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Abstract

This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the 
Camassa–Holm equation. The set of these solutions can be parametrized using the wave height a (or “peak-
to-peak amplitude”). Our main result establishes monotonicity properties of the map a �−→ λ(a), i.e., the 
wave length as a function of the wave height. We obtain the explicit bifurcation values, in terms of the 
parameters associated with the equation, which distinguish between the two possible qualitative behaviors
of λ(a), namely monotonicity and unimodality. The key point is to relate λ(a) to the period function of 
a planar differential system with a quadratic-like first integral, and to apply a criterion which bounds the 
number of critical periods for this type of systems.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and main result

The Camassa–Holm (CH) equation

ut + 2κ ux − utxx + 3uux = 2uxuxx + uuxxx, x ∈R, t > 0, (1)
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Fig. 1. Smooth periodic TWS ϕ of CH with wave length λ and wave height a.

arises as a shallow water approximation of the Euler equations for inviscid, incompressible and 
homogenous fluids propagating over a flat bottom, where u(x, t) describes the horizontal veloc-
ity component and κ ∈ R is a parameter related to the critical shallow water speed. This equation 
was first derived by Fokas and Fuchssteiner [20] as an abstract bi-Hamiltonian equation with 
infinitely many conservation laws, and later re-derived by Camassa and Holm [4] from physical 
principles. For a discussion on the relevance and applicability of the CH equation in the con-
text of water waves we refer the reader to Johnson [29–31] and more recently Constantin and 
Lannes [13]. We point out that for a large class of initial conditions the CH equation is an inte-
grable infinite-dimensional Hamiltonian system [1,7,8,14,15,30], and it is known that the solitary 
waves of CH are solitons which are orbitally stable [15,19]. The smooth periodic traveling wave 
solutions are orbitally stable as well [34]. Some classical solutions of the CH equation develop 
singularities in finite time in the form of wave breaking: the solution remains bounded but its 
slope becomes unbounded [5,7,11,12,18,36,38]. After blow-up the solutions can be recovered in 
the sense of global weak solutions, see [2,3] and also [27,25].

In the present paper, we consider traveling wave solutions of the form

u(x, t) = ϕ(x − c t), (2)

for c ∈ R and some function ϕ : R → R. We denote s = x − ct the independent variable in the 
moving frame. Inserting the Ansatz (2) into Eq. (1) and integrating once we obtain the corre-
sponding equation for traveling waves,

ϕ′′(ϕ − c) + (ϕ′)2

2
+ r + (c − 2κ)ϕ − 3

2
ϕ2 = 0, (3)

where r ∈ R is a constant of integration and the prime denotes derivation with respect to s. 
A solution ϕ of (3) is called a traveling wave solution (TWS) of the Camassa–Holm equa-
tion (1). Lenells [35] provides a complete classification of all (weak) traveling wave solutions 
of the Camassa–Holm equation. In the present paper, we focus on smooth periodic TWS of the 
Camassa–Holm equation, which can be shown to have a unique maximum and minimum per 
period, see [35]. In the context of fluid dynamics the period of such a solution is called wave 
length, which we will denote by λ. The difference between the maximum (wave crest) and the 
minimum (wave trough) is called wave height, see Fig. 1, which we will denote by a (in some 
contexts this quantity is also called “peak-to-peak amplitude”).

The aim of this paper is to study the dependence of the wave length λ of smooth periodic TWS 
of the Camassa–Holm equation (1) on their wave height a. Our main result shows that λ(a) is a 
well-defined function and that it is either monotonous or unimodal. More precisely:

Theorem A. Given c, κ with c �= −κ , there exist real numbers r1 < rb1 < rb2 < r2 such that the 
differential equation (1) has smooth periodic TWS of the form (2) if, and only if, the integration 
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constant r in (3) belongs to the interval (r1, r2). For such r ∈ (r1, r2), the set of smooth periodic 
TWS forms a continuous family {ϕa}a∈(0,aM) parametrized by the wave height a. Furthermore, 
the wave length λ = λ(a) of ϕa satisfies the following:

(a) If r ∈ (r1, rb1 ], then λ(a) is monotonous increasing.
(b) If r ∈ (rb1 , rb2), then λ(a) has a unique critical point which is a maximum.
(c) If r ∈ [rb2 , r2), then λ(a) is monotonous decreasing.

