
ON SOME BACKGROUND FLOWS FOR TSUNAMI WAVES

ANNA GEYER

Abstract. With the aim to describe the state of the sea in a coastal region prior to
the arrival of a tsunami, we show the existence of background flow fields with a flat free
surface which model isolated regions of vorticity outside of which the water is at rest.

1. Introduction

Tsunami waves are generated by a sudden vertical displacement of a body of water on
a massive scale, caused by landslides, volcanic eruptions or, most commonly, by undersea
earthquakes [2]. Tectonic collisions in the form of thrust (or normal) faults sometimes make
the ocean floor rise (or drop) by a few meters, causing the column of water directly above to
rise (or fall) as well and thereby creating an initial wave profile of elevation (or of depression),
as it was the case with the December 2004 tsunami cf. [16, 23, 9, 10, 4, 5]. Tsunami waves
are a special type of gravity water waves, with typical wavelength of hundreds of kilometers,
which can travel over thousands of kilometers at very high speed with little loss of energy, a
spectacular example being the May 1960 tsunami that originated near the Chilean coast (due
to the largest earthquake ever recorded) and propagated across the Pacific Ocean devastating
coastal areas in Hawaii and Japan, 10000 km respectively 17000 km far from the Chilean coast
[8, 24]. Away from the shore, where the ocean can be assumed to have uniform depth over
large distances (e.g. the ocean floor of the Central Pacific Basin is relatively uniform, with a
mean water depth of about 4300m cf. [8]), the evolution of the wave is governed essentially
by linear water wave theory, the typical wave speed being

√
gh with g the gravitational

constant of acceleration and h the average depth of the sea [23, 11]. The amplitude of a
tsunami wave out in the open sea is typically very small (roughly about 0.5m cf. [23]), but
when it approaches a gently sloping beach the front of the wave slows down causing the
water to pile up vertically, since the back of the wave is still hundreds of kilometers out in
the sea, travelling at much higher speed. The enormous amounts of water involved in this
process, account for much of the devastating effects tsunami waves have in coastal areas.

Before the arrival of the tsunami waves at the shore, the water in that region is unlikely
to be still: even in the presence of surface waves of small amplitude or for a flat free surface,
beneath the surface there could be considerable motion due to the presence of currents
(already for irrotational flows with a free surface, an underlying uniform current complicates
considerably the dynamics of the flow since without a current all particle paths describe a
non-closed loop [3] whereas certain currents can produce closed particle paths [14]). Taking
into account currents, it seems essential in a reasonable model for tsunami waves to allow for
some kind of background flow field, which models the motion of water in the absence of waves.
While most investigations are restricted to irrotational flows which model background states
of still water, the possibility of incorporating pre-existing vorticity has only recently been
studied in [10]. Various vorticity distributions were obtained in the shallow water regime
and it was found that the requirement of a flat free surface is too restrictive, as it invalidates
even the simple choice of constant non-zero vorticity throughout the flow field. As opposed
to passing to the long wave limit and studying approximations for the shallow water regime,
background flows that are governed by the full Euler equations and model isolated regions
of vorticity outside of which the water is still have been only recently studied in [6], where
a rigorous proof of the existence of a non-trivial solution to the equations governing such
background flows which allow for a flat surface is given for a particular choice of vorticity
distribution. The aim of the present work is to discuss a generalization of this result. While
in [6] a special type of vorticity distribution was provided, we present a whole family of



2 A. GEYER

vorticity distributions (which includes that considered in [6]) admitting a vorticity region
surrounded by still water.

2. Physical assumptions and the formulation of the problem

We can reasonably model the evolution of tsunami waves in a two dimensional setting,
a simplifying assumption which is justified for the December 2004 tsunami off the coast of
Indonesia [23] and the 1960 Chile tsunami [4]. The direction of propagation of tsunami waves
was mainly perpendicular to the fault line, with the length of the rupture zone exceeding
the wavelength, and the ocean depth over which the tsunami waves travelled was relatively
uniform. Furthermore we assume the water to be inviscid and consider its density to be
constant. As we are concerned with gravity water waves, we neglect surface tension. We want
the model to admit a shoreline and assume that at the bottom we have a fixed impermeable
bed. In Cartesian coordinates (x, y), let the origin be the intersection of the flat free surface
and the seabed at the shoreline x = 0. Let the horizontal x-axis be in the direction of the
incoming right-running waves and the vertical y-axis pointing upwards. We assume the fluid
to extend to −∞ in the negative horizontal direction and let the bed’s topography for a gently
sloping beach be given by the function b(x) where b(0) = 0, b(x) < 0 for x < 0 and b′(0) > 0.
In the open sea we assume uniform depth h0 such that b(x) = h0 for x far away from the
shoreline x = 0. We will denote the fluid domain by D = {(x, y) ∈ R2 : x < 0, b(x) < y < 0}.
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Figure 1. Fluid domain D with an isolated region of non-zero vorticity

In the two-dimensional setting we can introduce a stream function ψ, such that the fluid’s
velocity field is given by (ψy,−ψx). We consider the vorticity ω to be a function of ψ,
ω = γ(ψ), where γ is called vorticity function. Clearly ω = γ(ψ) specifies a vorticity
distribution throughout the flow and notice that in the absence of stagnation points (that is,
points where ∇ψ = (0, 0)), one can prove that the vorticity distribution is specified by means
of a vorticity function cf. the discussion in [13, 7]. The equations governing a background
state with flat free surface can be reformulated in terms of ψ as ∆ψ = −γ(ψ) in D,

ψ = ψy = 0 on y = 0,
ψ = 0 on y = b(x),

(2.1)

given a vorticity distribution γ and the bottom profile b of the fluid domain D. For a
detailed discussion of how these equations governing the fluid motion can be derived from
the principle of mass conservation and the Euler equations we refer to [13] and [10].

Our aim is to show existence of an isolated region of non-zero vorticity in the fluid domain,
outside of which the water is at rest (see Figure 1). That is, we have to find a suitable
vorticity distribution γ and prove that (2.1) has a non-trivial radially symmetric solution
with compact support in D.

