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Abstract. We study the center-focus problem as well as the number of limit
cycles which bifurcate from a weak focus for several families of planar discontinuous
ordinary differential equations. Our computations of the return map near the
critical point are performed with a new method based on a suitable decomposition
of certain one forms associated to the expression of the system in polar coordinates.
This decomposition simplifies all the expressions involved in the procedure. Finally
we apply our results to study a mathematical model of a mechanical problem, the
movement of a ball between two elastic walls

1. Introduction

There are many problems in science, and particularly in mechanics and in enginer-
ies, where their mathematical modelization is given by a dynamical system whose
right-hand side is not continuous or not differentiable, see for instance the classical
book [AVK87] or the new one [Kun00] and the references therein.

In this paper we study the following class of discontinuous planar systems of
ordinary differential equations

(ẋ, ẏ) =

{
(−y + P+(x, y), x + Q+(x, y)) if y ≥ 0,

(−y + P−(x, y), x + Q−(x, y)) if y ≤ 0,
(1)

where P+, Q+, P−, Q− are analytic functions starting at least with second order
terms.

The above system has the origin as a monodromic critical point. We are interested
in the following two problems:

- The center-focus problem, i.e. to determine if the origin of Sys. (1) is either
a center, an attractor or a repeller.

- The cyclicity problem, that is, fix a class of systems of type (1) and determine
the maximum number of limit cycles which bifurcate from the origin under
the variation of the parameters inside this class of systems.

Our main contribution is the development of a new method to compute the Lya-
punov constants -defined in next section- for systems of type (1). This method gives
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a tool to solve the above problems. It is based in a suitable decomposition of certain
one forms associated to the expression of (1) in polar coordinates. Our decompo-
sition is done in such a way that it simplifies the computations needed in all the
procedure. Furthermore, it is easy to be implemented in a computer algebra sys-
tem. The main difference, between the computation of the Lyapunov constants for
systems of type (1), and for smooth differential equations is that, in the second case
there appear some cancellations -due to a symmetry which relates the solutions in
the upper plane with the solutions in the lower plane- which make the computations
shorter and simpler. These cancellations are not present when we consider general
discontinuous systems of type (1).

The precise statement of our method as well as the proofs involved to develop it are
given in Sec. 2. Subsection 3.1 is devoted to study a family of quadratic systems of
type (1). More specifically, we study the case where (−y + P+(x, y), x + Q+(x, y))
is an arbitrary quadratic vector field and P− ≡ P+ ≡ 0. For these systems we
solve the center-focus problem, see Theorem 3.1, and we construct examples with
5 small amplitude limit cycles. We note that just examples with 3 limit cycles, see
[Kun00, Chap. 7], and with 4 limit cycles, see [CGP01], were known. Note that this
last result also shows that discontinuous planar differential equations have richer
dynamics than smooth dynamical systems, because it is well known that when we
consider smooth quadratic systems just 3 small amplitude limit cycles appear, see
[Bau54], and our system, having the same number of free parameters, has 5 limit
cycles. In Subsec. 3.2 we study the center problem for Sys. (1) of Liénard type,
improving some results of [CPG99]. In the last subsection we study a mechanical
problem, the movement of a ball between two elastic walls, modeled by a Kukles
system. We consider just the quadratic case, and for it we study both the cyclicity
and the center-focus problems.

2. Definitions and main results

This section is devoted to prove the main results of the paper. We start by giving
some definitions.

The expression of (1) in polar coordinates, (x, y) = (r cos θ, r sin θ), is given by:




dH +
∑
i≥1

ω+
i = 0 if θ ∈ [0, π],

dH +
∑
i≥1

ω−i = 0 if θ ∈ [π, 2π],
(2)

where H(r) = r2/2, and ω±i = ω±i (r, θ) are analytic one forms, 2π–periodic in θ and
polynomial in r.

Let r+(ρ, θ) (resp. r−(ρ, θ)) be the solution of Sys. (2) such that r+(ρ, 0) = ρ
(resp. r−(ρ, π) = ρ). Then, we can define the positive half-return map as

Π+(ρ) = r+(ρ, π) = ρ +
∑
i≥2

p+
i ρi,
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and the negative half-return map as

Π−(ρ) = r−(ρ, 2π) = ρ +
∑
i≥2

p−i ρi.

