Repla
ing ! by

! = !

1

+ "!

2

+ � � � , we get

L

(1)

1

(") = �

Z

H=�

(!

1

+ "!

2

+ � � � ) = �

Z

H=�

!

1

� "

Z

H=�

!

2

� � � �

= �

Z

H=�

!

1l

� "

Z

H=�

!

2l

� � � � = L

1;0

+ "L

1;1

+ � � � :

Furthermore, from the equality �!

h

= h

1

dH + dS; we get

�!

1h

� "!

2h

� � � � = h

1

(")dH + dS = (h

1;0

+ "h

11

+ � � � )dH + dS:

By equating the terms of their " expansions, we obtain that �!

jh

= h

1;j�1

dH+

dS for ea
h j 2 N :

Hen
e, from Theorem 2.2, it follows that

L

(2)

1

(�) = �

Z

H=�

!

1

= �

Z

H=�

!

1l

= L

1;0

:

Furthermore, be
ause �!

1h

=

~

h

1

dH + dS; we have that

~

h

1

= h

1;0

: Hen
e the

theorem follows for n = 1:

Before we 
onsider the general 
ase, to 
larify the proof let us study the 
ase

n = 2:

From Theorem 2.1 we have that L

(1)

2

(�) = �

R

H=�

!h

1

: By applying the

(h; l)-de
omposition to h

1

!; it follows that h

1

! = (h

1

!)

h

+ (h

1

!)

l

: Putting
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! = !

1

+ "!

2

+ � � � we get

L

(1)

2

(") = �

Z

H=�

(!

1

+ "!

2

+ � � � )(h

1;0

+ "h

1;1

+ � � � )

= �

Z

H=�

!

1

h

1;0

� "

Z

H=�

(!

2

h

1;0

+ !

1

h

1;1

)

� "

2

Z

H=�

(!

3

h

1;0

+ !

2

h

1;1

+ !

1

h

1;2

)� � � �

= �

Z

H=�

(!

1

h

1;0

)

l

� "

Z

H=�

(!

2

h

1;0

+ !

1

h

1;1

)

l

� "

2

Z

H=�

(!

3

h

1;0

+ !

2

h

1;1

+ !

1

h

1;2

)

l

� � � �

= L

2;0

+ "L

2;1

+ "

2

L

2;2

+ � � � :

On the other hand, by using the equality �(h

1

!)

h

= h

2

dH+dS; by substituting

in this last equation the expression of !, and by equating the " terms, we �nd

that

�

 

j

X

k=0

!

j+1�k

h

1;k

!

h

= h

2;j

dH + dS;

for every j 2 N :

De�ne

~

h

1

:= h

1;0

and use Theorem 2.2 to see that

L

(2)

2

(�) = �

Z

H=�

(!

2

+ !

1

h

1

) = �

Z

H=�

(!

2

+ !

1

~

h

1

)

l

= L

1;1

+ L

2;0

:

Also, from the above de
omposition we have that�(!

2

+!

1

~

h

1

)

h

= h

1;1

dH+dS+

h

2;0

dH+dS = (h

1;1

+h

2;0

)dH+dS =

~

h

2

dH+dS; and therefore

~

h

2

= h

1;1

+h

2;0

:

Hen
e our result follows for n = 2:

In order to 
onsider the general 
ase, we will make the following indu
tion

hypothesis:

~

h

k

=

k�1

X

j=0

h

k�j;j

;

�

 

X

p+q=j

!

p

h

k;q

!

h

= h

k+1;j�1

dH + dS for j = 1; : : : ; k; and,

L

k;j

= �

Z

H=�

 

X

p+q=j+1

!

p

h

k�1;q

!

l

for j = 0; : : : ; k;

for k = 1; : : : ; n:

To prove it, �rst substitute ! = !

1

+ "!

2

+ � � � in the equality

L

(1)

n+1

(�) = �

Z

H=�

!h

n

;
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(whi
h follows from Theorem 2.1) and note that

L

(1)

n+1

(�; ") =

Z

H=�

(!

1

+ "!

2

+ � � � )(h

n;0

+ h

n;1

"+ � � � )

=

Z

H=�

(!

1

h

n;0

)

l

+ "

Z

H=�

(!