Finally, these are the only possible scenarios for smooth periodic TWS of the CH equation.

We point out, see Proposition 2.1, that if c = −κ then there are no smooth periodic TWS of 
the form (2). The exact values of the bifurcation parameters r1, rb1 , rb2 and r2 in terms of c and 
κ can be found in the proof of Theorem A at the end of Section 2. In this regard, we remark that 
the expressions r1, rb1 and r2 also appear in [35, p. 402], but they serve as bifurcation values 
for a different type of property: they define the boundaries of parameter regions where various 
types of weak TWS (smooth, peaked or cusped waves, . . . ) can occur. It should also be observed 
that a description on how the wave length of TWS of CH depends on parameters may be found 
in the last section of [35], where level sets of TWS with the same wave length are described. 
Furthermore, it is shown that there exist peakons and cuspons with arbitrarily small wave length. 
In contrast, we will show that for smooth periodic TWS the wave length cannot be arbitrarily 
small, see Remark 3.10.

Regarding the non-regular solutions of CH it should be noted that they are smooth everywhere 
except for a singularity at their crest, and they are less relevant from a physical point of view. 
Furthermore we point out that while the governing equations for water waves admit traveling
wave solutions with a peak singularity at their crest (the so-called Stokes waves of greatest height, 
see [9,41]), these wave patterns are unstable, whereas the Camassa–Holm peakons are orbitally 
stable [16,32,33]. As for cusped traveling waves, their existence in the setting of the governing 
equations is confined to a limiting form of deep-water flows with a special vorticity distribution 
(see [10,26]), but the issue whether these theoretically derived patterns are realistic is somewhat 
controversial, see the discussion in [39].

The paper is organized as follows. In Section 2 we establish a correspondence between smooth 
periodic TWS of (1) and periodic orbits around the center of a planar differential system with 
a quadratic-like first integral, see Proposition 2.1. We observe that the wave length of a smooth 
periodic solution of (3) is equal to the period of the corresponding periodic orbit. Moreover, there 
exists an analytic diffeomorphism which relates the wave height of a solution of (3) to the energy 
level of the first integral at the corresponding periodic orbit of the planar system, see Lemma 2.3. 
In Theorem 2.5, we state the monotonicity properties of the period function of the center of this 
planar system, which imply Theorem A. The proof of Theorem 2.5 is carried out in Section 3. 
It relies on a result proved in [22], which provides a criterion to bound the number of critical 
periods for this kind of systems.

2. Smooth periodic TWS of the Camassa–Holm equation

TWS of the form (2) of the Camassa–Holm equation (1) correspond to solutions of Eq. (3). 
The next result establishes a correspondence between the smooth periodic solutions of (3) and 
periodic orbits around the center of an associated planar system. Moreover, it provides a neces-
sary and sufficient condition for the existence of such a center. To this end, recall that the largest 
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punctured neighborhood of a center which consists entirely of periodic orbits is called period 
annulus, see [6].

Proposition 2.1. The following holds:

(a) ϕ is a smooth periodic solution of Eq. (3) if, and only if, (w, v) = (ϕ − c, ϕ′) is a periodic 
orbit of the planar differential system

⎧⎨
⎩

w′ = v,

v′ = −F ′(w) + 1
2 v2

w
,

(4)

where

F(w):= αw + βw2 − 1

2
w3, with α := r − 2κc − 1

2
c2 and β := −(c + κ). (5)

(b) The function Ĥ (w, v) := 1
2wv2 + F(w) is a first integral of the differential system (4).

(c) Every periodic orbit of system (4) belongs to the period annulus P of a center, which exists 
if, and only if, −2β2 < 3α < 0 is verified.