Radial solutions are obtained via the Ansatz

ψ(x, z) = ψ(r) with r =
√
(x− x0)2 + (y − y0)2 for (x0, y0) ∈ D,

turning the system (2.1) into the semi-linear second order differential equation

(2.2) ψ′′ +
1

r
ψ′ = −γ(ψ), r > 0,
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where ′ denotes the derivative with respect to r. Note that for solutions with compact
support the boundary conditions in (2.1) will be trivially satisfied, as ψ ≡ 0 outside some
compact region. To be able to uniquely determine a solution to (2.2), we have to specify
initial values for ψ and ψ′ at r = 0, say

(2.3) (ψ(0), ψ′(0)) = (a, 0).

We require ψ′(0) = 0 to produce classical solutions.
The boundary value problem (2.1) is over-determined and it is expected that a non-

trivial solution will only exist for certain classes of functions γ. The fact that our model
admits a shoreline and we require the water to be still outside the region of vorticity imposes
restrictions on the regularity of γ. For linear vorticity functions γ(ψ) = aψ + b it can be
shown (see [10]) that system (2.1) admits only trivial solutions. The argument relies mainly
upon maximum principles and the fact that the streamlines of the flat free surface and the
seabed intersect at the shoreline and are equal to zero.

The argument uses essentially the restrictive boundary conditions on the flat free surface
and the seabed and follows from maximum principles.

We can therefore not hope to find non-trivial solutions with compact support inside a
circular boundary for a linear vorticity distribution as suggested for example in [1], since
these arise in the context of an unbounded fluid which is at rest at infinity. As we are
interested in classical solutions, γ has to be at least continuous. However, requiring γ ∈ C1

precludes radially symmetric solutions with compact support in the fluid domain, since we
could find a value T > 0 sufficiently large, such that ψ(T ) = ψ′(T ) = 0. Then, by the
backward uniqueness property [15] for (2.2) with γ ∈ C1, we would have ψ(r) ≡ 0 for all
values of r > 0. The considerations made in [12] and [6] lead us to consider the vorticity
function

γ(ψ) =

{
ψ − ψ|ψ|−α for ψ 6= 0,

0 for ψ = 0,
α ∈ (0, 1).(2.4)
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Figure 2. The vorticity function γ for the value of α = 1
2

We now state the main result of this paper.

Theorem 2.1. For vorticity functions of type (2.4) there exists a > 0 such that (2.2)-(2.3)
has a non-trivial, C2-solution ψ with compact support on [0,∞). This models a background
state in the fluid domain D with an isolated region of non-zero vorticity outside of which the
water is still.
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3. Proof of the main result

Instead of solving the second order initial value problem (2.2)-(2.3), consider the equivalent
planar system of first order ordinary differential equations

(3.1)

 ψ′ = β,

β′ = −1
rβ − ψ + ψ|ψ|−α,

r > 0,

with initial values

(3.2) ψ(0) = a, β(0) = 0.

Define

(3.3) aα := (
2

2− α
)

1
α > 1 and Mα :=

a
2

α4
α for 0 < α ≤ 1

2 ,

a
8

(1−α)α2

α for 1
2 ≤ α < 1.

The proof of Theorem 2.1, using a dynamical system approach which relies upon basic
theory of ordinary differential equations, follows essentially from the results of the following
two propositions, which we will prove in Sections 3.1 and 3.2, respectively.

Proposition 3.1. For all a > aα there exists a unique C2-solution (ψ, β) to (3.1)-(3.2) which
depends continuously on the initial data (a, 0) on any compact interval on which ψ2(r) +
β2(r) > 0. Furthermore the solution satisfies ψ > 1 for r ∈ [0, 1].

Proposition 3.2. There exists a > Mα > aα such that for the corresponding solution (ψ, β)
of (3.1)-(3.2) there is a finite value T > 0 with ψ(T ) = β(T ) = 0.

Proof of Theorem 2.1 By virtue of Propositions 3.1 and 3.2 there exists a value of a >
Mα > aα such that for the corresponding uniquely defined C2-solution to (3.1)-(3.2), we can
find T > 0 such that ψ(T ) = β(T ) = 0. Then by setting ψ(r) = 0 for r ≥ T we obtain
a compactly supported solution of (2.2) defined for all r ≥ 0. Furthermore, recall from
Proposition 3.1 that ψ(r) > 1 for r ∈ [0, 1], which in view of (2.4) yields ω = γ(ψ) > 0.
Since ψ has compact support, we obtain an isolated region of non-zero vorticity ω which
contains a ball of unit radius where ω > 0, outside of which the water is at rest.

3.1. Proof of Proposition 3.1. We claim that for any a > aα there exists a unique C2-
solution (ψ, β) to (3.1)-(3.2) which depends continuously on the initial data (a, 0) on any
compact interval on which ψ2(r) + β2(r) > 0 and for which ψ > 1 for r ∈ [0, 1].

This is not immediately clear for two reasons:

• the right hand side of (3.1) displays a discontinuity at r = 0, so the system is not a
classical initial value problem.

• since the vorticity function γ(ψ) fails to be locally Lipschitz when ψ = 0 the right
hand side of (3.1) is not locally Lipschitz and we cannot apriori expect uniqueness
of solutions or continuous dependence on initial data from the standard theory of
ordinary differential equations.

In the first part of the proof, summed up in Lemma 3.1, we consider the system in
the vicinity of the discontinuity, for r ∈ [0, 1]. By a simple change of variables (3.6) we
overcome the problem of the discontinuity and solve the equivalent system (3.4) using an
integral Ansatz and Banach’s fixed point theorem. We ensure continuous dependence of
solutions on the initial data (a, 0) and find that the solutions of the integral equation (3.7)
are always greater than one. In Lemma 3.2 we introduce an important functional (3.14)
which decreases along solutions and will be helpful in deriving results throughout the proofs
of both Proposition 3.1 and 3.2 as it ensures global existence of solutions. In Lemma 3.3
we tackle the second part of the proof by analyzing the system away from the discontinuity.
The difficulty in this case lies in the fact that the right hand side of (3.1) fails to be locally
Lipschitz continuous whenever ψ = 0. By rewriting the system in polar coordinates we
obtain another equivalent formulation (3.16), for which existence and uniqueness of solutions
as well as continuous dependence on initial data follows from standard results whenever the
right hand side is C1. In the vicinity of points where ψ = 0 an application of the inverse
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function theorem yields yet another local reformulation (3.20), shifting the lack of Lipschitz
continuity in the dependent variable for (3.16) to the independent variable for the new system
and thereby gaining C1-regularity of the dependent variable for (3.20). We thus obtain local
uniqueness and continuous dependence also at points where the right hand side of (3.16)
fails to be Lipschitz.