The complete return map associated to Sys. (1) -or equivalently to Sys. (2)- is given
by the composition of these two maps, see also Fig. 1,

Π(ρ) = Π−(Π+(ρ)) := ρ +
∑
i≥2

piρ
i. (3)

When we want to stress that a return or a half-return map Π± is associated to a
vector field X, we write ΠX or Π±

X . The first non zero pk is called the k–Lyapunov
constant of Sys. (1), and is denoted by Vk. The above definition coincides with the
usual one when (1) is a smooth system. A main difference between the smooth case
and general Sys. (1) is that while in the first case the first non zero pk occurs always
for k an odd number, see [ALGM73, p. 243], for the second case k can be any natural
number bigger than 1.

Given a family of systems, we remark that the expressions of V2, V3, . . . , Vm in
terms of the coefficients of the system have to be understood in the following way:
the expression of a Vk has just meaning for systems with V2 = V3 = · · · = Vk−1 = 0.

Figure 1. Return map of Sys. (1).

To obtain the Lyapunov constants following (3) we need a method to compute Π+

and Π−, and afterwards to compose them. Next lemma shows a way to simplify both
problems. We use the following notation: X+ (resp. X−) denotes the vector field
(−y + P+(x, y), x + Q+(x, y)) (resp. (−y + P−(x, y), x + Q−(x, y))) and X denotes
the vector field associated to (1).

Lemma 2.1. The first non zero term of the map ΠX(ρ)− ρ defined in (3) coincides
with the first non-zero term of the map

Π+
X+(ρ)− (Π−

X−)−1(ρ) = Π+
X+(ρ)− Π+

−X−(x,−y)(ρ),

see also Fig. 2.

Proof. By performing the change of variables (x, y, t) → (x,−y,−t) in the differential
equation associated to X−, it is easy to prove that Π−

X−(x,y) = Π+
−X−(x,−y). At this
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point, the lemma follows just by proving that the leading terms of the next two
expressions

g(f(ρ))− ρ and f(ρ)− g−1(ρ),

where f and g are analytic functions vanishing at zero and such that f ′(0) = g′(0) =
1, coincide. This is done in [CPG99, Lemma 3.2]. ¤

Figure 2. Half-return maps Π+ i (Π−)−1 of Sys. (1).

The above lemma reduces the problem of the computation of the Lyapunov con-
stants to the study of the half-positive return map, Π+, of arbitrary smooth planar
differential equation of the form

dH +
∑
i≥1

ωi = 0.

Next lemma reduces this second problem to study the perturbation of the Hamil-
tonian dH = 0, where H = H(r) = r2/2.

Lemma 2.2. Let
Π+(ρ) = ρ +

∑
i≥2

p+
i ρi,

be the positive half-return map associated to the polar expression of a smooth system
of type (1),

dH +
∑
i≥1

ωi = 0. (4)

Let r(θ, ε, ρ) =
∑

i≥0 ri(θ, ρ)εi the solution of the initial value problem




dH +
∑
i≥1

εiωi = 0,

r(0, ε, ρ) = ρ.

Then Π+(ερ) = εr(π, ε, ρ), and as a consequence for i ≥ 2, p+
i = ri−1(ρ, θ)/ρi.

Proof. The proof follows just by considering the effect of the scaling r → εr in
Sys. (4). ¤

To state our main result we also need the following technical result, which de-
composes an arbitrary one form. It is reminiscent of the decompositions used by
Françoise in [Fra96, Fra97, Fra98]. Its proof is straightforward.
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Lemma 2.3. Let Ω = α(r, θ)dr + β(r, θ)dθ, be an arbitrary analytic one form, 2π–
periodic in θ and H(r) = r2/2. Then there exist functions h(r, θ), S(r, θ) and F (r)

also 2π–periodic in θ and defined by F (r) = 1
2π

∫ 2π

0
β(r, ψ)dψ, S(r, θ) =

∫ θ

0
β(r, ψ) dψ

−F (r)θ and h(r, θ) = (α(r, θ)− ∂S(r,θ)
∂r

)/H ′(r), and such that

Ω = Ω0 + Ω1 where Ω0 = hdH + dS, Ω1 = F (r)dθ,

and ∫

H=ρ

Ω0 = 0,

∫

H=ρ

Ω1 =

∫

H=ρ

Ω.