Proof. The assertion in (b) is straightforward. In order to prove (a) we first note that (3) can 
be written as ϕ′′(ϕ − c) + 1

2 (ϕ′)2 + F ′(ϕ − c) = 0, where F is defined in (5). Accordingly, ϕ
is a solution of (3) with ϕ(s) �= c for all s if, and only if, s �−→ (w, v) = (

ϕ − c, ϕ′)(s) is a 
solution of the differential system (4). We claim that ϕ(s) �= c for all s ∈ R in case that ϕ is 
smooth and periodic, i.e. ϕ(s + T ) = ϕ(s) for some T > 0. Clearly, (a) will follow once we 
show the claim. With this aim in view note that if ϕ is a smooth periodic solution of (3) then the 
set C := {

(w, v) = (
ϕ − c, ϕ′)(s); s ∈ R

}
describes a smooth loop. We will show that C cannot 

intersect {w = 0}. We can rule out that ϕ ≡ c because a constant function is not periodic. Hence 
suppose that there exist s0 and s1 such that ϕ(s) �= c for all s ∈ (s0, s1) and ϕ(s1) = c. Then, for 
s ∈ (s0, s1), (w, v) = (

ϕ − c, ϕ′)(s) is a solution of the differential system (4) that tends to the 
point p1 := (

0, ϕ′(s1)
)

as s −→ s1. Since Ĥ (p1) = 0 and by the continuity of Ĥ , it turns out that 
C is inside the zero level set of Ĥ . An easy computation shows that Ĥ (w, v) = 0 if, and only if, 
w = 0 or (w − β)2 − v2 = β2 + 2α. The second equality describes a hyperbola which intersects 
{w = 0} if, and only if, α � 0. In any case it is not possible that {Ĥ = 0} contains a smooth loop. 
So the claim is true and (a) follows.

In order to show (c) recall that the differential system (4) has a first integral, and consequently 
there are no limit cycles and the periodic orbits form period annuli. A periodic orbit must sur-
round at least one critical point of the differential system, which are of the form (w, v) = (ŵ, 0)

with ŵ �= 0 and F ′(ŵ) = 0. The determinant of the Jacobian of the vector field at such a point 
is detJ(ŵ,0) = F ′′(ŵ)

ŵ
. A straightforward computation shows that F ′(w) = 0 if, and only if, 

w = 2β±√
4β2+6α

3 . If α > 0, then F has a minimum on w < 0 and a maximum on w > 0 (see 
Fig. 2), which both correspond to saddle points of system (4). Thus, by applying the Poincaré–
Bendixon Theorem (see for instance [40]), no periodic orbit is possible in case that α > 0. 
Similarly, if α = 0 and β �= 0, then there is only one critical point, which is a saddle, whereas 
if α = 0 and β = 0, then there are no critical points. Hence there are no periodic orbits in case 
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Fig. 2. Sketch of the graph of F : (a) when α > 0, (b) when α < 0 and β > 0.

that α = 0. Finally let us discuss the case α < 0. If α < 0 and 2β2 + 3α < 0, then there are no 
critical points, which prevents the differential system from having periodic orbits. If α < 0 and 
2β2 + 3α = 0, then there exits a unique critical point which is a cusp, and cannot be surrounded 
by a periodic orbit. If α < 0 and 2β2 +3α > 0 then, see Fig. 2, F has its two local extrema, which 
are located on w < 0 in case that β < 0, and on w > 0 in case that β > 0. In both cases one ex-
tremum yields a saddle and the other a center of system (4). By applying the Poincaré–Bendixon 
Theorem one can easily conclude that the set of periodic orbits forms a punctured neighborhood
of the center, and that no other period annulus is possible. This proves (c). �

It is now necessary to introduce some notation.