Lemma 3.1. For r ∈ [0, 1] system (3.1) can be equivalently written as

(3.4) v′′ + e−2s(v − v|v|−α) = 0, s ≥ 0,

where the initial values (3.2) are described by the limits

(3.5) v(s) → a and v′(s)es → 0 for s→ ∞.

Equation (3.4) has a unique C2-solution which depends continuously on the parameter a and
with v(s) > 1 for s ≥ 0. In particular, this means that for r ≤ 1, (3.1)-(3.2) has a unique
C2-solution (ψ, β) which depends continuously on a and is such that ψ(r) > 1 for r ∈ [0, 1].

Proof. We perform the change of variables

(3.6) s = − ln r, ψ(r) = v(s),

and find that (3.1) is equivalent to

v′′ + e−2s(v − v|v|−α) = 0, s ∈ R.

This follows from the fact that (3.1) is equivalent to (2.2) which in view of

ψ′′ +
1

r
ψ′ + ψ − ψ|ψ|−α = v′′

1

r2
+ v′

1

r2
− 1

r2
v′ + v − v|v|α = 0

yields

v′′ + r2(v − v|v|α) = 0.

The restriction 0 ≤ r ≤ 1 is equivalent to s ≥ 0 in the new variable.
Let an arbitrary a > aα be fixed. We can deal with local existence and uniqueness issues

of a solution to (3.1)-(3.2) by considering the integral equation

(3.7) v(s) = a−
∫ ∞

s

(
τ − s)e−2τ (v(τ)− v(τ)|v(τ)|−α

)
dτ, s ≥ 0.

The corresponding asymptotic behavior (3.5) is ensured by

(3.8) v′(s) =

∫ ∞

s

e−2τγ(v(τ)) dτ, s ≥ 0,

since

lim
s→∞

v(s) = lim
s→∞

a−
∫ ∞

s

(
τ − s)e−2τγ(v(τ))dτ = a

and

lim
s→∞

v′(s)es = lim
s→∞

∫∞
s
e−2τγ(v(τ))dτ

e−s
= lim
s→∞

e−2sγ(v(s))

e−s
= lim
s→∞

e−s γ(v(s)) = 0,

where we used the rule of de l’Hospital in the second equality.
As long as v(s) ≥ 1 we have that v is non-decreasing, since γ(v) ≥ 0 which in view of

(3.8) gives v′(s) ≥ 0. We even have

(3.9) v(s) > a1−α > 1 for s ≥ 0.

Indeed, if this were not so, define s1 := sup{s ≥ 0 : v(s) = a1−α}. Then for all s ≥ s1 we
have 1 < a1−α ≤ v(s) ≤ a, which in view of (3.7) yields a contradiction as

0 < a− a1−α = a− v(s1) =

∫ ∞

s1

(τ − s1)e
−2τ

(
v(τ)− v(τ)1−α

)
dτ

≤ (a− a1−α)

∫ ∞

s1

(τ − s1)e
−2τdτ = (a− a1−α)

e−2s1

4
≤ (a− a1−α)

4
,

in view of the fact that γ(v) is strictly increasing for v ∈ [a1−α, a]. So for s ≥ 0 we have that
v(s) > a1−α > 1 is non-decreasing.
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These considerations allow us to view the solution of the integral equation (3.7) as the
unique fixed point of the contraction Ta defined by

(3.10) Ta(v)(s) := a−
∫ ∞

s

(τ − s)e−2τ (v(τ)− v(τ)|v(τ)|−α)dτ, s ≥ 0,

on the closed subspace Xa := {v ∈ X : a1−α ≤ v(s) ≤ a, s ≥ 0} of the Banach space
X of bounded continuous functions on [0,∞) endowed with the supremum norm ‖v‖ =
sups≥0{|v(s)|}. To be able to apply Banach’s contraction principle (in the following form:
For F ⊂ X a closed subspace of a Banach space X, any contraction T : F → F has a unique
fixed point) to (3.10) and subsequently to the integral equation (3.7), we have to check the
hypotheses.

Notice that for v ∈ Xa we have v ≥ 1, since a > aα and thus a1−α > ( 2
2−α )

1−α
α > 1 for

0 < α < 1. Let us check that Ta(v) ∈ Xa, i.e.

a1−α ≤ a−
∫ ∞

s

(τ − s)e−2τγ(v(τ))dτ ≤ a, s ≥ 0.

The upper bound follows from the fact that the integral is positive, since for v ∈ Xa, v ≥ 1
and thus γ(v) ≥ 0. For the lower bound, we use the same reasoning as in the proof of (3.9).
Now we show that Ta as defined above is a contraction. Since the vorticity function γ defined
in (2.4) is C1 on [1,∞), by the mean value theorem (cf. [?]) there exists ξ ∈ (v, w) for v, w ≥ 1
such that γ(v)− γ(w) = γ′(ξ)(v − w). This yields

(3.11) |γ(v)− γ(w)| ≤ |v − w| for v, w,≥ 1,

since γ′(ξ) ≤ 1 for ξ ≥ 1. Then for s ≥ 0 we have∣∣∣ ∫ ∞

s

(τ−s)e−2τ [γ(v(τ))− γ(w(τ))]dτ
∣∣∣ ≤ ∫ ∞

s

(τ−s)e−2τ |v(τ)− w(τ)|dτ

≤ ‖v−w‖
∫ ∞

s

(τ−s)e−2τdτ =
1

4
‖v−w‖ ,

whenever v, w ∈ Xa. Thus

‖Ta(v)− Ta(w)‖ ≤
∣∣∣ ∫ ∞

s

(τ − s)e−2τ

(
γ(v(τ))− γ(w(τ))

)
dτ

∣∣∣
≤ 1

4
‖v − w‖ for v, w ∈ Xa, s ≥ 0,

which shows that Ta is a contraction on Xa with contraction constant K ≤ 1
4 .

Therefore, according to Banach’s contraction principle, Ta has a unique fixed point, i.e. the
integral equation (3.7) has a unique solution v ∈ Xa which is of class C2 since v′′(s) =
−e−2s(v(s)− v(s)1−α) is continuous for s ≥ 0.