2

h

n;0

+ !

1

h

n;1

)

l

+ � � �+ "

k

Z

H=�

 

X

i+j=k+1

!

i

h

n;j

!

l

+ � � �

=

1

X

k=0

L

n+1;k

"

k

:

By de�ning

~

h

0

= 1 and by using the indu
tion hypothesis and Theorem 2.2, we

have that

L

(2)

n+1

(�) = �

Z

H=�

X

i+j=n+1

!

i

h

j

= �

Z

H=�

X

i+j=n+1

!

i

~

h

j

= �

Z

H=�

(!

n+1

)

l

+ (!

n

h

1;0

)

l

+ � � �+

 

!

1

X

i+j=n

h

i;j

!

l

= �

Z

H=�

 

n+1

X

k=1

!

k

X

i+j=n�k+1

h

i;j

!

l

= �

Z

H=�

 

X

k+i+j=n+1

!

k

h

i;j

!

l

= �

Z

H=�

 

n+1

X

i=1

X

k+j=i

!

k

h

n+1�i;j

!

l

=

n+1

X

i=1

L

n+2�i;i�1

:

Moreover we have that

�

 

X

i+j=n+1

!

i

~

h

j

!

h

= �

 

n+1

X

k=1

!

k

X

i+j=n�k+1

h

i;j

!

h

= �

 

X

k+i+j=n+1

!

k

h

i;j

!

h

=

 

n+1

X

i=1

�

X

k+j=i

!

k

h

n+1�i;j

!

h

=

n+1

X

i=1

(h

n+2�i;i�1

dH + dS)

=

~

h

n+1

dH + dS:

Hen
e

~

h

n+1

=

P

i+j=n+1

h

i;j

; and therefore the theorem is proved. �

Theorem 2.2 
an also be used to 
ompute the Lyapunov 
onstants for system

(1) with � = 0: See [8, Theorem A℄ for a proof of the following result.

Theorem 2.8. The di�erential equation (1) with � = 0 
an be written as

dH + !

1

+ !

2

+ !

3

� � � = 0;

where H =

1

2

(x

2

+ y

2

) and !

k

= !

k

(x; y) are homogeneous polynomial 1-forms

of degree k + 1.
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(i) The K-th Lyapunov 
onstant of this di�erential equation is given by

v

K

= �

1

(

p

2�)

K+1

Z

H=�

K�1

X

l=1

!

l

h

K�1�l

where h

0

= 1 and, for m = 1; : : : ; K � 1; the polynomials h

m

are de�ned

by the re
urren
e relation

d

 

m

X

l=1

!

l

h

m�l

!

= �d(h

m

dH):

Also,

(ii) v

2l

= 0 for l � 2:

It 
an be seen that, although in the expression of theK-th Lyapunov 
onstant

given in the �rst statement of the above theorem there appear the variable �,

it 
an
els on
e the formula is developed, see again [8℄.

3. Li

�

enard Equations

Consider a new family F = G

n

; whi
h in
ludes the Li�enard di�erential equa-

tions L

n

: This family is given by the di�erential equations

_x = �y + a

1

X

1

(x; y) +X

2

(x; y) + a

3

X

3

(x; y) + � � �+ a

n

X

n

(x; y);

_y = x+ a

1

Y

1

(x; y) + Y

2

(x; y) + a

3

Y

3

(x; y) + � � �+ a

n

Y

n

(x; y);

(10)

where X

i

(x; y) and Y

i

(x; y) are homogeneous polynomials of degree i: Further-

more, X

2j

(�x; y) = X

2j

(x; y) and Y

2j

(�x; y) = �Y

2j

(x; y) for ea
h j = 1; 2; : : :

Here a

n

= 1 if n is even. Note that if a

1

= a

3

= � � � = a

2k+1

= � � � = 0; then the

origin of (10) is a reversible 
enter.

Theorem 3.1. Let G

n

denote the family of di�erential equations de�ned in

(10). Then M(G

n

) = [

n�1

2

℄; where [ ℄ denotes the integer part fun
tion.

As an easy 
orollary of the above result we 
an prove Theorem A.