Definition 2.2. Let ϕ be a smooth periodic solution of the differential equation (3). We denote 
by aϕ its wave height. By Proposition 2.1, (w, v) = (ϕ − c, ϕ′) is a periodic orbit inside the 
period annulus P of the differential system (4), which we denote by γϕ . Since Ĥ is a first 
integral of system (4), the orbit γϕ is inside some level curve of Ĥ , and we denote its energy 
level by hϕ . In addition, let the center of (4) be inside the level curve {Ĥ = h0} and suppose that 
Ĥ (P ) = (h0, h1). Then hϕ ∈ (h0, h1). �

The following result establishes a relation between the wave height of a smooth periodic 
solution of (3) and the energy level of the corresponding periodic orbit of (4).

Lemma 2.3. Suppose that the set {ϕ} of smooth periodic solutions of (3) is nonempty. With the 
notation introduced in Definition 2.2, the following holds:

(a) The period of the periodic orbit γϕ is equal to the wave length of ϕ.
(b) There exists an analytic diffeomorphism � : (h0, h1) −→ (0, aM) verifying that �(hϕ) = aϕ

for all ϕ. In addition, � can be analytically extended to h = h0 by setting �(h0) = 0.

Proof. The assertion in (a) is clear. The key point to prove (b) is that the length of the projection 
of the periodic orbit γϕ on the w-axis is aϕ . In order to compute it let us fix that the center of the 
differential system (4) is at the point (wc, 0). Let (w�, wr) be the projection of its period annu-
lus P on the w-axis. Thus w� < wc < wr and F ′(w) �= 0 for all w ∈ (w�, wr) \ {wc}, whereas 
F ′(wc) = 0 and F ′′(wc) �= 0. Then there exits an analytic diffeomorphism G on (w�, wr) such 
that F(w) = h0 + G(w)2, where h0 = F(wc). Recall that, by definition, the periodic orbit γϕ

is inside the energy level {Ĥ = hϕ}. Since Ĥ (w, 0) = h if and only if h0 + G(w)2 = h, we 
have that γϕ intersects the w-axis at the points p±(ϕ) = (

G−1(±√
hϕ − h0 ), 0

)
. Hence the 

length of its projection on the w-axis is aϕ = �(hϕ) := G−1(
√

hϕ − h0 ) − G−1(−√
hϕ − h0 ). 

A straightforward argument shows that � is an analytic diffeomorphism on (h0, h1) and that 
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it can be analytically extended to h = h0 setting �(h0) = 0. This shows (b) and completes the 
proof. �
Remark 2.4. It is clear that the energy levels of Ĥ parameterize the set of periodic orbits 
inside P . Thus, the set of periodic orbits of (4) forms a continuous family {γh}h∈(h0,h1). Con-
sequently, and thanks to Proposition 2.1 and Lemma 2.3, we can assert that the set of smooth 
periodic solutions of (3) forms a continuous family {ϕa}a∈(0,aM) parameterized by their wave 
height. We can thus consider the function λ : (0, aM) −→ R

+ which assigns to each a ∈ (0, aM)

the wave length of the unique smooth periodic solution of (3) with wave height a. Theorem A
is concerned precisely with the qualitative properties of this function. We stress that a priori it 
is defined on the set of smooth periodic solutions of (3) rather than on the interval (0, aM). On 
account of Lemma 2.3, the wave length λ(a) is equal to the period of the periodic orbit of (4)
inside the level curve {Ĥ = �−1(a)}. This is the key point in proving Theorem A, as it allows us 
to deduce qualitative properties of the function λ from those of the period function of the center 
of (4). �

The following technical result, which will be proved in Section 3, provides a detailed account 
on the monotonicity properties of the period function of the center at the origin of the differential 
system (4).

Theorem 2.5. Consider system (4) with −2β2 < 3α < 0 and define ϑ := 1
6

(
2|β|√

4β2+6α
− 1

)
. Then 

ϑ > 0 and the period function of the center of system (4) verifies the following:

(a) It is monotonous decreasing in case that ϑ ∈
(

0,− 1
10 + 1

15

√
6
]
.