Theorem 2.4. Let r(θ, ε, ρ) be the solution of the initial value problem



dH +
∑
i≥1

εiωi = 0,

r(0, ε, ρ) = ρ,
(5)

where H(r) = r2/2 and ωi = ωi(r, θ) are one forms 2π–periodic in θ. Then for any
n ∈ N, r(θ, ε, ρ) satisfies the following implicit equation

r2(θ, ε, ρ)− ρ2

2
+ O(εn+1) =

n∑
i=1

εi

[∫ θ

0

Fi(r(ψ, ε, ρ))dψ + Si(r(ψ, ε, ρ), ψ)|ψ=θ
ψ=0

]
,

where the one forms Ωi and the functions Fi(r), hi(r, θ) and Si(r, θ) are defined
inductively in the following way: h0 = 1,

−Ω1 := −ω1h0 = h1dH + dS1 + F1dθ,

and

−Ωi := −
i∑

j=1

ωihi−j = hidH + dSi + Fidθ,

for i = 1, 2, . . . , n and we have used the decomposition given in Lemma 2.3 for the
forms −Ωi.

Proof. Denote by γε = γε(θ, ρ) the curve {r(ψ, ε, ρ), ψ ∈ [0, θ]} solution of (5). Con-
sider the one forms −Ωi, i = 1, . . . , n and their decompositions given in Lemma 2.3.
Therefore

0 =

∫

γε

(
1 +

n∑
i=1

εihi

)(
dH +

∑
i≥1

εiωi

)

=

∫

γε

dH +
n∑

i=1

(Ωi + hidH) εi + O(εn+1)

=

∫

γε

dH −
n∑

i=1

(Fi(r)dθ + dSi(r, θ)) εi + O(εn+1).



6 ARMENGOL GASULL, JOAN TORREGROSA

By making the integration, and taking into account that H(r) = r2/2 the theorem
follows. ¤

Corollary 2.5. Let r(θ, ε, ρ) =
∑

i≥0 ri(θ, ρ)εi the solution of the initial value prob-
lem (5). Assume that the functions r0(θ, ρ) = ρ, r1(θ, ρ), r2(θ, ρ), . . . , rn−1(θ, ρ)
are known. Then rn(θ, ρ) can be obtained by equating the εn–terms of the implicit
expression of r(θ, ε, ρ) given in Theorem 2.4. In fact the equation looks like

ρrn(θ, ρ) = Fn(ρ, r1(θ, ρ), . . . , rn−1(θ, ρ)),

where Fn depends on the one forms ω1, ω2, . . . , ωn, through the corresponding Fi and
Si, i = 1, 2, . . . , n.

In particular F1 = F1(ρ)θ + S1(ρ, θ)− S1(ρ, 0) and

F2 = [F2(ψ) + S2(ρ, ψ) + S ′1(ρ)r(ψ, ρ)]|ψ=θ
ψ=0 −

1

2
r2
1(θ, ρ) + F ′

1(ρ)

∫ θ

0

r1(ψ, ρ)dψ.

Poggiale [Pog94], Françoise [Fra96], Iliev [Ili98], Roussarie [Rou98], and Iliev &
Perko [IP99] give similar result to the above theorem, see also [GT99]. This result
allows to compute rn(2π, ρ) under the assumption that r2(2π, ρ) = r3(2π, ρ) = · · · =
rn−1(2π, ρ) = 0. Note that Theorem 2.4 is an improvement of that result. It allows
to calculate rn(θ, ρ) for any θ and without any further assumption.

As a survey of this section we explain the steps needed to find the Lyapunov
constants of Sys. (1).

