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Abstract

We consider stability of periodic travelling waves in the generalized reduced Os-
trovsky equation with respect to co-periodic perturbations. Compared to the recent
literature, we give a simple argument that proves spectral stability of all smooth peri-
odic travelling waves independently on the nonlinearity power. The argument is based
on the energy convexity and does not use coordinate transformations of the reduced
Ostrovsky equations to the semi-linear equations of the Klein–Gordon type.
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1 Introduction

We address the generalized reduced Ostrovsky equation written in the form

(ut + upux)x = u, (1)

where p ∈ N is the nonlinearity power and u is a real-valued function of (x, t). This equation
was derived in the context of long surface and internal gravity waves in a rotating fluid
for p = 1 [21] and p = 2 [10]. These two cases are the only cases, for which the reduced
Ostrovsky equation is transformed to integrable semi-linear equations of the Klein–Gordon
type by means of a change of coordinates [3, 9].

We consider existence and stability of travelling periodic waves in the generalized re-
duced Ostrovsky equation (1) for any p ∈ N. The travelling 2T -periodic waves are given
by u(x, t) = U(x− ct), where c > 0 is the wave speed, U is the wave profile satisfying the
boundary-value problem

d

dz

[
(c− Up)dU

dz

]
+ U(z) = 0, U(−T ) = U(T ), U ′(−T ) = U ′(T ), (2)
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and z = x− ct is the travelling wave coordinate. We are looking for smooth periodic waves
U ∈ H∞per(−T, T ) satisfying (2). It is straightforward to check that periodic solutions of
the second-order equation (2) correspond to level curves of the first-order invariant,

E =
1

2
(c− Up)2

(
dU

dz

)2

+
c

2
U2 − 1

p+ 2
Up+2 = const. (3)

In this work, perturbations to the travelling wave are supposed to be co-periodic, that
is, to have the same period 2T . Separating the variables, the spectral stability problem for
the perturbation v to U is given by λv = ∂zLv, where

L = P0

(
∂−2z + c− U(z)p

)
P0 : L̇2

per(−T, T )→ L̇2
per(−T, T ), (4)

where L̇2
per(−T, T ) denotes the space of 2T -periodic, square-integrable functions with zero

mean and P0 : L2
per(−T, T ) → L̇2

per(−T, T ) is the projection operator that removes the
mean value of 2T -periodic functions.

Definition 1. We say that the travelling wave is spectrally stable with respect to co-
periodic perturbations if the spectral problem λv = ∂zLv with v ∈ Ḣ1

per(−T, T ) has no
eigenvalues λ /∈ iR.

Local solutions of the Cauchy problem associated with the generalized reduced Os-
trovsky equation (1) exist in the space Ḣs

per(−T, T ) for s > 3
2 [24]. For sufficiently large

initial data, the local solutions break in finite time, similar to the inviscid Burgers equation
[17, 18]. However, if the initial data u0 is small in a suitable norm, then local solutions are
continued for all times in the same space, at least in the integrable cases p = 1 [11] and
p = 2 [23].

Travelling periodic waves to the generalized reduced Ostrovsky equation (1) were re-
cently considered in the cases p = 1 and p = 2. In these cases, travelling waves can be
found in the explicit form given by the Jacobi elliptic functions after a change of coordi-
nates to the semi-linear equations of Klein–Gordon type [3, 9]. Exploring this idea further,
it was shown in [13, 14, 25] that the spectral stability of travelling periodic waves can be
studied with the help of the eigenvalue problem Mψ = λ∂zψ, where M is a second-order
Schrödinger operator.

Independently, by using higher-order conserved quantities which exist in the integrable
cases p = 1 and p = 2, it was shown in [4] that the travelling periodic waves are uncon-
strained minimizers of energy functions in suitable function spaces with respect to subhar-
monic perturbations, that is, perturbations with a multiple period to the periodic waves.
This result yields not only spectral but also nonlinear stability of the travelling wave. The
nonlinear stability of periodic waves was established analytically for small-amplitude waves
and shown numerically for waves of arbitrary amplitude [4].