(b) It has a unique critical period, which is a maximum, in case that ϑ ∈
(
− 1

10 + 1
15

√
6, 1

6

)
.

(c) It is monotonous increasing in case that ϑ � 1
6 .

We are now in position to prove the main result of the paper.

Proof of Theorem A. Consider the differential equation (3) and define α = r − 2κc − 1
2c2 and 

β = −(c + κ). It follows from Proposition 2.1 that the Camassa–Holm equation (1) has smooth 
periodic TWS if, and only if, −2β2 < 3α < 0. It is easy to see that in terms of the “intrinsic” 
parameters κ and c, these conditions are equivalent to requiring that the integration constant 
r belongs to the interval (r1, r2), where r1 := − 2

3 (κ − 1
2c)2 and r2 := 2κc + 1

2c2. Remark 2.4
elucidates the fact that for such r , the set of smooth periodic TWS forms a continuous family 
{ϕa}a∈(0,aM) parameterized by the wave height as a consequence of Lemma 2.3. Moreover, the 
wave length λ(a) of the smooth periodic TWS ϕa is equal to the period of the periodic orbit 
of (4) inside the energy level {Ĥ = �−1(a)}. Hence, by applying Theorem 2.5, the result will 

follow once we write the conditions ϑ ∈
(

0,− 1
10 + 1

15

√
6
]
, ϑ ∈

(
− 1

10 + 1
15

√
6, 1

6

)
and ϑ � 1

6

in terms of κ , c and r . Taking the relation ϑ = 1
6

(
2|β|√

4β2+6α
− 1

)
into account and setting

rb1 := κc − 1
κ2 and rb2 :=

√
6 − 3(

(
√

6 + 1)κ2 − 2(
√

6 − 5)κc − 2c2),

2 6
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some computations show that these conditions are given, respectively, by r ∈ [rb2 , r2), r ∈
(rb1 , rb2) and r ∈ (r1, rb1). This proves the result. �
3. Study of the period function

This section is devoted to the proof of Theorem 2.5, which strongly relies on the tools devel-
oped in [22]. In order to explain how they can be applied to our problem, some definitions need 
to be introduced. In the aforementioned paper the authors consider analytic planar differential 
systems

{
ẋ = p(x, y),

ẏ = q(x, y),
(6)

satisfying the following hypothesis:

(H) The differential system (6) has a center at the origin and an analytic first integral of the form 
H(x, y) = A(x) + B(x)y + C(x)y2 with A(0) = 0. Moreover its integrating factor, say K , 
depends only on x.

Let (x�, xr) be the projection onto the x-axis of the period annulus P around the center at the 
origin of the differential system (6). Note that x� < 0 < xr . Then, by Lemma 3.1 in [22], the 
hypothesis (H) implies that M := 4AC−B2

4|C| is a well defined analytic function on (x�, xr) with 
M(0) = 0 and xM ′(x) > 0 for all x ∈ (x�, xr) \ {0}. Accordingly, there exists a unique analytic 
function σ on (x�, xr) with σ(x) = −x + o(x) such that M ◦σ = M . Note that σ is an involution
with σ(0) = 0. (Recall that a mapping σ is said to be an involution if σ ◦ σ = Id.) Given an 
analytic function f on (x�, xr) \ {0} we define its σ -balance to be

Bσ

(
f

)
(x):= f (x) − f

(
σ(x)

)
2

.

Taking these definitions into account, the statement (b) of Theorem A in [22] asserts the follow-
ing:

Proposition 3.1. Suppose that the analytic differential system (6) satisfies the hypothesis (H). 
Setting μ0 = −1, define recursively

μi :=
(

1

2
+ 1

2i − 3

)
μi−1 +

√|C|M
(2i − 3)K

(
Kμi−1√|C|M ′

)′
and �i := Kμi√|C|M ′ for i � 1.

If the number of zeros of Bσ (�i) on (0, xr), counted with multiplicities, is n � 0 and it holds that 
i > n, then the number of critical periods of the center at the origin, counted with multiplicities, 
is at most n.