Method of computation of the Lyapunov constants:

1. Write Sys. (1) in the polar form (2).
2. Consider the expression of (2) in the upper half-plane and denote by X+ its

associated vector field.
3. Associate to the vector field the initial value problem (5) and calculate

r(θ, ε, ρ) by using Corollary 2.5.
4. Use Lemma 2.2 to obtain Π+

X(ρ) from r(π, ε, ρ).
5. Consider the expression (2) in the lower half-plane and denote by X− its

associated vector field. Take −X−(x,−y) and reproduce for it the steps 3
and 4. We get Π+

−X−(x,−y)(ρ).

6. Make the computation Π+
X+(ρ)− Π+

−X−(x,−y)(ρ). From Lemma 2.1, its series

expansion gives the Lyapunov constants for Sys. (1).

3. Applications

We apply the above method for solving the center-focus problem and for obtain-
ing small amplitude limit cycles for the following cases of discontinuous differential
systems: quadratic, Liénard and a class of Kukles systems.

Before starting with the concrete systems there is a general result, proved in
[PS73], that we want to comment, see also [CGP00] for a different proof. The result
asserts that if a system of the form (1) has a center at the origin, and the smooth
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system
(ẋ, ẏ) =

(−y + P−(x, y), x + Q−(x, y)
)
,

considered in the whole plane, has also a center at the origin, then the system

(ẋ, ẏ) =
(−y + P+(x, y), x + Q+(x, y)

)
,

also has to have a center in the whole plane. Although we will not use this result it
helps to understand why all the systems, with a center at the origin, studied in next
section have a computable first integral.

3.1. Quadratic Systems. In this section, we classify the centers of a family of dis-
continuous quadratic systems, considered in [Kun00, Chap. 7] and also in [CGP01].
For this family we also find an example with five limit cycles, obtaining a limit cycle
more than in previous approaches.

Theorem 3.1. Consider the system



{
ẋ = −y+p20x

2+p11xy+p02y
2,

ẏ = x+q20x
2+q11xy+q02y

2, y ≥ 0,{
ẋ = −y,

ẏ = x, y ≤ 0.

Then, it has a center at the origin if and only if one of the following conditions
holds:

(i) p11 = q20 = q02 = 0,
(ii) p20 = p11 + q20 = p02 + q11 = q02 = 0,
(iii) 2p20 + q11 = p11 + 2q02 = q20 = 0,
(iv) p20 = −p11 + q20 = q02 + q20 = p02 = 0,
(v) 2p11q20+3p2

20−2q2
20 =2q11+5p20=8p02q

2
20−3p2

20+8q2
20 =4q02q20 − 3p2

20 + 4q2
20 = 0.

Proof. Firstly, let us prove that in each one of the cases the systems has a center
at the origin. Since in the lower half-plane the return map is the identity map it
suffices to prove that Π+(ρ) = ρ.

For the first case, this is a consequence of the invariance of the equation by the
change (x, y, t) → (−x, y,−t).

To study the other cases we compute the first integrals Hi = Hi(x, y) associated
to case (i), i = 2, 3, 4, 5. We have obtained them by direct exploration, but we can
also get them from [LS82]. They are

H2 =x2 + y2,

H3 =
1

2
(x2 + y2) +

q11

2
x2y + q02xy2 − p02

3
y3,

H4 =(q20x− 1)

(
q20x +

1

2
(q11 − γ) y + 1

)α (
q20x +

1

2
(q11 + γ) y + 1

)(1−α)

,

H5 =(−2q20x + p20y + 2)2

(
4(q20x + 1)2 + (−4p20 − 12p20q20x)y + (3p2

20 − 8q2
20)y

2

)
,
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with α =
4q2

20

γ(γ+q11)
and γ =

√
q2
11 + 8q2

20.

The fact that in all the cases Hi(x, 0) = Hi(−x, 0) proves the result.
To show that there are no more centers inside this family we compute several

Lyapunov constants by using the method developed in Sec. 2. We get

V2 =
2

3
(p11 + q20 + 2q02),

V3 =− π

8
(2p20q02 + q02q11 + 3p20q20 + q11q20 + p02q20),

V4 =
1

15
(2q3

20 − 2p2
11q20− 18p2

20q20 + 6p11p20q11 + 12p11p
2
20 − 6q11p20q20),

V5 =
π

64
q20p20(p

2
20 − 2q11p20 + 4p11q20 − 4q2

20),

V6 =
8

105
q20(p11 − q20)(p11 + q20)(−5p11q20 + 5q2

20 + 3q11p20).