To show continuous dependence of the solution on the parameter a, let v1 ∈ Xa1 , v2 ∈ Xa2 .
Then the integral equation (3.7) yields, in view of (3.11), that for s ≥ 0

|v1(s)− v2(s)| ≤ |a1 − a2|+
∫ ∞

s

(τ − s)e−2τ |v1(τ)− v2(τ)|dτ(3.12)

≤ |a1 − a2|+
1

4
‖v1 − v2‖ ,

and therefore

(3.13) ‖v1 − v2‖ ≤ 4

3
|a1 − a2|,

so we actually even obtain that the solution is stable, cf. [15]. �

Before we proceed to the case where r ≥ 1, we prove the following useful

Lemma 3.2. The function

(3.14) E(r) = E(ψ, β) =
1

2
β2 +

1

2
ψ2 − 1

2− α
|ψ|2−α
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satisfies

(3.15) E′(r) = −1

r
β2, r > 0,

as long as solutions to (3.1)-(3.2) exist and remains bounded for all r > 0. Furthermore, E(r)
is strictly decreasing whenever (ψ(r), β(r)) /∈ {(0, 0), (±1, 0)}. We conclude that solutions to
(3.1)-(3.2) are defined for all r ≥ 0 and that ψ and β are bounded functions of r.

Proof. As long as a solution to (3.1)-(3.2) exists, we have E′(r) = − 1
rβ

2, since the derivative
with respect to r of the function E(r) given by (3.14) in view of (3.1) can be computed as

E′(r) = ψβ − β|ψ|−αψ + β(−1

r
β − ψ + ψ|ψ|−α) = −1

r
β2.

Notice that E attains its minimum Emin = α
2(α−2) < 0 at (ψ, β) = (±1, 0), so that (3.15)

ensures that E remains bounded. Furthermore,

inf
ψ∈R

{ψ2

2
− 1

2− α
|ψ|2−α

}
=

α

2(α− 2)
and lim

|ψ|→∞

{ψ2

2
− 1

2− α
|ψ|2−α

}
= ∞.

Therefore ψ and β remain bounded as long as solutions exist, since otherwise E would
become unbounded. We conclude that the solutions to (3.1)-(3.2) are defined for all r ≥ 0.

Let us now prove that E(r) is strictly decreasing whenever (ψ(r), β(r)) /∈ {(0, 0), (±1, 0)}.
Otherwise, for r2 > r1 > 0 with E(r2) = E(r1), we would have

0 = E(r2)− E(r1) =

∫ r2

r1

E′(r)dr = −
∫ r2

r1

β2(r)

r
dr.

This implies β(r) = 0 on [r1, r2] and consequently from (3.1) we have that ψ′(r) = β′(r) = 0
for all r ∈ [r1, r2]. Thus, ψ(r) = ψ(r1) = ψ(r1)|ψ(r1)|−α is constant in [r1, r2], so that
ψ(r) ∈ {0,±1} in view of (3.1), a contradiction. �

Now we consider the system away from the discontinuity at r = 0 and prove existence,
uniqueness and continuous dependence of solutions on the parameter a as long as ψ2+β2 > 0.

Lemma 3.3. For r ≥ 1 system (3.1) can be equivalently reformulated as

(3.16)


θ′(r) = − 1

2r
sin (2θ)− 1 +R−α| cos(θ)|2−α,

R′(r) = −1

r
R sin2(θ) +R1−α sin(θ)

cos(θ)

| cos(θ)|α
,

r ≥ 1.

As long as R > 0 this system of first order differential equations has a unique C2-solution
which depends continuously on the initial data (θ(1), R(1)), which in turn depends continu-
ously on the parameter a.

Proof. We introduce polar coordinates

(3.17) ψ = R cos(θ), β = R sin(θ),

to show that (3.16) is yet another equivalent formulation of (3.1):

θ′(r) =
d

dr
arctan

(
β(r)

ψ(r)

)
=
β′ψ − βψ′

ψ2 + β2

(3.1)
=

−1
rβψ − ψ2 + |ψ|2−α − β2

ψ2 + β2

(3.17)
=

− 1
rR

2 sin(θ) cos(θ)−R2 cos2(θ) +R2−α| cos(θ)|2−α −R2 sin2(θ)

R2

= − 1

2r
sin(2θ) +R−α| cos(θ)|2−α − 1,
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and

R′(r) =
ψ′ cos(θ) + ψ sin(θ)θ′

cos2(θ)

=
R sin(θ) cos(θ) +R cos(θ) sin(θ)(−1

r sin(θ) cos(θ) +R−α| cos(θ)|2−α − 1)

cos2(θ)

= −1

r
sin2(θ)R+R1−α sin(θ) cos(θ)| cos(θ)|−α.

The initial data (θ(1), R(1)) is specified after solving the integral equation (3.7) on [0,∞).
To show continuous dependence of (θ(1), R(1)) on a, notice that (3.8) in view of (3.11) and
(3.13) yields for s ≥ 0

|v′1(s)− v′2(s)| ≤
∫ ∞

s

e−2τ |γ(v1(τ))− γ(v2(τ))|dτ

≤
∫ ∞

s

e−2τ |v1(τ)− v2(τ)|dτ

≤ 1

4
‖v1 − v2‖ ≤ 1

3
|a1 − a2|.(3.18)

Evaluating inequalities (3.12) and (3.18) at s = 0 together with (3.13) yields

(3.19) |v1(0)− v2(0)|+ |v′1(0)− v′2(0)| ≤
5

3
|a1 − a2|.

In view of the formulation (3.16) of the initial value problem (3.1)-(3.2) this means that ψ and

ψ′ = β vary little at r = 1. Thus, θ(1) = arctan
(
β(1)
ψ(1)

)
and R(1) =

√
ψ2(1) + β2(1) depend

continuously on a. The considerations we made in Lemma 3.1 show that ψ(1) > a1−α > 0

and R(1) > 0, so cos(θ(1)) = ψ(1)
R(1) > 0. As long as R > 0 and cos(θ) > 0 the right hand side

of (3.16) is C1. Thus we get local existence and uniqueness as well as continuous dependence
on initial data (θ(1), R(1)) for a solution to (3.16) by standard results.

We show that, as long as R > 0, this holds true even if cos(θ(r)) = 0, that is, at points
where a solution intersects the vertical axis in the (ψ, β)-phase plane. At such points, the
right hand side of (3.16) is still continuous and bounded, but fails to be locally Lipschitz.
Thus, while we can still rely for the local existence of solutions on the Cauchy–Peano theorem
[15], uniqueness and continuous dependence on initial data on the other hand are no longer
guaranteed. We overcome this problem by transforming the system in a neighborhood of
such values of r, taking advantage of its local structure.