In particular, we point out that the period function is monotonous if n = 0. A key ingredi-
ent for determining the number of zeros of Bσ

(
li
)

is the following result, see [22, Theorem B]. 
In its statement, and in what follows, Res stands for the multipolynomial resultant (see for in-
stance [17,21]).
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Proposition 3.2. Let σ be an analytic involution on (x�, xr) with σ(0) = 0 and let � be an analytic 
function on (x�, xr) \ {0}. Assume that � and σ are algebraic, i.e., that there exist L, S ∈ C[x, y]
such that L

(
x, �(x)

) ≡ 0 and S
(
x, σ(x)

) ≡ 0. Let us define T (x, y) := Resz

(
L(x, z), L(y, z)

)
and R(x) := Resy

(
S(x, y), T (x, y)

)
. Finally let s(x) and t (x) be, respectively, the leading coef-

ficients of S(x, y) and T (x, y) with respect to y. Then the following hold:

(a) If Bσ

(
�
)
(x0) = 0 for some x0 ∈ (x�, xr) \ {0}, then R(x0) = 0.

(b) If s(x) and t (x) do not vanish simultaneously at x0, then the multiplicity of Bσ

(
�
)

at x0 is 
not greater than the multiplicity of R at x0.

In order to apply these results we move the center of differential system (4) to the origin. In 
passing we notice that the problem is essentially one-parametric. Since its proof is a straightfor-
ward computation, we do not include it here for the sake of brevity.

Lemma 3.3. Consider system (4) with α and β verifying −2β2 < 3α < 0 and let us 
say that the center is at a point (wc, 0). Then the coordinate transformation given by {
x = w−wc

2β
√

�
,y = v

2β
√

�

}
, where � := 4 + 6α

β2 , brings system (4) to

⎧⎨
⎩

x′ = y,

y′ = −x − 3x2 + y2

2(x + ϑ)
,

(7)

where ϑ := 1
6

(
2√
�

− 1
)

is positive.

The planar differential system (7) is analytic away from the singular line x = −ϑ . One can 
easily verify that it satisfies the hypothesis (H) with A(x) = 1

2x2 − x3, B(x) = 0, C(x) = x + ϑ

and K(x) = 2(x + ϑ). The function A has a minimum at x = 0 and a maximum at x = 1
3 , 

which yield a center at (0, 0) and a saddle at ( 1
3 , 0), respectively. When ϑ > 1

6 , in which case 
A(−ϑ) > A( 1

3 ), the singular line is “far away” from P , and the period annulus is bounded by 
the homoclinic connection based in the saddle point. When ϑ < 1

6 the situation is quite different 
because the outer boundary of P consists of a trajectory with α and ω limit in the straight line 
{x = −ϑ} and the segment between these two limit points, see Fig. 3. For this reason, we will 
study the period function of the center of system (7) separately for ϑ < 1/6 and ϑ > 1/6.

Observe that if B = 0, then the hypothesis (H) implies that the involution σ is defined by 
A = A ◦ σ . This is the case in the differential system under consideration, and one can easily 
verify that

A(x) − A(z) = 2(z − x)S(x, z), where S(x, z):= 2x2 + 2xz + 2z2 − x − z. (8)

Thus, we get σ(x) = 1
4 (1 − 2x − √

(6x + 1)(1 − 2x). As a matter of fact, thanks to Propo-
sition 3.2, the explicit expression of the involution is not required and we shall only use that 
S
(
x, σ(x)

) = 0.
The following auxiliary result will be needed at various points throughout this section. The 

proof is a straightforward computation of the first three coefficients in the Taylor expansion of 
the period function using standard techniques (see for example [23]).
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Fig. 3. The period annulus P of the center at the origin of system (7) for the two different cases that may occur: (a) when 
ϑ < 1/6; (b) when ϑ > 1/6.