Solving the non linear system {V2 = V3 = V4 = V5 = V6 = 0} we just obtain the
families of the statement and therefore the theorem follows. ¤

By using the expressions of the Lyapunov constants obtained in the above theorem,
we can get a discontinuous quadratic system with five small amplitude limit cycles.

Theorem 3.2. Consider the system

(ẋ, ẏ) =

{
(−y+w1x+x2+p11xy+p02y

2, x+w1y+x2+q11xy+q02y
2) if y ≥ 0,

(−y, x) if y ≤ 0,
(6)

where p11 = 7
5

+ α,

p02 =− 17

50
+

3

20
α− 99

40
w2 +

32

25
w5 +

16

5
αw5 +

3

2
w4 − 3

2
αw2 + 24w2w5 − 8w3,

q11 =
13

10
+ 2α− 32w3, and

q02 =− 6

5
− 1

2
α +

3

4
w2,

being α = α(w4, w5) the solution of the quadratic equation 50α2 +(−960w5 +95)α−
75w4 − 384w5 = 0, such that α(0, 0) = 0. Then, if we choose w1, w2, w3, w4, and w5

such that w1 < 0, w2 > 0, w3 < 0, w4 > 0, w5 < 0 and |w1| ¿ |w2| ¿ |w3| ¿
|w4| ¿ |w5| ¿ 1, Sys. (6) has five small amplitude limit cycles.

Proof. If w1 = 0, we can use the formulas of the Lyapunov constants obtained in the
previous theorem. We get that Vi = wi for i = 2, 3, 4, 5. Therefore, the return map
Π(ρ) in a neighbourhood of the origin writes as

Π(ρ, w1, w2, w3, w4, w5) = ew1πρ + (w2 + f2(w1, w2, w3, w4, w5))ρ
2

+ (w3 + f3(w1, w2, w3, w4, w5))ρ
3 + (w4 + f4(w1, w2, w3, w4, w5))ρ

4

+ (w5 + f5(w1, w2, w3, w4, w5))ρ
5 + (

608

4375
+ f6(w1, w2, w3, w4, w5))ρ

6 + O(ρ7),
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where fi, i = 2, . . . , 6, are continuous functions satisfying f2(0, w2, w3, w4, w5)≡ 0,
f3(0, 0, w3, w4, w5)≡0, f4(0, 0, 0, w4, w5)≡0, f5(0, 0, 0, 0, w5)≡0 and f6(0, 0, 0, 0, 0)≡
0. By choosing the parameters as in the statement of the theorem, it is not difficult
to see that, in a neighbourhood of the origin, the function Π(ρ)− ρ changes sign six
times, and therefore Π has at least five fix points. This fact ends the proof. ¤

We think that no more than five limit cycles can bifurcate from the origin for
the systems studied in this section. The main reason is that the highest order of
degeneracy of a weak focus, inside this family, is six.

3.2. Liénard Equations. In this section, we study the center-focus problem for
Liénard discontinuous systems of the form

(ẋ, ẏ) =





(
−y +

n∑
i=2

aix
i, x

)
if y ≥ 0,

(
−y +

n∑
i=2

bix
i, x

)
if y ≤ 0.

(7)

These systems have been already studied in [CPG99]. In that paper, it is proved
that the following families of systems of this type have a center at the origin:

(i) a2k+1 = b2k+1 = 0, or
(ii) ak + bk = 0.

for all k ∈ N. Also the authors try to prove that the above families are the only
centers inside (7). In particular, they show that if for the following particular systems

(ẋ, ẏ) =

{(−y + x2j+1 + x2(k−j), x
)

if y ≥ 0,

(−y − x2j+1, x) if y ≤ 0,

for 1 ≤ j < k, the Lyapunov constant V2k = Ck,j is not zero, then it is true that the
above families are the only centers for Sys. (7). With this aim they compute some
Ck,j for k ≤ 6, obtaining in all cases a number different from zero. Our methods
allows to compute these values for larger values of k. In particular in Tab. 1, the
values of Ck,j for 1 ≤ j < k ≤ 10 are given. It is worth to say that the sign of the
value Ck,j gives the stability of the associated system considered.