Proof of Theorem A. Consider the subfamily F

n

� G

n

given by the Li�enard

equations, where (X

j

(x; y); Y

j

(x; y)) = (b

j

x

j

; 0) for j = 1; : : : , and b

2j+1

= 1

for j � 0: Taking a

1

= 0;(remember that F

n

has no linear terms) we get that

M(L

n

) = [

n�3

2

℄: �

Let us prove Theorem 3.1.

Proof of Theorem 3.1. In order to simplify the proof we introdu
e the operator

� that a
ts on fun
tions of the form f(r; �) = r

a


os

b

� sin




� as follows:

� : fAr

a


os

b

� sin




� : A 2 R n f0gg �! N � (Z=2Z)� (Z=2Z);

f 7�! (a; b + 
; 
):

It has the following properties:

(i) � (fg) = � (f) + � (g) ;

(ii) �

�

�

�r

f

�

= � (f)� (1; 0; 0);

(iii) �

�
R

fd�

�

= � (f) + (0; 0; 1);

(iv) if �(f) = (�; �; 1); then

R

H=�

fd� = 0;
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(v) if �(f) = (�; 1; 0); then

R

H=�

fd� = 0;

(vi) if �(f) = (2k; 0; 0); then

R

H=�

fd� = �

k

C

2k

; with C

2k

6= 0:

In the above expressions � denotes an arbitrary integer. Furthermore, if f is

given by f =

P

A

a;b;


r

a


os

b

� sin




�; then

�(f) =

X

A

a;b;


�(r

a


os

b

� sin




�) =

X

A

a;b;


(a; b+ 
; 
);

and if ! = fdr + gd�; then

�(!) = �(f)dr + �(g)d�:

Let us start the proof. In polar 
oordinates the di�erential 1-form asso
iated

with system (5) is

rdr + "!

1

+ "

2

!

2

+ � � � = 0

where

!

i

=

�


os �Q

i

(r 
os �; r sin �)� sin �P

i

(r 
os �; r sin �)

�

dr

�

�

r 
os �P

i

(r 
os �; r sin �) + r sin �Q

i

(r 
os �; r sin �)

�

d�:

For the family G

n

given by (10), we have that

P

i

(x; y) = a

1;i

X

1;i

(x; y) +X

2;i

(x; y) + a

3;i

X

3;i

(x; y) + � � �+ a

n;i

X

n;i

(x; y)

and

Q

i

(x; y) = a

1;i

Y

1;i

(x; y) + Y

2;i

(x; y) + a

3;i

X

3;i

(x; y) + � � �+ a

n;i

Y

n;i

(x; y):

Let us study how the fun
tion � a
ts on the 
omponents of the ve
tor �eld

de�ned by system (5). We have that

�(P

i

) =a

1;i

(1; 1; �) + (2; 0; 0) + a

3;i

(3; 1; �) + (4; 0; 0)

+ � � �+ a

n;i

�

n;

1� (�1)

n

2

;

1� (�1)

n

2

�

�

;

�(Q

i

) =a

1;i

(1; 1; �) + (2; 0; 1) + a

3;i

(3; 1; �) + (4; 0; 1)

+ � � �+ a

n;i

�

n;

1� (�1)

n

2

;

1� (�1)

n

2

�+1

�

:

Hen
e, for its asso
iated 1-form, we have that

�(!

i

) =

�

a

1;i

(1; 0; �) + (2; 1; 1) + a

3;i

(3; 0; �) + � � �

+ a

n;i

�

n;

1 + (�1)

n

2

;

1� (�1)

n

2

�+1

��

dr

+

�

a

1;i

(2; 0; �) + (3; 1; 0) + a

3;i

(4; 0; �) + � � �

+ a

n;i

�

n + 1;

1 + (�1)

n

2

;

1� (�1)

n

2

�

��

d�:
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From Theorem 2.2 and the fa
t that

R

H=�

fdr = 0 for every regular fun
tion f ,

we have that

L

1

(�) =

Z

H=�

!

1

= a

1;1

�C

2

+ a

3;1

�

2

C

4

+ a

5;1

�

3

C

6

+ � � �+ a

n;1

C

[(n+1)=2℄

�

[(n+1)=2℄

;

(11)

and hen
e L

1

(�) is a polynomial of degree [(n + 1)=2℄ without 
onstant term.