Denote by r0 the smallest value of r > 1 where cos(θ(r0)) = 0, say θ(r0) = −π
2 . Since for

r ∈ (1, r0) the right hand side of (3.16) is C1, the solution is unique and depends continuously
on the initial data (θ(1), R(1)) up to r0. We then select one of the possible continuations of
the solution across r = r0 and show that this selection is unique and depends continuously
on (θ(1), R(1)) close to r = r0. Since cos(θ(r0)) = 0 and θ′(r0) = −1, the inverse function
theorem (cf. [17]) guarantees the existence of neighborhoods (r0−ε, r0+ε) of r0 and (−δ, δ+)
of 0 for sufficiently small ε > 0 and δ, δ+ > 0, as well as a uniquely determined C1-function

ϕ(τ) = r

such that ϕ(0) = r0, ϕ(−δ) = r0 − ε and ϕ(δ+) = r0 + ε which allows us to locally set

cos(θ(r)) = −τ.
Notice that this transformation preserves the monotonicity of the respective independent
variables r and τ , since θ′ < 0 and cos(θ) is increasing in a neighborhood of −π

2 . Thus
r0 − ε < r0 < r0 + ε implies cos(θ(r0 − ε)) > cos(θ(r0)) > cos(θ(r0 + ε)), or, equivalently,
cos(ϕ(−δ)) > 0 > cos(ϕ(δ+)), which in view of cos(θ(ϕ(τ))) = −τ implies −δ < 0 < δ+.
Differentiating the equation ϕ(τ) = ϕ(− cos(θ(r))) = r with respect to r ∈ (r0 − ε, r0 + ε)
yields

ϕ′(τ) =
1

θ′(r) sin(θ(r))
, τ ∈ (−δ, δ+).

Setting

ρ(τ) = R(r)
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yields

ρ′(τ) = R′(r)ϕ′(τ), for r ∈ (r0 − ε, r0 + ε), τ ∈ (−δ, δ+).
Now we transfer (3.16) for r ∈ (r0 − ε, r0 + ε) and τ ∈ (−δ, δ+) into the system

(3.20)


ϕ′(τ) =

1
√
1− τ2 + τ(1−τ2)

ϕ(τ) − ρ(τ)−α|τ |2−α
√
1− τ2

,

ρ′(τ) = −
1

ϕ(τ)ρ(τ)
√
1− τ2 − ρ(τ)1−α τ

|τ |α

−1− τ
√
1−τ2

ϕ(τ) + ρ−α(τ)|τ |2−α
.

A straightforward calculation and the fact that

sin(2θ) = 2 sin(θ) cos(θ) = 2(−
√
1− cos2(θ)) cos(θ) = 2τ

√
1− τ2

for ε > 0 small enough shows that (3.20) and (3.16) are equivalent.

The advantage of the system (3.20) with respect to (3.16) is that the lack of C1-regularity
in θ was shifted into a lack of C1-regularity in τ . Consequently, the new system is C1 in
the unknown variables (ϕ, ρ) ∈ (1,∞) × (0,∞) and continuous in the independent vari-
able τ . This is enough to ensure uniqueness and continuous dependence on initial data
(ϕ(−δ), ρ(−δ)) of the solutions to (3.20). Furthermore, (ϕ(−δ), ρ(−δ)) depends continu-
ously on (θ(r0 − ε), R(r0 − ε)) via the C1-function ϕ(τ) = r and we already mentioned the
continuous dependence of solutions (θ(r), R(r)) on (θ(1), R(1)) and thus on the parameter
a for r ∈ (1, r0). We can therefore deduce that uniqueness and continuous dependence on a
of the solution to (3.16) holds also in a neighborhood of r0.

This procedure can be repeated in almost the same way for the next value of r > r0 where
cos(θ(r)) = 0, i.e. where the solution intersects the vertical axis in the upper half plane.
Then again an application of the inverse function theorem (cf. [17]) guarantees the existence
of a C1-function ϕ(τ) = r such that we can locally set

cos(θ(r)) = τ.

Notice that this time we choose cos(θ(r)) = τ instead of −τ to preserves monotonicity of the
respective independent variables. As before, we transfer (3.16) into a system which differs
from (3.20) only by a change of sign in the second equation. Thus by the same reasoning as
above we deduce that uniqueness and continuous dependence on a of the solution to (3.16)
also holds in neighborhoods of points where the solution intersects the vertical axis in the
upper half plane. This procedure can be repeated for all values of r where the right hand
side of (3.16) fails to be locally Lipschitz, as long as R > 0.
Summing up, we can say that for values of r where cos(θ(r)) = 0, that is, where θ(r) =
−π

2 +2kπ or θ(r) = π
2 +2kπ for k ∈ Z, the above local transformations guarantee uniqueness

and continuous dependence on a of the solution to (3.16) also in neighborhoods of such
values as long as R > 0. In between these values of r, the right hand side of (3.16) is C1 and
everything follows from standard results. �

This concludes the proof of Proposition 3.1, as we have seen that for any a > aα there
exists a unique C2-solution (ψ, β) to (3.1)-(3.2) for which ψ > 1 on [0, 1] by virtue of (3.9)
and which depends continuously on the initial data (a, 0) on any compact interval on which
ψ2(r) + β2(r) > 0.

3.2. Proof of Proposition 3.2. We show that there exists a value of a > aα such that for
the corresponding solution to (3.1)-(3.2) we can find some 0 < T <∞ with ψ(T ) = β(T ) = 0.
The idea is to perform a detailed qualitative analysis for the system (3.1)-(3.2), similar to
the phase-plane analysis of autonomous systems. We introduce two sets Ω± defined by the
solution sets of the equation E(ψ, β) = 0, where E is the functional defined in Section 3.1.
In Lemma 3.4 we show that for initial data a large enough the solution can enter the region
Ω± only for values of r > 2

α . We find that the value of r at which the solution can enter
Ω± tends to infinity as a → ∞. After that, Lemma 3.5 ensures that there exists an initial
value a+ such that the corresponding solution stays outside Ω− ∪ Ω+ for all r ≥ 0. Finally,
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in Lemma 3.6, we prove that for solutions corresponding to such initial data a+ there exists
a finite value T > 0 such that E(T ) = 0, and therefore also ψ(T ) = β(T ) = 0.