In this paper, we give a simple argument that proves spectral stability of all smooth
periodic travelling waves to the generalized reduced Ostrovsky equation (1) independently
on the nonlinearity power p. The spectral stability of periodic waves is defined here with
respect to co-periodic perturbations in the sense of Definition 1. The argument is based
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on convexity of the energy function

H(u) = −1

2
‖∂−1x u‖2L2

per
− 1

(p+ 1)(p+ 2)

∫ T

−T
up+2dx, (5)

at the travelling wave profile U in the energy space with fixed momentum:

Xq =
{
u ∈ L̇2

per(−T, T ) ∩ Lp+2
per (−T, T ) : ‖u‖L2

per
= q > 0

}
. (6)

Note that the self-adjoint operator L given by (4) is the Hessian operator of the extended
energy function H(u) + cQ(u), where

Q(u) =
1

2
‖u‖2L2

per
(7)

is the momentum function.
Adopting estimates from [6, 7, 8], we prove in Section 2 that the energy-to-period map

E → 2T is strictly monotonically decreasing for the family of smooth periodic solutions
satisfying (2) and (3). Then, in Section 3, we use this result to prove that the self-adjoint
operator L given by (4) has a simple negative eigenvalue, a one-dimensional kernel, and
the rest of its spectrum is bounded from below by a positive number. Finally, in Section
4, we prove that the operator L constrained on the space

L2
c =

{
u ∈ L̇2

per(−T, T ) : 〈U, u〉L2
per

= 0
}

(8)

is strictly positive except for the one-dimensional kernel induced by the translational sym-
metry. This gives convexity of H(u) at U in space (6). By using the standard Hamilton–
Krein theorem in [15] (see also the review in [22]), this rules out existence of eigenvalues
λ /∈ iR of the spectral problem λv = ∂zLv with v ∈ Ḣ1

per(−T, T ). All together, the exis-
tence and spectral stability of smooth periodic travelling waves of the generalized reduced
Ostrovsky equation (1) is summarized in the following theorem.

Theorem 1. For every p ∈ N and every c > 0,

(a) there exists a smooth family of periodic solutions U ∈ L̇2
per(−T, T ) ∩H∞per(−T, T ) of

equation (2), parameterized by the energy E given in (3) for E ∈ (0, Ec), with

Ec :=
p

2(p+ 2)
c
p+2
p ,

such that the map E → T is strictly monotonically decreasing;

(b) for each point of the family, the operator L given by (4) has a simple negative eigen-
value, a simple zero eigenvalue associated with Ker(L) = span{∂zU}, and the positive
spectrum bounded away from zero;

(c) the spectral problem λv = ∂zLv with v ∈ Ḣ1
per(−T, T ) admits no eigenvalues λ /∈ iR.
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Consequently, periodic waves of the generalized reduced Ostrovsky equation (1) are spectrally
stable with respect to co-periodic perturbations in the sense of Definition 1.

We now compare the main result to the existing literature on spectral and orbital
stability of periodic waves with respect to co-periodic perturbations.

First, in comparison with the analysis in [14], the result of Theorem 1 is more general
since p ∈ N is not restricted to the integrable cases p = 1 and p = 2. On a technical level,
the method of proof of Theorem 1 is simple and robust, so that many unnecessary explicit
computations from [14] are avoided. Indeed, in the transformation of the spectral problem
λv = ∂zLv to the spectral problem Mψ = λ∂zψ, where M is a second-order Schrödinger op-
erator from H2

per(−T, T ) → L2
per(−T, T ), the zero-mean constraint is lost1. Consequently,

the operator M was found in [14] to admit two negative eigenvalues in L2
per(−T, T ), which

are computed explicitly by using eigenvalues of the Schrödinger operator with finite-gap
elliptic potentials. By adding three constraints for the spectral problem Mψ = λ∂zψ, the
authors of [14] showed that the operator M becomes positive on the constrained space,
again by means of symbolic computations involving explicit Jacobi elliptic functions. All
these technical details become redundant in our simple approach.

Second, we mention another type of improvement of our method compared to the
analysis of spectral stability of periodic waves in other nonlinear evolution equations [19,
20]. By establishing first the monotonicity of the energy-to-period map E → 2T for a
smooth family of periodic waves, we give a very precise count on the number of negative
eigenvalues of the operator L in L2

per(−T, T ) without doing numerical approximations on
solutions of the homogeneous equation Lv = 0. Indeed, the smooth family of periodic waves
has a limit to zero solution, for which eigenvalues of L in L2

per(−T, T ) are found from Fourier
series. The zero eigenvalue of L is double in this limit and it splits once the amplitude of
the periodic wave becomes nonzero. Owing to the monotonicity of the map E → 2T and
continuation arguments, the negative index of the operator L remains invariant along the
entire family of the smooth periodic waves. Therefore, the negative index of the operator
L is found for the entire family of periodic waves by a simple perturbative argument, again
avoiding cumbersome analytical or approximate numerical computations.