Choosing suitable values for a

2k+1;1

, it is possible to 
onstru
t examples with

" as small as we like, and with [(n + 1)=2℄ � 1 = [(n � 1)=2℄ hyperboli
 limit


y
les, as required.

Our obje
tive is to show that for a perturbation of arbitrary order in " all

the polynomials appearing in the 
omputation of the �rst nonzero Poin
ar�e-

Melnikov fun
tion L

k

(�) are like (11). In other words, and sin
e by Theorem 2.2

L

k

(�) = �

Z

H=�

k

X

j=1

h

k�j

!

j

;

when L

1

(�) � L

2

(�) � � � � � L

k�1

(�) � 0; if we 
an prove that

R

H=�

h

j

!

i

= 0

for all even i and j 6= 0, then L

k

=

R

H=�

!

k

for ea
h k and the theorem will

follow. To 
omplete the proof, we will show that L

k

=

R

H=�

!

k

:

In the proof of the above fa
t, we will not take into a

ount the degree with

respe
t to r of the involved fun
tions h

j

; be
ause this degree is irrelevant to

prove that some of the integrals that appear are zero. We also introdu
e the

notation e

�

(resp. o

�

) for an arbitrary even (resp. odd) number.

Assume that L

1

(�) =

R

H=�

!

1

� 0; that is, a

i;1

= 0 for all i. Remark 2.5

states that if !

1

= A

1

dr +B

1

d�; then h

1

= �

A

1

r

+

R

B

1r

r

d�: Hen
e, we have

�(h

1

) = (1; 1; 1) + (3; 1; 1) + � � �+ (o

�

; 1; 1):

It follows that

�(!

1

) =

�

(2; 1; 1) + (4; 1; 1) + � � �+ (e

�

; 1; 1)

�

dr

+

�

(3; 1; 0) + (5; 1; 0) + � � �+ (o

�

; 1; 0)

�

d�;

and

�(h

1

!

1

) =

�

(3; 0; 0) + (5; 0; 0) + � � �+ (o

�

; 0; 0)

�

dr

+

�

(4; 0; 1) + (6; 0; 1) + � � �+ (e

�

; 0; 1)

�

d�:

From the properties of the fun
tion �,

Z

H=�

h

1

!

1

= 0

and

�(h

2

) = (1; 1; 1) + (2; 0; 0) + (3; 1; 1) + (4; 0; 0) + � � �+ (o

�

; 1; 1) + (e

�

; 0; 0):

Hen
e we 
an assume as an indu
tion hypotheses that

�(h

j

) = (1; 1; 1) + (2; 0; 0) + (3; 1; 1) + (4; 0; 0) + � � �+ (o

�

; 1; 1) + (e

�

; 0; 0);
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and

�(!

j

) =

�

(2; 1; 1) + (4; 1; 1) + � � �+ (e

�

; 1; 1)

�

dr

+

�

(3; 1; 0) + (5; 1; 0) + � � �+ (o

�

; 1; 0)

�

d�;

for j = 1; : : : ; k � 1: To get �(h

k

) and �(w

k

) we will use again Theorem 2.2.

Hen
e we have to study �(!

k�j

h

j

): We obtain that

�(!

k�j

h

j

) =

�

(3; 0; 0) + (4; 1; 1) + (5; 0; 0) + (6; 1; 1) + � � �

+ (o

�

; 0; 0) + (e

�

; 1; 1)

�

dr

+

�

(4; 0; 1) + (5; 1; 0) + (6; 0; 1) + (7; 1; 0) + � � �

+ (e

�

; 0; 1) + (o

�

; 1; 0)

�

d�;

and as a 
onsequen
e,

R

H=�

!

k�j

h

j

= 0 for every j = 1; : : : ; k � 1. From the

above equality we have that

L

k

=

Z

H=�

(!

k

+ !

k�1

h

1

+ !

k�2

h

2

+ � � �+ !