By using the results of Tab. 1, and some more computations, we have also checked
that

Ck,k−1 =
−10 + 12k

3 + 6k
, for 2 ≤ k ≤ 10,

Ck,k−2 =
−262− 80k + 120k2

45 + 120k + 60k2
, for 3 ≤ k ≤ 11,

Ck,k−3 =
−4022− 3948k + 280k2 + 560k3

525 + 1610k + 1260k2 + 280k3
, for 4 ≤ k ≤ 12,

Ck,k−4 =
−101278− 142784k − 40656k2 + 8960k3 + 3360k4

11025 + 36960k + 36120k2 + 13440k3 + 1680k4
, for 5 ≤ k ≤ 15.

For the moment we have not find a proof of the above equalities for arbitrary k.
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k\j 1 2 3 4 5 6 7 8 9

2 14
15

3 58
525

26
21

4 − 702
1225

578
945

38
27

5 −84806
72765

1774
24255

446
495

50
33

6 −2516806
1486485

−381454
945945

20506
45045

2338
2145

62
39

7 −10882038
5010005

−5201926
6243237

22138
405405

17746
25025

3578
2925

74
45

8 −390159442
149324175

−80616454
65702637

−1571630
5054049

1388402
3828825

20666
23205

562
425

86
51

9 −123363871018
40811445675

−3311635214
2080583505

− 809489458
1248350103

6970394
160044885

3868322
6613425

174142
169575

6778
4845

98
57

10 −36344996758
10667118605

− 788914022
4134146445

−−2575685746
2675035935

− 58491854
231175945

13153354
43648605

1609546
2136645

89678
79135

8738
5985

110
63

Table 1. The values of Ck,j for 1 ≤ j < k ≤ 10.

To end this subsection we want to comment that our method also allows to
solve the center-focus problem for concrete values of n, without using the results
of [CPG99]. For instance we have the following result:

Proposition 3.3. For n = 7 the only centers of Sys. (7) are the ones satisfying

(i) either a3 = b3 = a5 = b5 = a7 = b7 = 0, or
(ii) ai + bi = 0, i = 2, . . . , 7.

Proof. We already know that both families have a center at the origin. We have
to prove that there are no more centers. By using our method and some algebraic
manipulations we get the following Lyapunov constants:

V2 = 0,

V3 =
3

8
π(a3 + b3),

V4 = −14

15
b3(b2 + a2),

V5 =
5

16
π(a5 + b5),

V6 = − 58

525
b3(a4 + b4)− 26

21
b5(a2 + b2),

V7 =
6825

24960
π(a7 + b7),

V8 =
702

1225
b3(a6 + b6)− 578

945
b5(a4 + b4)− 38

27
b2(a7 + b7),

V9 = 0,

V10 = − 1774

24255
b5(a6 + b6)− 446

495
b7(a4 + b4),
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V11 = 0,

V12 = −20506

45045
b7(a6 + b6).

By solving the system {V2 = V3 = · · · = V11 = V12 = 0} the proposition follows.
Of course the rational numbers involved in the even Lyapunov constants are the ones
given in Tab. 1. ¤

3.3. Kukles systems: a mechanical example. The planar systems associated to
the second order differential equation ÿ = f(y, ẏ) are usually called Kukles systems.
The center problem for these systems, when the function f is a polynomial, has been
intensively studied. In this subsection we consider the easiest case of discontinuous
Kukles systems: the quadratic case. More specifically we study the following two
systems:

(ẋ, ẏ) =

{
(−y+p20x

2+p11xy+p02y
2, x) if y ≥ 0,

(−y+q20x
2+q11xy+q02y

2, x) if y ≤ 0,
(8)

and

(ẋ, ẏ) =

{
(−y, x+q20x

2+q11xy+q02y
2) if y ≥ 0,

(−y, x+p20x
2+p11xy+p02y

2) if y ≤ 0.
(9)

Note that the second case correspond to a Kukles system by making the change of
variables (x, y) → (y, x).