Finally, we also mention that the spectral problem λv = ∂zLv is typically difficult when
it is posed in the space L2

per(−T, T ) because the mean-zero constraint is needed on v in
addition to the orthogonality condition 〈U, v〉L2

per
= 0. The two constraints are taken into

account by studying the two-parameter family of smooth periodic waves and working with a
2-by-2 matrix of projections [1, 5]. This complication is avoided for the reduced Ostrovsky
equation (1) because the spectral problem λv = ∂zLv is posed in space L̇2

per(−T, T ) and
the only orthogonality condition 〈U, v〉L2

per
= 0 is studied with a simple scaling argument.

As a limitation of the results of Theorem 1 we mention that the nonlinear orbital
stability of travelling periodic waves cannot be established for the reduced Ostrovsky
equations (1) by using the energy function (5) in space (6). This is because the local
solution is defined in Ḣs

per(−T, T ) for s > 3
2 [24], whereas the energy function is defined in

1Note that this transformation reflects the change of coordinates owing to which the reduced Ostrovsky
equations are reduced to the semi-linear equations of the Klein–Gordon type. This transformation also
changes the period of the travelling periodic wave.
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L̇2
per(−T, T )∩Lp+2

per (−T, T ). As a result, coercivity of H(u) in the space of fixed momentum
(6) only controls the L2 norm of time-dependent perturbations. Local well-posedness in
such spaces of low regularity is questionable and so is the proof of orbital stability of the
travelling periodic waves in the time evolution of the reduced Ostrovsky equations (1).

2 Monotonicity of the energy-to-period map

Traveling wave solutions of the reduced Ostrovsky equation (1) are solutions of the second-
order differential equation (2) with c > 0 and p ∈ N. The following lemma establishes
a correspondence between the smooth periodic solutions of the second-order equation (2)
and the periodic orbits around the center of an associated planar system, see Figure 1. For
lighter notation we replace U(z) by u(z).

Lemma 1. For every c > 0 and p ∈ N the following holds:

(i) A function u is a smooth periodic solution of equation (2) if and only if (u, v) = (u, u′)
is a periodic orbit of the planar differential system

u′ = v,

v′ =
−u+ pup−1v2

c− up
.

(9)

(ii) The system (9) has a first integral given by (3), which we write as

E(u, v) = A(u) +B(u)v2, (10)

with A(u) = c
2u

2 − 1
p+2u

p+2, B(u) = 1
2(c− up)2.

(iii) Every periodic orbit of system (9) belongs to the period annulus2 of the center at the
origin of (9).

Proof. The assertion in (ii) is proved with a straightforward calculation. To prove (iii),
notice that system (9) has no limit cycles in view of the existence of a first integral, and
hence the periodic orbits form period annuli. A periodic orbit must surround at least one
critical point. The unique critical point of system (9) is a center at the origin, corresponding
to the energy level E = 0. In view of the presence of the singular lines

{u = ±c1/p, v ∈ R} ⊂ R2

we may conclude, applying the Poincaré-Bendixon Theorem, that the set of periodic or-
bits forms a punctured neighbourhood of the center, and that no other period annulus is
possible.

It remains to show (i). It is clear that z 7→ (u, v) = (u, u′) is a solution of the differential
system (9) if and only if u is a smooth solution of the second-order equation (2) satisfying

2Recall that the largest punctured neighbourhood of a center which consists entirely of periodic orbits
is called period annulus, see [2].
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Figure 1: Phase portraits of system (9) for p = 2 (left) and p = 1 (right).

c 6= u(z)p for all z. We claim that c 6= u(z)p for all z ∈ R for smooth periodic solutions u.
Indeed, let p be odd for simplicity and recall that every periodic orbit in a planar system
has exactly two turning points (u, u′) = (u±, 0) per fundamental period. The turning
points correspond to the maximum and minimum of the periodic solution u and satisfy the
equation A(u±) = E. The graph of A(u) on R+ has a global maximum at u = c1/p with

