

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 261 (2016) 5071-5093

www.elsevier.com/locate/jde

The number of polynomial solutions of polynomial Riccati equations

Armengol Gasull^a, Joan Torregrosa^{a,*}, Xiang Zhang^b

^a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain ^b School of Mathematical Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, PR China

Received 15 April 2016; revised 20 July 2016

Available online 3 August 2016

Abstract

Consider real or complex polynomial Riccati differential equations $a(x)\dot{y} = b_0(x) + b_1(x)y + b_2(x)y^2$ with all the involved functions being polynomials of degree at most η . We prove that the maximum number of polynomial solutions is $\eta + 1$ (resp. 2) when $\eta \ge 1$ (resp. $\eta = 0$) and that these bounds are sharp.

For real trigonometric polynomial Riccati differential equations with all the functions being trigonometric polynomials of degree at most $\eta \ge 1$ we prove a similar result. In this case, the maximum number of trigonometric polynomial solutions is 2η (resp. 3) when $\eta \ge 2$ (resp. $\eta = 1$) and, again, these bounds are sharp.

Although the proof of both results has the same starting point, the classical result that asserts that the cross ratio of four different solutions of a Riccati differential equation is constant, the trigonometric case is much more involved. The main reason is that the ring of trigonometric polynomials is not a unique factorization domain.

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jde.2016.07.019

0022-0396/© 2016 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: gasull@mat.uab.cat (A. Gasull), torre@mat.uab.cat (J. Torregrosa), xzhang@sjtu.edu.cn (X. Zhang).