1

h

k�1

) =

Z

H=�

!

k

:

Therefore, L

k

(�) has the same expression as L

1

(�). Furthermore, it is easy to

see that in the 
ase L

k

� 0; and by using again Remark 2.5, we have

�(h

k

) = (1; 1; 1) + (2; 0; 0) + (3; 1; 1) + (4; 0; 0) + � � �+ (o

�

; 1; 1) + (e

�

; 0; 0):

and

�(!

k

) =

�

(2; 1; 1) + (4; 1; 1) + � � �+ (e

�

; 1; 1)

�

dr

+

�

(3; 1; 0) + (5; 1; 0) + � � �+ (o

�

; 1; 0)

�

d�:

Hen
e the indu
tion step follows and the proof is 
omplete. �

4. Systems with homogeneous nonlinearities

The next theorem implies our result for H

n

as stated in Theorem B. We

introdu
e the following notation:

Given a sequen
e of polynomials l

i

(�) 2 R[�℄; i 2 N , we say that they satisfy

the property (P

N

) if there exist homogeneous polynomials

e

l

i

(�) 2 R[�℄ of degree

k

i

; i 2 N ; su
h that

(i)

~

l

1

(�) = l

1

(�);

(ii)

~

l

i

(�) = l

i

(�) +

P

j<i

p

j

(�)

~

l

j

(�) for i � 2; where p

j

(�) 2 R[�℄:

(iii) J = hl

1

(�); l

2

(�); : : : ; l

n

(�); : : :i = h

~

l

1

(�);

~

l

2

(�); : : : ;

~

l

N

(�)i;

(iv) k

1

< k

2

< � � � < k

N

:

Theorem 4.1. Consider a family of di�erential equations F and

dH + "! = 0; (12)

where ! is a di�erential 1-form, su
h that (12) is in F . Assume that the

sequen
e of polynomials l

k

(�); k � 1; given in De�nition 2.6 and asso
iated to

(12), satis�es the property (P

N

).
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Let L(�; ") = �+ "L

1

(�) + � � � be the return map asso
iated with the solution

of

dH + "!

1

+ "

2

!

2

+ � � � = 0; (13)

where dH + "!

k

2 F for every k. Then the following holds,

L

j

(�) =

j

X

i=1

a

k

i

�

k

i

; when j � N;

L

j

(�) =

N

X

i=1

a

k

i

�

k

i

; when j > N;

where ea
h a

k

i

is a polynomial whose variables are the 
oeÆ
ients of (13). In

other words,

f

M

j

(F) = j � 1 for j � N; and

f

M

j

(F) =

f

M(F) = N � 1 for

j > N:

Remark 4.2. (i) If we add to the hypotheses of the above theorem, the hypo-

thesis that

~

l

i

(�) 
an take arbitrary values, then

f

M(F) =M(F):

(ii) If the family F has �nitely many nonzero 
oeÆ
ients, then the Hilbert Ba-

sis Theorem guarantees that the ideal J is �nitely generated. In the above

theorem we also request that it is generated by the �rst N elements, and

furthermore, that these elements 
an be repla
ed by homogeneous polyno-

mials in �; with in
reasing degrees.

As a 
orollary of the above result we 
an prove Theorem B.

Proof of Theorem B. Assume �rst that n is odd. It is easy to see that the only

nonzero Lyapunov 
onstants are v

n+i(n�1)

for i � 0. If in equation (13) we take

all !

i

� 0 ex
ept !

n�1

, then we get, with "

1

:= "

n�1

and using Theorem 2.8,

that there is the following relation between the return map asso
iated to dH +

"

1

!

n�1

= 0 and the Lyapunov 
onstants of dH + !

n�1

= 0 :

l

i

(�) = v

n+(i�1)(n�1)

(2�)

(n+1)+(i�1)(n�1)

2

:

Hen
e, the polynomials l

i

(�) are homogeneous in the variable �, with these

degrees, k

i

, all di�erent. So we 
an take l

i

(�) �

~

l

i

(�): Therefore, from Theo-

rem 4.1 we have as many nonzero 
oeÆ
ients of the polynomial L

j

(�) as number

of nonzero Lyapunov 
onstants. So, the theorem is proved in this 
ase.