Ec := A(c1/p) =
p

2(p+ 2)
c
p+2
p . (11)

The equation A(u) = E has exactly two positive solutions for E ∈ (0, Ec), where u =
u+ corresponds to the smaller one inside the period annulus. At E = Ec, the equation
A(u) = E has only one positive solution given by u+ = c1/p. Now assume that for a
smooth periodic solution u there exists z1 such that u(z1) = c1/p. Then, equation (2)

implies that u′(z1) = ±p−1/2c−
p−2
2p , hence the solution (u, u′)(z) to system (9) tends to the

points p± = (c1/p,±p−1/2c−
p−2
2p ) as z → z1. Since E(p±) = Ec and by continuity of the

first integral, this orbit lies inside the Ec-level set. For such an orbit, we have seen that its
turning point is located at u+ = c1/p = u(z1). However, since u′(z1) 6= 0, this cannot be a
turning point, which leads to a contradiction.

By Lemma 1, every smooth periodic solution u of the differential equation (2) cor-
responds to a periodic orbit (u, v) = (u, u′) inside the period annulus of the differential
system (9). Since E is a first integral of (9), this orbit lies inside some energy level curve
of E, where E ∈ (0, Ec). We denote this orbit by γE . The period of this orbit is given by

2T (E) =

∫
γE

du

v
, (12)

since du
dz = v in view of (9). The energy levels of the first integral E parameterize the set

of periodic orbits inside the period annulus, and therefore this set forms a smooth family
{γE}E∈(0,Ec). In view of Lemma 1, we can therefore assert that the set of smooth periodic
solutions of (2) forms a smooth family {uE}E∈(0,Ec), which is parameterized by E as well.
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Moreover, it ensures that the period 2T (E) of the periodic orbit γE is equal to the period
of the corresponding smooth periodic solution uE of the second-order equation (2). The
main result of this section is the following proposition, from which we conclude that the
energy-to-period map E → 2T for the smooth periodic solutions of equation (2) is strictly
monotonically decreasing. This proves statement (a) of Theorem 1.

Proposition 1. For every c > 0 and p ∈ N the function

T : (0, Ec) −→ R+, E 7−→ T (E) =
1

2

∫
γE

du

v
,

is strictly monotonically decreasing and satisfies

T ′(E) = − p

4(2 + p)E

∫
γE

up

(c− up)
du

v
< 0. (13)

Proof. Since A(u) +B(u)v2 = E is constant along an orbit γE , we find that

2E T (E) =

∫
γE

B(u)vdu+

∫
γE

A(u)
du

v
. (14)

To compute the derivative of T with respect to E, we first resolve the singularity in the
second integral in equation (14). To this end, recall that the orbit γE belongs to the level
curve {A(u) +B(u)v2 = E} and therefore

dv

du
= −A

′(u) +B′(u)v2

2B(u)v
(15)

along the orbit. Note that B(u) is different from zero for E ∈ (0, Ec). Furthermore, BA/A′

is bounded on γE . Using the fact that the integral of a total differential d over the closed
orbit γE yields zero, we find that

0 =

∫
γE

d

[(
2BA

A′

)
(u) v

]
=

∫
γE

(
2BA

A′

)′
(u) v du+

(
2BA

A′

)
(u) dv

=

∫
γE

(
2BA

A′

)′
(u) v du−

(
2BA

A′
A′

2B

)
(u)

du

v
−
(

2BA

A′
B′

2B

)
(u) v du

=

∫
γE

[(
2BA

A′

)′
(u)−

(
AB′

A′

)
(u)

]
v du−A(u)

du

v
,

where we have used relation (15) in the third equality. Denoting

G =

(
2BA

A′

)′
− AB′

A′
, (16)

this ensures that

2ET (E) =

∫
γE

[B(u) +G(u)] vdu, (17)
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where the integrand is no longer singular at the turning points, where the orbit γE intersects
with the horizontal axis v = 03. Taking now the derivative of equation (17) with respect
to E we obtain that

2T (E) + 2E T ′(E) =

∫
γE

B(u) +G(u)

2B(u)v
du, (18)

where we have used that
∂v

∂E
=

1

2B(u)v

in view of (10)4. From (18), we conclude that

2T ′(E) =
1

E

∫
γE

(
B +G

2B

)
(u)

du

v
− 1

E

∫
γE

du

v

=
1

E

∫
γE

1

2B

((
2AB

A′

)′
− (AB)′

A′

)
(u)

du

v
.