Let us start with defining the sets Ω±. From (3.14) in Lemma 3.2 we have that

E(ψ, β) = 0 if and only if β2 =
2

2− α
|ψ|2−α − ψ2.

In the plane (ψ, β) the set where E < 0 consists of the interiors Ω± of the closed curves rep-

ψ
aα

βα
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Figure 3. The solution set of E = 0 in the phase plane (ψ, β) with arrows
indicating the dynamics of the system

resenting the solution set of the above equation. These curves are symmetrical with respect
to the vertical and the horizontal axis and are tangential to one another and to the vertical
axis at the origin. Note from (3.3) that the curves reach their maximum βα = ( α

2−α )
1
2 at

ψ = ±1 and they intersect the horizontal axis at the points ψ = 0 and ψ = ±( 2
2−α )

1
α = ±aα.

To get a better understanding of the dynamics of the system (3.1), consider the right half
plane, where ψ > 0. At β = 0 we have ψ′ = β = 0 and β′ = − 1

rβ − ψ + ψ|ψ|−α > 0 when
ψ|ψ|−α > ψ which is true for 0 < ψ < 1, whereas β′ < 0 for ψ > 1. In the left half plane,
we have exactly the opposite situation. Therefore, solutions intersect the horizontal axis
perpendicularly from the upper to the lower half plane for ψ > 1 and for −1 < ψ < 0. On
the complement of these sets, they intersect the axis in the opposite direction. For ψ = 0
and β > 0 we have that ψ′ > 0 and β′ < 0, which means that solutions intersect the vertical
axis from left to right in the upper half plane. In the lower half plane, the opposite is true
(see Figure 3).

By Lemma 3.2, E is strictly decreasing as long as (ψ, β) /∈ {(0, 0), (±1, 0)}. Therefore,
once a solution reaches the boundary of Ω± at a point other than (0, 0) it will enter Ω±.
Once inside, a solution will stay in either Ω+ or Ω− for all subsequent times, as E is strictly
decreasing.

Recall from (3.3) that we defined

Mα :=

a
2

α4
α for 0 < α ≤ 1

2 ,

a
8

(1−α)α2

α for 1
2 ≤ α < 1.

For certain initial data, solutions stay outside of Ω± for some time:

Lemma 3.4. For a > Mα we have that E(r) > 0 as long as r ∈ [0, 2
α ]. This means that a

solution to (3.1)-(3.2) with a > Mα can enter Ω± only for values of r > 2
α . Additionally, we

find that the value of r such that a solution can enter Ω± tends to infinity as a→ ∞.

Proof. Let a > a
2

1−α
α . We know from the results in Lemma 3.1 that for r ∈ [0, 1], R(r) =

ψ(r)
cos(θ(r)) > a1−α > aα. If a solution with initial data a enters the region Ω+ ∪ Ω−, then for
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some value of r∗ > 1 we will have R(r∗) = aα < a
1−α
2 . We can therefore define

r0 = inf{r > 0 : R(r) = aα}
r1 = sup{0 < r < r0 : R(r) = a1−α} > 1(3.21)

r2 = sup{r1 < r < r0 : R(r) = a
1−α
2 }

so that

a1−α = R(r1) ≥ R(r) ≥ R(r2) = a
1−α
2 for r ∈ [r1, r2].

The argument leading to the desired result requires us to consider separately the case where
α ∈ (0, 12 ] and the case where α ∈ [ 12 , 1). Some inequalities involving functions of α in the
exponent will be denoted by (a)-(c) and will be shown at the end of the proof of this Lemma.

Let α ∈ (0, 12 ]. We claim that

(3.22) r2 ≥ aα
3

.

Indeed, assume to the contrary that r2 < aα
3

, then from (3.16) we infer that

R′(r) = −1

r
R sin2(θ) +R1−α sin(θ)

cos(θ

| cos(θ)|α
≥ −1

r
R−R1−α > −2

r
R.

In the last inequality we have used that R(r) ≥ a
1−α
2 , thus for α ∈ (0, 12 ] we have that

Rα ≥ a
(1−α)α

2

(a)

≥ aα
3

> r2 ≥ r for r ∈ [r1, r2], which yields −R1−α > − 1
rR. Integrating the

differential inequality
R′(r)

R(r)
> −2

r
, r ∈ [r1, r2]

with respect to r on [r1, r2] yields

ln r2 > ln r1 +
1

2
ln

(
R(r1)

R(r2)

)
= ln r1 +

1

2
ln

(
a1−α

a
1−α
2

)
= ln r1 + ln(a

1−α
4 ),

which in turn gives

r2 > r1 a
1−α
4 > a

1−α
4

(a)

≥ aα
3

, for α ∈ (0,
1

2
].

This last argument yields a contradiction and we are done proving the claim that r2 ≥ aα
3

.

Note that this also means that r0 > r2 ≥ aα
3

and the smallest value of r such that a solution
can enter Ω− or Ω+ is r0. We can therefore deduce that solutions corresponding to initial

data a > a
2

α4
α will stay outside Ω−∪Ω+ at least for values of r ∈ [0, 2

α ], since a > a
2

α4
α implies

aα
3

> a
2
α
α = (

2

2− α
)

2
α2

(c)
>

2

α

and thus r0 > aα
3

> 2
α .

Now let α ∈ [12 , 1). We claim that in this case

(3.23) r2 ≥ a
1−α
4 .

If we assume to the contrary that r2 < a
1−α
4 , then from (3.16) we infer again that

R′(r) ≥ −1

r
R−R1−α > −2

r
R,

since R(r) ≥ a
1−α
2 and thus

Rα ≥ a
(1−α)α

2

(b)

≥ a
1−α
4 > r2 ≥ r

for r ∈ [r1, r2] and α ∈ [12 , 1), which yields −R1−α > −1
rR. Integrating the differential

inequality
R′(r)

R(r)
> −2

r
, r ∈ [r1, r2],
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with respect to r on [r1, r2] gives

r2 > r1 a
1−α
4 > a

1−α
4 , α ∈ [

1

2
, 1).