For n even, and using the same 
omputations, we get that the polynomials

l

i

with i odd are zero. So the ideal J of Theorem 4.1 
an be redu
ed to take

just the polynomials l

2i

: The proof then follows in a similar way. �
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Proof of Theorem 4.1. From our hypotheses there exist polynomials p

i;j

su
h

that

l

1

=

~

l

1

;

l

i

=

X

j<i

p

i;j

~

l

j

for any i = 2; : : : ; N;

l

i

=

N

X

j=1

p

i;j

~

l

j

for any i > N:

(14)

As in the proof of Theorem 2.3, we substitute ! by ! = !

1

+"!

2

+"

2

!

3

+ � � � ;

in the expressions of l

j

(�) asso
iated to (14). Then the above equalities (14)

are given by

l

1;0

+ "l

1;1

+ "

2

l

1;2

+ � � � =

~

l

1;0

+ "

~

l

1;1

+ "

2

~

l

1;2

+ � � � :

Hen
e l

1;i

=

~

l

1;i

for any i = 0; 1; 2; : : : ; and

l

i;0

+ "l

i;1

+ "

2

l

i;2

+ � � � = (

~

l

i;0

+ "

~

l

i;1

+ � � � )

+

X

j<i

(p

0

i;j

+ p

1

i;j

"+ � � � )(

~

l

j;0

+ "

~

l

j;1

+ � � � ):

After equating the 
oeÆ
ients with the same " power we get the following

equalities:

l

i;0

=

~

l

i;0

+

X

j<i

p

0

i;j

~

l

j;0

;

l

i;1

=

~

l

i;1

+

X

j<i

p

0

i;j

~

l

j;1

+ p

1

i;j

~

l

j;0

=

~

l

i;1

+

X

0<k<i

0�m�1

q

i;1

k;m

~

l

k;m

:

In general, for ea
h l

i;j

we 
an write:

l

i;j

=

~

l

i;j

+

X

0<k<i

0�m�j

q

i;j

k;m

~

l

k;m

;

where the q

i;j

k;m

are again polynomials in the 
oeÆ
ients of the system and �:

Hen
e we have for

~

l

i;j

similar expression to the expressions for l

i;j

: Moreover, in

the 
ase i � N; the

~

l

i;j

are zero.

Note that the polynomials

~

l

i;j

are also homogeneous polynomials in � with

the same degree in �; that l

i;j

, l

i

, and

~

l

i

:

From Theorem 2.3 we have that the 
oeÆ
ients of the expansion of the return

map asso
iated to (13) are

l

(2)

k

(�) =

X

i+j=k

j<k

l

i;j

(�):
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Hen
e by using the above expressions for the fun
tions l

i;j

; we get that

l

(2)

1

= l

1;0

=

~

l

1;0

;

l

(2)

2

= l

2;0

+ l

1;1

=

~

l

2;0

+ q

2;0

1;0

~

l

1;0

+

~

l

1;1

;

l

(2)

3

= l

3;0

+ l

2;1

+ l

1;2

= (

~

l

3;0

+ q

3;0

2;0

~

l

2;0

+ q

3;0

1;0

~

l

1;0

) + (

~

l

2;1

+ q

2;1

1;0

~

l

1;0

+ q

2;1

1;1

~

l

1;1

) +

~

l

1;2

:

To determine the �rst nonzero 
oeÆ
ient of the return map, we need to sim-

plify the above expressions under the assumption that the previous ones are

all zero. If l

(2)

1

=

~

l

1;0

� 0, then l

(2)

2

=

~

l

2;0

+

~

l

1;1

; and sin
e both summands are

homogeneous in � of di�erent degree,

~

l

(2)

2

is zero if and only if

~

l

2;0

are

~

l

1;1

also

zero. In this situation l

(2)

3

=

~

l

3;0

+

~

l

2;1

+

~

l

1;2

:

In general, we 
an prove that l

(2)

k

=

P

0�i+j=k

j<k

~

l

i;j

when l

(2)

1

� l

(2)

2

� � � � � l

(2)

k�1

�

0:

Observe that in ea
h step we get a polynomial in �; l

(2)

k

, where ea
h of its

monomials in �,

~

l

i;j

, is an homogeneous polynomial of degree k

i

. Moreover,

sin
e

~

l

i;j

= 0; for i > n, we have that the polynomial l

(2)

k

for k > n does not

augment its degree. This fa
t implies that

f

M

k

(F) = k � 1; if k � N and

f

M

k

(F) = N � 1; if k > N . Therefore, M(F) �

f

M(F) = N � 1 as we wanted

to prove. �

5. Other Families

This se
tion is devoted to give the numbersM(F) and B(F) for two 
on
rete

families F . The �rst one is a new appli
ation of Theorem 4.1. The se
ond one

does not satisfy the hypotheses of the theorem; we are just able to 
ompute

some values of

f

M

k

(F) for small k:

Proposition 5.1. Consider the family F de�ned by system

_x = �y + a

2

x

2

+ a

3

x

3

;

_y = x + b

3

x

3

+ b

4

x

4

:

Then M(F) = C(F) = 1; and B(F) = 2:

Proof. Its �rst Lyapunov 
onstants are v

3

=

3�

4

a

3

and v

5

= �

�

2

a

2

b

4

: Further-

more, there are two set of solutions of the system v

3

= v

5

= 0: fa

3

= b

4

= 0g

(reversible 
enters) and fa

2

= a

3

= 0g (potential 
enters).

It is not diÆ
ult to see that the ideal ha

3

; a

2

b

4

i is radi
al. From this fa
t we

have that I = hv

3

; v

5

i and so B(F) = 2:

On the other hand, following the notation of Theorem 4.1 we have that

~

l

1

= 3a

3

��

2

and

~

l

2

= �2a

2

b

4

��

3

: Sin
e if

~

l

1

�

~

l

2

� 0; then a

3

= a

2

b

4

= 0, by

using the above 
lassi�
ation of the 
enters of F ; we have that dH + "! = 0

has a 
enter for ea
h ". Then

~

l

j

� 0 for j � 3 if

~

l

1

=

~

l

2

= 0. Hen
e we 
an

apply Theorem 4.1, the radi
ality of hv

3

; v

5

i; and the fa
t that

~

l

1

=

1

4

v

3

�

2

and

~

l

2

=

1

4

v

5

�

3

to 
on
lude that J = h

~

l

1

;

~

l

2

i and

f

M(F) = B(F) � 1: From the
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fa
t that a

3

and a

2

b

4


an take arbitrary values it follows that

f

M(F) =M(F):

Finally, it is easy to see that C(F) = 1: �

Proposition 5.2. Consider the family, F , de�ned by

_x = �y + a

2

x

2

+ a

3

x

3

;

_y = x + b

2

y

2

+ b

3

y

3

:

Then B(F) = 4; C(F) = 2; the maximum order of the origin as a weak fo
us

is 3 and M

k

(F) =

8

>

<

>

:

0 if k = 1; 2;

1 if k = 3; 4; 5;

2 if k = 6; 7; : : : ; 10:

Proof. Its �rst Lyapunov 
onstants are

v

3

=

3�

4

(b

3

+ a

3

);

v

5

= �

�

12

(a

2

2

� b

2

2

)(6b

2

a

2

+ 5b

3

);

v

7

= �

5�

8

b

3

(a

4

2

� b

4

2

);

v

9

= �

382�

125

a

4

2

b

3

(a

2

2

� b

2

2

):

In [7℄ it is proved that if v

3

= v

5

= v

7

= 0; then the origin of F is a 
enter.

Sin
e v

9

is not zero when fv

3

= v

5

= v

7

= 0g in C [a

2

; b

2

; a

3

; b

3

℄, it follows that

hv

3

; v

5

; v

7

i 6= hv

3

; v

5

; v

7

; v

9

i:

Furthermore, the fa
t that hv

3

; v

5

; v

7

; v

9

i is a radi
al ideal (this is tested by

using the algebrai
 pa
kage MAGMA), and the fa
t that its zero set 
oin
ides

with the set of 
enters of F , we have that, for n � 10, v

n

2 rad(v

3

; v

5

; v

7

; v

9

) =

hv

3

; v

5

; v

7

; v

9

i and hen
e B(F) = 4.