In view of the expressions for A and B defined in Lemma 1, further calculations show that

T ′(E) = − p

4(2 + p)E

∫
γE

up

(c− up)
du

v
. (19)

We now need to show that T ′(E) < 0 for every E ∈ (0, Ec). In view of the symmetry of
the vector field with respect to the horizontal axis and taking into account (10), we write
(19) in the form

T ′(E) = − p

2(2 + p)E

∫ u+

u−

up

(c− up)

√
B(u)

E −A(u)
du

= − p

2
√

2(2 + p)E

∫ u+

u−

up√
E −A(u)

du,

where u± denote the turning points of the orbit γE with E = A(u±), i.e. the intersections
of the orbit γE with the horizontal axis v = 0. Therefore, we find that T ′(E) < 0 if p is
even. Now we show that the same property also holds when p is odd. Denote

I1(E) :=

∫ 0

u−

up√
E −A(u)

du, I2(E) :=

∫ u+

0

up√
E −A(u)

du, (20)

then

T ′(E) = − p

2
√

2(2 + p)E

[
I1(E) + I2(E)

]
. (21)

3The idea for this approach of resolving the singularity is taken from [8, Lemma 4.1], where the authors
prove a more general result for polynomial systems having first integrals of the form (10).

4 Note that (18) also follows by applying Gelfand-Leray derivatives in (17) (see Theorem 26.32 on p. 526
in [16]).
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We perform the change of variables u = u+x and find that

I2(E) =

∫ u+

0

up√
A(u+)−A(u)

du

=

∫ 1

0

up+x
p√

A(u+)−A(u+x)
u+dx

=
√

2up+

∫ 1

0

xp√
c(1− x2)− 2up+

p+2(1− xp+2)
dx.

To rewrite the first integral we change variables according to u = −|u−|x and obtain

I1(E) =

∫ 0

−|u−|

up√
A(−|u−|)−A(u)

du

=

∫ 0

1

−|u−|pxp√
A(−|u−|)−A(u−x)

(−|u−|)dx

= −
√

2|u−|p
∫ 1

0

xp√
c(1− x2) + 2|u−|p

p+2 (1− xp+2)
dx.

We claim that −u− < u+. Indeed, we have that A(u) < A(−u) on (0, c1/p), since

A(u)−A(−u) = u2
(
c

2
− 1

p+ 2
up
)
− u2

(
c

2
+

1

p+ 2
up
)

= − 2

p+ 2
up+2 < 0.

Moreover, A is monotone on (0, c1/p). Assuming to the contrary that −u− ≥ u+, we would
have that A(−u−) ≥ A(u+) and hence A(u+) ≤ A(−u−) < A(u−), which contradicts the
fact that A(u+) = A(u−). Hence 0 < |u−| < u+ < c1/p, which implies that |I1(E)| < I2(E),
and therefore, T ′(E) < 0 also in the case when p is odd. The proof of Proposition 1 is
complete.

3 Negative index of operator L

We start with the limit of zero energy for the family of periodic waves, when U = 0 at
E = 0. As E → 0, T (E) → T (0) = πc1/2, which can be established from (12). In this
limit, the operator L given by (4) becomes an integral operator with constant coefficients,
therefore, its spectrum can be found explicitly by the Fourier series:

U = 0, T (0) = πc1/2 : σ(L) =
{
c(1− n−2), n ∈ Z\{0}

}
. (22)

For every c > 0, the spectrum is purely discrete and consists of double eigenvalues accu-
mulating to the point c. All double eigenvalues are strictly positive except for the lowest
eigenvalue, which is located at the origin. As is shown in [4] with the perturbation argu-
ment, the spectrum of L for E near 0 includes a simple negative eigenvalue, a simple zero
eigenvalue, and the positive spectrum is bounded away from zero. We will show that this
conclusion remains true for the entire family of smooth periodic waves.

Let us first prove the following.