This last argument again yields a contradiction and we are done proving the claim that

r2 ≥ a
1−α
4 . Note that this also means that r0 > r2 ≥ a

1−α
4 and as before the smallest value

of r such that a solution can enter Ω− or Ω+ is r0. We can therefore deduce that solutions

corresponding to initial data a > a
8

(1−α)α2

α will stay outside Ω− ∪ Ω+ at least for values of
r ∈ [0, 2

α ], since

a
(1−α)α

4 > a
2
α
α = (

2

2− α
)

2
α2

(c)
>

2

α
and thus

r0 > a
1−α
4 > a

2
α2
α ≥ a

2
α
α >

2

α
.

Summing up, we can state that for a > Mα and r ≤ 2
α we have R(r) > aα and it follows

that

(3.24) E(r) > 0 for r ∈ [0,
2

α
], if a > Mα,

since

E(r) =
1

2
(β2 + ψ2)− 1

2− α
|ψ|2−α =

1

2
R2 − 1

2− α
R2−α| cos θ|2−α(3.25)

≥ R2−α
(
1

2
Rα − 1

2− α

)
> a2−αα

(
1

2
aαα − 1

2− α

)
= 0.(3.26)

This means that a solution with a > Mα can enter Ω− or Ω+ only for a value of r > 2
α .

Moreover, (3.22) and (3.23) show that as a → ∞ the value of r > 0 at which a solution
enters the region Ω− ∪ Ω+ approaches infinity.

To finish the proof of this Lemma we show that the following inequalities hold:

(a) a
1−α
4 > a

(1−α)α
2 > aα

3

for α ∈ (0, 12 ),

(b) a
(1−α)α

2 > a
1−α
4 for α ∈ ( 12 , 1),

(c) ( 2
2−α )

2
α2 > 2

α for α ∈ (0, 1).
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Figure 4

Since a > 1, in (a) and (b) it suffices to consider the exponent functions of α in and
compare them in size (cf. Figure 4a). Inequality (c) can be shown by noting (cf. Figure 4b)
that the statement is equivalent to

ln
2

2− α
>
α2

2
ln

2

α
for α ∈ (0, 1).

Then, define f(α) = α
2 , g(α) = ln 2

2−α for α ∈ (0, 1). Both functions are monotone increasing

and equal to 0 at α = 0. Since g′(α) = 1
2−α > 1

2 = f ′(α), f(α) < g(α) for all α ∈ (0, 1).
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Furthermore, let h(α) = α ln 2
α , then h(α) → 0 as α → 0 and h(2) = 0. It is easy to

check that h(α) has its only maximum at α = 2
e with h( 2e ) = 2

e < 1 which shows that

h(α) = α ln 2
α < 1. Thus

α2

2
ln

2

α
=
α

2
h(α) <

α

2
= f(α) < g(α) = ln

2

2− α
.

�
Now we know that the solution to certain initial conditions a > Mα can only enter the

region Ω± for a value of r > 2
α . Furthermore, this value of r increases if we let the starting

point a tend to infinity. The question that arises is: will all solutions with initial data
a > Mα enter Ω±? The answer is no, which represents our next result.

Lemma 3.5. There exists initial data a+ > Mα such that the corresponding solution to
(3.1)-(3.2) stays outside of Ω+ ∪ Ω− for all r ≥ 0.

Proof. Outside of Ω− ∪ Ω+ we have E > 0 so that ψ2 + β2 > 2
2−α |ψ|

2−α. Passing to polar

coordinates (3.17) we find

(3.27) −1− 1

2r
≤ θ′(r) ≤ −α

2
+

1

2r
,

for the values of r > 0 where E(r) > 0. This is easy to see, as the derivative with respect to
r of θ(r), in view of (3.1), is given by

θ′(r) =
β′ψ − βψ′

ψ2 + β2

(3.1)
= −1− βψ

r(ψ2 + β2)
+

|ψ|2−α

ψ2 + β2
= −1−A+B

where

A =
βψ

r(ψ2 + β2)
, B =

|ψ|2−α

ψ2 + β2
.

Since r > 0 we have |A| = |βψ|
r(ψ2+β2) ≤

1
2r , and since E > 0 we have B < 2−α

2 . Thus

θ′(r) = −1−A+B ≥ −1−A ≥ −1− 1

2r
,

and

θ′(r) = −1−A+B ≤ −1 +
1

2r
+

2− α

2
= −α

2
+

1

2r
.

These estimates on θ′(r) gives an upper and lower bound on the angular velocity of the
solution for all values of r > 0 where E(r) > 0. In the previous lemma we showed that
E(r) > 0 at least for r < 2

α if a > Mα. Now, let us consider values of r >
2
α for which E(r)

is still positive. For such values, (3.27) reads

(3.28) −1− α

4
< θ′(r) < −α

4
.

Denote by D+, D− as the sets of points {(a, 0) : a > Mα} such that a solution (ψ, β) to
(3.1)-(3.2) with initial data (a, 0) will enter Ω+, Ω−, respectively, for some finite value of r.
Both sets D+ and D− are open by continuous dependence of the solution on initial data,
since for a point (a∗, 0) ∈ D+, whose corresponding solution enters the region Ω+ at time
r = r∗, a solution whose starting point (a, 0) lies sufficiently close to (a∗, 0) will also enter
Ω+ at some time close to r∗. In the beginning of the discussion of the proof of Proposition
3.2 we analyzed the dynamics of the system and found that in the plane (ψ, β), outside of
Ω− ∪ Ω+ a solution to (3.1)-(3.2) intersects the horizontal axis from the upper to the lower
half-plane on the right of the origin, and in the other direction on the left of the origin.
Notice also that a solution intersects the horizontal axis a finite number of times as it winds
around the region Ω− ∪ Ω+ before entering it. Denote by DN ⊆ D− ∪D+ the set of initial
data such that corresponding solutions intersect the positive horizontal axis exactly N times
prior to entering Ω− or Ω+. Since these intersections are transversal, they are stable under
small perturbations (cf. [18]). Thus, again by continuous dependence on initial data, for any
N these sets DN are open. In view of the fact that solutions are unique once we specify

the initial condition (a, 0), they are disjoint. We can therefore write D− ∪ D+ =
.⋃
NDN .