Note also that on any real solution of v

3

= v

5

= v

7

= 0, v

9

is also 0: Then

the maximum order of the origin is 3:

The fa
t that v

3

; v

5

; v

7


an take arbitrary values and v

7

v

9

� 0 implies that

C(F) = 2:

On the other hand, to 
ompute the Melnikov number we have to study the

expression for the return map asso
iated to dH + "! = 0: We obtain that

~

l

1

= 3�(b

3

+ a

3

)�

2

;

~

l

2

= 0;

~

l

3

=

5�

3

b

3

(a

2

2

� b

2

2

)�

3

;

~

l

4

= �2�a

2

b

2

(a

2

2

� b

2

2

)�

3

:

Sin
e the degrees in � of

~

l

3

and

~

l

4


oin
ide, we 
an not apply Theorem 4.1.

So we study dire
tly the equation dH + "! + "

2

! + � � � = 0 and we get the

values of

f

M

k

(F) given in the statement. We do not give here the details of the


omputations due to their length. �



20 ARMENGOL GASULL AND JOAN TORREGROSA

Referen
es

[1℄ N. N. Bautin. On the number of limit 
y
les whi
h appear with variation of 
oeÆ
ients

from an equilibrium position of fo
us or 
enter type. Ameri
an Math. So
. Translation,

100:397{413, 1954.

[2℄ T. R. Blows and N. G. Lloyd. The number of small-amplitude limit 
y
les of Li�enard

equations. Math. Pro
. Cambridge Philos. So
., 95:359{366, 1984.

[3℄ C. Chi
one and M. Ja
obs. Bifur
ation of limit 
y
les from quadrati
 iso
hrones. J.

Di�erential Equations, 91(2):268{326, 1991.

[4℄ A. Cima, A. Gasull, and F. Ma~nosas. Ci
li
ity of a family of ve
tor �elds. J. Math. Anal.

Appl., 196:921{937, 1995.

[5℄ J. P. Fran�
oise. Su

essive derivatives of a �rst return map, appli
ation to the study of

quadrati
 ve
tor �elds. Ergodi
 Theory Dynam. Systems, 16(1):87{96, 1996.

[6℄ J. P. Fran�
oise. The �rst derivative of the period fun
tion of a plane ve
tor �eld. Publ.

Mat., 41(1):127{134, 1997.

[7℄ A. Gasull, A. Guillamon, and V. Ma~nosa. An expli
it expression of the �rst Lyapunov

and period 
onstants with appli
ations. J. Math. Anal. Appl., 211:190{202, 1997.

[8℄ A. Gasull and J. Torregrosa. A new algorithm for the 
omputation of the Lyapunov


onstants for some degenerated 
riti
al points. Prepubli
a
ions del Departament de

Matem�atiques, Univ. Aut�onoma de Bar
elona, N�um 2, 1999.

[9℄ I. D. Iliev. On se
ond order bifur
ations of limit 
y
les. J. London Math. So
. (2),

58(2):353{366, 1998.

[10℄ I. D. Iliev and L. M. Perko. Higher order bifur
ations of limit 
y
les. J. Di�erential

Equations, 154(2):339{363, 1999.

[11℄ A. Lins, W. de Melo, and C. C. Pugh. On Li�enard's equation. Geometry and Topology

(Le
t. Notes. in Math.), 597:335{357, 1977.

[12℄ J.C. Poggiale. Appli
ations des vari�et�es invarienates �a la mod�elisation de l'h�et�erog�en�eit�e

en dynamique des populations. PhD thesis, University of Burgondy, 1994.

[13℄ R. Roussarie. Bifur
ation of planar ve
tor �elds and Hilbert's sixteenth problem.

Birkh�auser Verlag, Basel, 1998.

[14℄ K. S. Sibirskii. On the number of limit 
y
les on the neigboorhood of a singular point.

Di�erential Equations, 1:36{47, 1965.

[15℄ S. Yakovenko. A geometri
 proof of the Bautin theorem. Translation of AMS, 165:203{

219, 1995.

[16℄ C. Zuppa. Order of 
y
li
ity of the singular point of Li�enard polynomial ve
tor �elds.

Bol. So
. Brasil. Mat., 12(2):105{111, 1981.

Dept. de Matem

�

atiques, Universitat Aut

�

onoma de Bar
elona, Edifi
i C


08193 Bellaterra, Bar
elona. Spain

E-mail address : gasull�mat.uab.es, torre�mat.uab.es