9



Lemma 2. For every c > 0, p ∈ N, and E ∈ (0, Ec), the operator L given by (4) is
self-adjoint and its spectrum includes a countable set of isolated eigenvalues below

C−(E) := inf
z∈[−T (E),T (E)]

(c− U(z)p) > 0. (23)

Proof. The self-adjoint properties of L are obvious. For every E ∈ (0, Ec), there are positive
constants C±(E) such that

C−(E) ≤ c− U(z)p ≤ C+(E) for every z ∈ [−T (E), T (E)]. (24)

The eigenvalue equation (L − λI)v = 0 for v ∈ L̇2
per(−T, T ) is equivalent to the spectral

problem
P0(c− Up − λ)P0v = −P0∂

−2
z P0v. (25)

Under the condition λ < C−(E), we have c− Up − λ ≥ C−(E)− λ > 0. Setting

w := (c− Up − λ)1/2P0v ∈ L2
per(−T, T ), λ < C−(E), (26)

we find that λ is an eigenvalue of the spectral problem (25) if and only if 1 is an eigenvalue
of the self-adjoint operator

K(λ) = −(c− Up − λ)−1/2P0∂
−2
z P0(c− Up − λ)−1/2 : L2

per(−T, T )→ L2
per(−T, T ), (27)

that is, w = K(λ)w5. The operator K(λ) for every λ < C−(E) is a compact (Hilbert–
Schmidt) operator thanks to the bounds (24) and the compactness of P0∂

−2
z P0. Conse-

quently, the spectrum of K(λ) in L2
per(−T, T ) for every λ < C−(E) is purely discrete and

consists of isolated eigenvalues. Moreover, these eigenvalues are positive thanks to the
positivity of K(λ), as follows:

〈K(λ)w,w〉L2
per

= ‖P0∂
−1
z P0(c− Up − λ)−1/2w‖2L2

per
≥ 0, ∀w ∈ L2

per(−T, T ). (28)

We note that

(a) K(λ)→ 0+ as λ→ −∞,

(b) K ′(λ) > 0 for every λ < C−(E).

Claim (a) follows from (28) via spectral calculus:

〈K(λ)w,w〉L2
per
∼ |λ|−1‖P0∂

−1
z P0w‖2L2 as λ→ −∞.

Claim (b) follows from the differentiation of K(λ),

〈K ′(λ)w,w〉L2
per

= −1

2
〈(c− Up − λ)−3/2P0∂

−2
z P0(c− Up − λ)−1/2w,w〉L2

per

−1

2
〈(c− Up − λ)−1/2P0∂

−2
z P0(c− Up − λ)−3/2w,w〉L2

per
.

5This reformulation can be viewed as an adjoint version of the Birmann–Schwinger principle used in
analysis of isolated eigenvalues of Schrödinger operators with rapidly decaying potentials [12].
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Each term in the representation above is equivalent to the quadratic form for the posi-
tive operator K(λ) defined in the weighted space with the strictly positive and uniformly
bounded weight function ρ(λ) := (c− Up − λ)−1, thanks to (24). Therefore, each term in
the representation above is positive.

As follows from claims (a) and (b), positive isolated eigenvalues of K(λ) in L2
per(−T, T )

are monotonically increasing functions of λ from the zero level as λ→ −∞. The location
and number of crossings of these eigenvalues with the unit level gives the location and
number of eigenvalues λ in the spectral problem (25). It follows from compactness of K(λ)
for λ < C−(E) that there exists a countable (finite or infinite) set of isolated eigenvalues
of L below C−(E).

Next, we inspect analytical properties of eigenvectors for isolated eigenvalues below
C−(E) > 0 given by (23).

Lemma 3. Under the condition of Lemma 2, let λ0 < C−(E) be an eigenvalue of the
operator L given by (4). Then, λ0 is at most double and the eigenvector v0 belongs to
L̇2
per(−T, T ) ∩H∞per(−T, T ).

Proof. The eigenvector v0 ∈ L̇2
per(−T, T ) for the eigenvalue λ0 < C−(E) satisfies the spec-

tral problem (25) written as the integral equation

P0∂
−2
z v0 + P0(c− Up − λ0)v0 = 0. (29)

Since U ∈ H∞per(−T, T ) and c − Up − λ0 ≥ C−(E) − λ0 > 0, we obtain by bootstrapping
arguments that

v0 ∈ L2
per(−T, T ) ⇒ v0 ∈ H2

per(−T, T ) ⇒ v0 ∈ H4
per(−T, T ) and so on,

which yields v0 ∈ H∞per(−T, T ). Applying two derivatives to the integral equation (29),

we obtain the equivalent differential equation for the eigenvector v0 ∈ L̇2
per(−T, T ) ∩

H∞per(−T, T ) and the eigenvalue λ0 < C−(E):

v0 +
d2

dz2
[(c− Up − λ0)v0] = 0. (30)

The second-order differential equation (30) admits at most two linearly independent solu-
tions in L̇2

per(−T, T ) and so does the integral equation (29). Since L is self-adjoint, the
eigenvalues of L are not defective6, and hence the multiplicity of λ0 is at most two.