Assume for a moment that all solutions will at one point enter Ω+ or Ω−. (3.22) and (3.23)
in Lemma 3.4 show that as a → ∞ the value of r > 0 at which a solution can enter the
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region where E < 0 approaches infinity. In view of the above inequality (3.28) and since by
virtue of (3.15), E is strictly decreasing whenever (ψ, β) /∈ {(0, 0), (±1, 0)} , this means that
for r > 2

α a solution to (3.1)-(3.2) with a > Mα keeps winding around the region Ω− ∪ Ω+

before entering it as a → ∞. We deduce that there exist infinitely many open, non-empty
sets DN with N → ∞ as a tends to infinity. By assumption, D−∪D+ = (aα,∞). But this is
an open interval in R which cannot be written as the disjoint union of open non-empty sets
DN . Hence, there exists a+ > Mα such that (a+, 0) /∈ D+ ∪ D−. Solutions to such initial
data will therefore not enter the region Ω− ∪ Ω+. �

Lemma 3.6. For solutions to (3.1)-(3.2) corresponding to initial data a > Mα such that
they stay outside of Ω− ∪ Ω+ for all r ≥ 0, there exist 0 < T < ∞ such that E(T ) = 0 and
ψ(T ) = β(T ) = 0.

Proof. Let us assume that E(r) > 0 for all r ≥ 0 and show that this leads us to a contradic-
tion. Recall (3.28) from the previous lemma. Under the assumption that E > 0 for all r ≥ 0,
this bound on θ′ holds in particular for all r > 2

α . Consequently, a solution to (3.1)-(3.2)

with a > Mα and r > 2
α would surround the region Ω− ∪ Ω+ with angular velocity between

1 + α
4 and α

4 in clockwise direction. Thus we can construct an increasing sequence {rn}n≥1

with r1 >
2
α such that θ(rn) =

π
6 + 2(n− k)π where k ∈ N is fixed. We infer that

(3.29)
8π

α+ 4
< rn+1 − rn <

8π

α
for r1 >

2

α
, n ≥ 1,

since in view of (3.28) we have 2π = θ(rn+1) − θ(rn) < (1 + α
4 )(rn+1 − rn) and 2π =

θ(rn+1)− θ(rn) >
α
4 (rn+1 − rn). This shows that independent of the number of cycles n the

solution has completed, the “time” it takes the solution to return to the ray θ(rn) = π
6 is

bounded from above and below by constants. Now consider the region

(3.30) A :=
{
(ψ, β) : E > 0,

π

6

(
1− 1

3
α
)
< θ <

π

6

}
.

From the dynamics of the system (3.1) we infer that the solutions enter the region A crossing
the ray θ = π

6 at some time r = rn and leave it crossing the ray θ = π
6 (1 − 1

3α) at some
bigger value of r = r+n . This value r

+
n satisfies

(3.31) rn +
2π

9

α

α+ 4
< r+n < rn +

2π

9
,

since we infer from (3.28) that

(−1− α

4
)(r+n − rn) < θ(r+n )− θ(rn) =

π

6
(1− 1

3
α)− π

6
= −α π

18

and − α

4
(r+n − rn) > θ(r+n )− θ(rn) = −α π

18
.

Passing to polar coordinates (3.17), we find that

(3.32) R >

(√
3

2

) 2−α
α

(
2

2− α

) 1
α

in A.

To see this, note that for θ < π
6 we have cos θ > cos π6 =

√
3
2 and thus E > 0 whenever

ψ2 + β2 > 2
2−α |ψ|

2−α or, equivalently,

R2 >
2

2− α
R2−α| cos θ|2−α ≥ 2

2− α
R2−α

(√
3

2

)2−α

.

Consequently, in view of (3.17),

(3.33) β2(r) > sin2(
π

9
)

(√
3

2

) 2(2−α)
α

=: Kα for r ∈ (rn, r
+
n ),



BACKGROUND FLOWS FOR TSUNAMI WAVES 15

since π
6 (1−

1
3α) >

π
9 for α ∈ (0, 1) and sin(θ) > sin

(
π
6 (1−

1
3α)

)
in A. From (3.32) we infer

that

β2(r) = R2 sin2(θ) >

(√
3

2

) 2(2−α)
α

(
2

2− α

) 2
α

sin2(
π

9
)

> sin2(
π

9
)

(√
3

2

) 2(2−α)
α

in A.

Furthermore, by virtue of (3.29) and (3.31),

(3.34) rn +
2π

9

α

α+ 4
< r+n < rn+1,

since r+n < rn+
2π
9 < rn+

8π
α+4 < rn+1 for all α ∈ (0, 1). But now from (3.15), together with

(3.33), (3.31) and (3.34), we get a contradiction:

E

(
2

α

)
− E(∞) = −

∫ ∞

2/α

E′(r)dr =

∫ ∞

2
α

β2(r)

r
dr

≥ Kα

∑
n≥1

∫ r+n

rn

1

r
dr ≥ Kα

∑
n≥1

1

r+n
(r+n − rn)

> Kα
2π

9

α

α+ 4

∑
n≥1

1

rn + 2π
9

= ∞.

The series is divergent since rn <
8π
α (n− 1) + r1 in view of (3.29), and E(∞) is some finite

number, as E is bounded by virtue of Lemma 3.2. Recall that we assumed E(r) for all r ≥ 0,
which lead to the above contradiction. Thus there exists a finite value of T > 0 such that
E(T ) = 0. Notice that for such values of T we also have ψ(T ) = β(T ) = 0. If this were
not the case, the dynamics of the system would force the solution to enter Ω+ or Ω− at this
point, which is contradictory to the assumption of this Lemma. �

3.3. Limiting cases of the parameter α. In the case where α = 1, the vorticity function
γ simplifies to

(3.35) γ(ψ) = ψ − ψ

|ψ|
which has a point of discontinuity at ψ = 0. As we are only interested in classical solutions,
we will not consider this case.
In the case where α = 1 we simply have

(3.36) γ(ψ) ≡ 0.

Thus, system (2.3)-(2.2), for which we seek compactly supported C2-solutions, reads

(3.37)

 ψ′′ + 1
rψ

′ = 0, r > 0,

ψ(0) = a, ψ′(0) = 0,

which we can solve easily, obtaining

ψ(r) = C1 ln(r) + C2,

for some constants C1, C2 ∈ R. In view of the boundary conditions,

C1 = 0 and C2 = a,

and we conclude that ψ(r) ≡ a is constant for all r ≥ 0. In the setting of ψ being the stream
function on the fluid domain D, this means that ψ ≡ a is constant throughout the flow field.
The boundary conditions ψ = ψy = 0 on the flat free surface require this constant to be
zero. So ψ ≡ 0 and the water is still throughout the fluid domain, which is why we do not
consider this case.
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