As we will see, Sys. (8) is a mathematical model of the movement of a ball be-
tween two elastic walls. Therefore their periodic orbits will correspond to periodic
movement of the ball. Before describing the modelization, we solve the center-focus
problem for both systems.

Theorem 3.4. Consider the Sys. (8). Then it has a center at the origin if and only
if one of these conditions holds:

(i) p11 = q11 = 0,
(ii) p11 − q11 = p20 − q20 = p02 + q20 = q02 + q20 = 0,
(iii) p11 − q11 = p02 + q02 = p20 + q20 = 0.

Proof. The proof is similar to the one of Theorem 3.1. Firstly, we prove that the
families have a center at the origin. For the case (i), this is due to the fact that it
is a reversible system, invariant with respect to the change of variables (x, y, t) →
(−x, y,−t).

The case (ii) corresponds to a smooth center with first integral

H(x, y) =(2p20x + (p11 − γ)y + 2)α(2p20x + (p11 + γ)y + 2)βe−2p20x,

where γ =
√

p2
11 + 4p2

20 and α + β = 2.
For the case (iii), the system is invariant with respect the change of variables

(x, y, t) → (x,−y,−t). This property also forces the origin to be a center.
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To prove that there no other centers, as usual, we compute several Lyapunov
constants:

V2 =
2

3
(p11 − q11),

V3 =
1

8
πq11(q20 + q02 + p02 + p20),

V4 =
2

45
q11(q02 + p02)(3p02 + 2q20 − q02),

V5 =
1

864
πq11(q20 + q02)

2(q02 + p02).

Solving the system {V2 = V3 = V4 = V5 = 0} we just obtain the families given in the
statement. Therefore the theorem follows. ¤

In next proposition we get examples of Sys. (8) with four limit cycles. We remark
that from the expressions of the Lyapunov constants obtained in the previous theo-
rem it can be deduced that inside this family the highest order of degeneracy of the
weak focus is five, and so it seems that no examples with five limit cycles can be
obtained.

Proposition 3.5. Consider the system

(ẋ, ẏ) =

{
(−y + w1x + p20x

2 + xy, x) if y ≥ 0,

(−y + q20x
2 + q11xy + 2y2, x) if y ≤ 0,

(10)

where p20 = (−3+8w3− 45
8
w4), q20 = 1+ 45

8
w4 and q11 = 1+ 3

2
w2, where w1, w2, w3, w4

are chosen such that w1 > 0, w2 < 0, w3 > 0, w4 < 0 and |w1| ¿ |w2| ¿ |w3| ¿
|w4| ¿ 1. Then (10) has four small amplitude limit cycles.

The proof of the above result is like the proof of Theorem 3.2. The main difference,
due to the different shape of the linear perturbation, is that

Π(ρ, w1, w2, w3, w4) = ρ e
π

w1√
4−w2

1 + O(ρ2).

Finally, we classify all the centers for Sys. (9). This result also has been proved in
[Lun68, Thm. 4]. The proof that we present is shorter. The study for this system
is more difficult than the study of Sys. (8) because it can be proved that inside this
family there are weak focus of order eight. Our result is:

Theorem 3.6. Consider Sys. (9). Then it has a center at the origin if and only if
one of these conditions holds:

(i) q20 − p20 = p11 + q11 = q02 − p02 = 0,
(ii) q20 − p20 = q02 + q20 = p02 + q20 = 0,
(iii) q20 + 2p02 = q02 − 2p02 = p11 = p20 = 0,
(iv) p20 + 2q02 = p02 − 2q02 = q11 = q20 = 0.
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Proof. First we proof the sufficient condition, that is, that all the families described
in the statement have a center at the origin.

The first family has a center at the origin because their solutions are invariant
with respect the change of variables (x, y, t) → (x,−y,−t).

For the rest of families, the origin is also a center when we extend the system
of the upper (or the lower) half-plane to the whole plane. These centers are of the
following two types:

(ẋ, ẏ) =
(−y, x + ay2

)
,

or

(ẋ, ẏ) =
(−y, x + bx2 + cxy − by2

)
.

The first system has the first integral

H1(x, y) =
(
2ax− 1 + 2a2y2

)
e2ax.