We are now ready to prove the main result of this section given by the following propo-
sition. This proposition gives part (b) of Theorem 1.

Proposition 2. For every c > 0, p ∈ N, and E ∈ (0, Ec), the operator L given by (4) has
a simple negative eigenvalue, a simple zero eigenvalue, and a positive spectrum bounded
away from zero.

6Recall that the eigenvalue is called defective if its algebraic multiplicity exceeds its geometric multiplic-
ity.
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Proof. Thanks to Lemma 2, we only need to inspect the multiplicity of negative and zero
eigenvalues of L. By Lemma 3, the zero eigenvalue λ0 = 0 < C−(E) can be at most
double. The first eigenvector v0 = dU

dz ∈ L̇
2
per(−T, T ) ∩H∞per(−T, T ) for λ0 = 0 follows by

the translational symmetry. Indeed, differentiating (2) with respect to z, we verify that v0
satisfies the differential equation (30) with λ0 = 0 and, equivalently, the integral equation
(29) with λ0 = 0.

Another linearly independent solution v1 = ∂EU of the same equation (30) is obtained
by differentiating (2) with respect to E. Here we understand the family U(z;E) of smooth
2T (E)-periodic solutions constructed in Lemma 1, where the period 2T (E) is given by
(12). Now, we show that the second solution v1 is not 2T (E)-periodic under the condition
T ′(E) < 0 established in Proposition 1. Consequently, the zero eigenvalue λ0 = 0 is simple.
For simplicity, we assume that the family U(z;E) satisfies the condition

U(±T (E);E) = 0 (31)

at the end points, which can be easily fixed by translational symmetry. By differentiating
the first boundary condition in (2) with respect to E, we obtain

∂EU(−T (E);E)− T ′(E)∂zU(−T (E);E) = ∂EU(T (E);E) + T ′(E)∂zU(T (E);E).

The solution v1 = ∂EU is not 2T (E)-periodic if T ′(E) 6= 0 because ∂zU(±T (E);E) 6= 07.
Since T ′(E) 6= 0 by Proposition 1, the zero eigenvalue λ0 = 0 is simple for the entire family
of smooth T (E)-periodic solutions.

Next, we show that the spectrum of L includes at least one negative eigenvalue. Indeed,
it follows from the integral version of the differential equation (2),

P0

(
c− 1

p+ 1
Up
)
U + P0∂

−2
z U = 0,

that

LU = − p

p+ 1
P0U

p+1 ⇒ 〈LU,U〉L2
per

= − p

p+ 1

∫ T

−T
Up+2dz < 0. (32)

The last inequality is obvious for even p. For odd p, the inequality follows from a general
estimate, which relies on Pohozhaev–type equalities for solutions of elliptic problems, as is
given by Lemma 4 below. In both cases, we have proved that L has at least one negative
eigenvalue for every E ∈ (0, Ec).

Finally, the spectrum of L includes at most one simple negative eigenvalue. Indeed, the
family of 2T (E)-periodic solutions is smooth with respect to the parameter E ∈ (0, Ec)
and it reduces to the zero solution as E → 0. It follows from the spectrum (22) at the
zero solution and the preservation of the simple zero eigenvalue with the eigenvector dU

dz
for every E ∈ (0, Ec) that the splitting of a double zero eigenvalue for E 6= 0 results in
appearance of at most one negative eigenvalue of L. Thus, there exists exactly one simple
negative eigenvalue of L for every E ∈ (0, Ec).

7If ∂zU(±T (E);E) = 0 in addition to (31), the periodic solution is identically zero, which only corre-
sponds to E = 0.
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Here we prove the last inequality in (32).