The second one has the first integral

H2(x, y) = (2bx + (c− γ)y + 2)α (2bx + (c + γ)y + 2)β e−2bx,

where γ =
√

c2 + 4b2, and α + β = 2.
Denote by H+

i (resp. H−
i ) the first integral of the system restricted to the upper

(resp. lower) half-plane. First, we consider the case (ii). Since H+
2 (resp. H−

2 ) is a
first integral of the system in the positive (resp. negative) half-plane, then for any
x positive, the orbit trough (x, 0) has to satisfy the following equalities

H+
2 (x, 0) = H+

2

(−Π+
X+(x), 0

)
, and H−

2 (x, 0) = H−
2

(−(Π−
X−)−1(x), 0

)
.

On the other hand

H+
2 (x, 0)=H−

2 (x, 0)=4(1 + q20x)2e−2q20x :=h(x).

Since the equation h(x) = h(z), for z near zero, has a unique negative solution it
follows that Π+

X+(x) = (Π−
X−)−1(x), and therefore, the origin is a center.

The proof of case (iii) follows in a similar way, using the fact that H+
2 (x, 0) =

4(H−
1 (x, 0))2.

The last case coincides with the case (iii) after interchanging the system in the
upper half plane with the system in the lower half plane.

To prove the necessary condition we compute the Lyapunov constants until V8.
By solving, with the help of a computer algebra system, the associated equations we
get the desired result. We omit the details. We just comment that the Lyapunov
constants are large polynomial expressions, involving rational numbers with large
numerators and denominators.

¤

To end this subsection we study the differential equations associated to the me-
chanical system showed in Fig. 3. It can be modelled by the system in 3 zones:
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Figure 3. Ball moving between two elastic walls.





m− : z̈− = f−(z−, ż−) if z ≤ −1, z− = z + 1,

m0 : z̈ = −kż if − 1 ≤ z ≤ 1,

m+ : z̈+ = f+(z+, ż+) if z ≥ 1, z+ = z − 1,

(11)

We assume that the distance between the two walls is normalized to 2 + l, where
l ¿ 1 is the diameter of the ball, and that it moves between the two walls with
friction (k > 0). The functions f− and f+ describe the reaction of the ball when it
interacts with the walls. In our model we assume that the function f+ (resp. f−) in
mode m+(resp. mode m−) is such that the point (1,−k

2
) (resp. (−1, k

2
)) is a critical

point of center-focus type. The phase portrait for these type of systems, in the case
of having a continuum of periodic orbits, is plotted in Fig. 4. Note that to study
the periodic solutions of (11), we can first remove the middle zone, and afterwards,
translate the system in mode m+ from (1,−k

2
) to (0, 0), and the system in mode m−

from (−1, k
2
) to (0, 0). Finally, by making a rotation of π

2
radians we get a system of

Kukles type,

(ẋ, ẏ) =

{
(g+(x, y), x) if y ≥ 0,

(g−(x, y), x) if y ≤ 0.
(12)

Notice also that Sys. (8) corresponds to the above system with g± quadratic poly-
nomials. Each closed trajectory of Sys. (11) has it corresponding closed trajectory
of Sys. (12), see Figs. 4-5.

Observe that the closed trajectories of Sys. (12) inside the dashed curve do not
correspond to periodic movements of the ball. On the other hand periodic orbits
outside this dashed curve do correspond to periodic movement of the ball. We think
that this problem gives a nice application of the method of the Lyapunov constants,
because from the local study of the critical point -which does not correspond to real
movement of the ball- we get, by analyticity of the return map, a center which gives
closed orbits of Sys. (12), which actually correspond to real periodic movement of
the ball.
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Figure 4. Periodic orbits for (11). The thick lines {(−1, w) : 0 <
w ≤ k

2
} ∪ {(z, 0) : |z| ≤ 1} ∪ {(1, w) : −k

2
≤ w < 0} are full of critical

points.

Figure 5. Periodic orbits for (12).

From the above point of view, the results of Theorem 3.4 can be reinterpreted
as conditions on the functions f±, which describe the reaction of the ball when it
impacts with the walls, to get periodic movement of the ball.
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