Lemma 4. For every c > 0, p ∈ N, and E ∈ (0, Ec), the periodic solution U of (2) satisfies∫ T

−T
Up+2dz =

2(p+ 1)(p+ 2)

p
‖∂−1z U‖2L2 > 0. (33)

Proof. We recall that the periodic wave u = U is a critical point of H(u) given by (5) in
space (6). Indeed, critical points of H(u) + cQ(u) in Xq, where c is a Lagrange multiplier,
satisfy the integral equation

P0

(
∂−2z + c− 1

p+ 1
up+1

)
P0u = 0, (34)

which corresponds to the double integral of the second-order differential equation (2) sub-
ject to the mean-zero constraints. For simplicity, let U be a periodic solution of the integral
equation (34) satisfying the end-point conditions (31), and the mean-zero constraint. Let
us consider a scaling transformation

U(z) = αŨ(z̃), z = α−2z̃, α > 0 (35)

which leaves Q(U) = Q(Ũ) invariant. Note that the period of Ũ is now T̃ = α2T . Under
the transformation (35), we obtain

H(U) = − 1

2α4
‖∂−1z̃ Ũ‖2L2

per
− αp

(p+ 1)(p+ 2)

∫ T̃

−T̃
Ũp+2dz̃.

Since α = 1 yields the identity transformation in (35) and thus u = U is a critical point of
H(u) at fixed Q(u), the derivative of H(U) with respect to α vanishes at α = 1. Thanks
to the end-point conditions and the mean-zero constraint, the derivative of H(U) in α is
given by

d

dα
H(U) =

2

α5
‖∂−1z̃ Ũ‖2L2

per
− pαp−1

(p+ 1)(p+ 2)

∫ T̃

−T̃
Ũp+2dz̃.

Equaling it to zero for α = 1 yields the equality (33).

4 Applications of the Hamilton–Krein theorem

Since L has a simple zero eigenvalue in L̇2
per(−T, T ) by Proposition 2, eigenvectors v ∈

Ḣ1
per(−T, T ) of the spectral problem λv = ∂zLv for nonzero eigenvalues λ satisfy the

constraint 〈U, v〉L2
per

= 0, see (8) for the definition of the constrained space L2
c . Since ∂z is

invertible in space L̇2
per(−T, T ) and the inverse operator is bounded from L̇2

per(−T, T ) to
itself, we can rewrite the spectral problem λv = ∂zLv in the equivalent form

λP0∂
−1
z P0v = Lv, v ∈ L̇2

per(−T, T ). (36)
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In this form, the Hamilton–Krein theorem from [15] applies directly in L2
c . According to

this theorem, the number of unstable eigenvalues with λ /∈ iR is bounded by the number of
negative eigenvalues of L in the constrained space L2

c . Therefore, we only need to show that
the operator L is positive in L2

c with only a simple zero eigenvalue due to the translational
invariance in order to prove part (c) of Theorem 1. The corresponding result is given by
the following proposition.

Proposition 3. For every c > 0, p ∈ N, and E ∈ (0, Ec), the operator L|L2
c

: L2
c → L2

c ,
where L is given by (4), has a simple zero eigenvalue and a positive spectrum bounded away
from zero.

Proof. According to the well-known criterion (e.g., see Lemma 1 in [14]), under the condi-
tion on L proved in Proposition 2, the assertion is true if

〈L−1U,U〉L2
per

< 0,

where L−1 is defined on U thanks to the Fredholm constraint 〈v0, U〉L2
per

= 0 since Ker(L) =

{v0} and v0 = dU
dz . Differentiating (2) with respect to c and integrating it twice with zero

mean, we obtain
L∂cU = −U.

Note that the family of periodic waves U is smooth with respect to c. Therefore, we only
need to prove that

0 < −〈L−1U,U〉L2
per

= 〈∂cU,U〉L2
per

=
1

2

d

dc
‖U‖2L2

per
. (37)

The desired result comes from a simple scaling transformation of solutions of the boundary-
value problem (2):

U(z) = c1/pŨ(z̃), z = c1/2z̃, T = c1/2T̃ , (38)

where Ũ is 2T̃ -periodic solution of the same boundary-value problem (2) with c normalized
to 1. Under the transformation (38), we obtain

‖U‖2L2
per

= c
2
p
+ 1

2 ‖Ũ‖2L2
per
. (39)

Since
2

p
+

1

2
> 0

and ‖Ũ‖L2
per

is c-independent, the representation (39) implies positivity in (37). Thus, the
assertion of the proposition is proved.
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