Lemma 3.4. The first, second and third period constants of the center at the origin of system (7)
are given, up to a positive factor, by

�1 = 60ϑ2 + 12ϑ − 1, �2 = −�1 and �3 = 18 240ϑ4 + 3312ϑ3 − 276ϑ2 + 40ϑ − 5,

respectively.

Proposition 3.5. If ϑ � 1
6 , then the period function of the center of system (7) is monotonous 

increasing.

Proof. If ϑ � 1
6 then, see Fig. 3, the projection of the period annulus on the x-axis is 

(− 1
6 , 13

)
. 

Following Proposition 3.1, we shall study the number of zeros of Bσ (�1) and to this end we will 
apply Proposition 3.2. With this aim in view note that

�1(x) = 1

2

(6ϑ + 1)x − 4ϑ − 1√
x + ϑ(3x − 1)3

.

Accordingly, L
(
x, �1(x)

) ≡ 0 with L(x, y) := 4(x + ϑ)(3x − 1)6y2 − (
(6ϑ + 1)x − 4ϑ − 1

)2. 
Recall also that S

(
x, σ(x)

) ≡ 0, where S ∈ R[x, y] is defined in (8). A computation shows 
that Resz

(
L(x, z), L(y, z)

) = 16(x − y)2T̂ (x, y)2, with T̂ a bivariate polynomial of degree 8
in x and y which also depends polynomially on ϑ . Finally R(x) := Resy

(
S(x, y), T (x, y)

) =
(3x − 1)8R(x), where R is a univariate polynomial of degree 8 in x depending polynomially 
on ϑ .

Let us define Z(ϑ) to be the number of roots of R on (0, 13 ) counted with multiplicities. We 
claim that Z(ϑ) = 0 for all ϑ � 1

6 . For ϑ = 1
6 this can be easily verified by applying Sturm’s 

Theorem. To prove it for ϑ > 1
6 we first note that

R(0) = (4ϑ + 1)(2ϑ + 1)(48ϑ2 + 24ϑ − 1)(60ϑ2 + 12ϑ − 1) (9)
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and

R(1/3) = (6ϑ − 1)(2160ϑ3 + 2484ϑ2 + 720ϑ + 17)(2/3 + 2ϑ)2,

which do not vanish for ϑ > 1
6 . The discriminant of R with respect to x, Discx(R), is a polyno-

mial D(ϑ) of degree 82. After factorizing it, one can easily prove that D vanishes on ( 1
6 , +∞)

exactly once, at ϑ = ϑ̄ with ϑ̄ ≈ 0.954. Altogether this implies that Z(ϑ) is constant on ( 1
6 , ϑ̄)

and (ϑ̄, +∞). Choosing one value of ϑ in each interval and applying Sturm’s Theorem we find 
that Z(ϑ) = 0 for ϑ ∈ ( 1

6 , +∞) \ {ϑ̄}. To prove that this is true for ϑ = ϑ̄ as well we show that 
x �−→ �1(x) is monotonous on (− 1

6 , 13 ) for all ϑ ∈ ( 9
10 , 1). Indeed, one can verify that

�′
1(x) = N(x)

4(x + ϑ)3/2(3x − 1)4
,

with

N(x) = (90ϑ + 15)x2 + (72ϑ2 − 66ϑ − 20)x − 60ϑ2 − 12ϑ + 1.

We have that N(x) �= 0 for x ∈ (− 1
6 , 13 ) and ϑ ∈ ( 9

10 , 1) because it is true for ϑ = 95
100 and, on the 

other hand, the number of roots counted with multiplicity does not change due to the fact that

N(−1/6)N(1/3)Discx(N) �= 0 for all ϑ ∈ (9/10,1).

Therefore �′
1(x) �= 0 for all x ∈ (− 1

6 , 13 ) and ϑ ∈ ( 9
10 , 1), and we can assert that R does not 

vanish on (0, 13 ) for any ϑ � 1
6 . In view of (a) in Proposition 3.2 this implies that Bσ

(
�1

) �= 0 on 
(0, 13 ). This proves the validity of the claim and hence, by applying Proposition 3.1 with n = 0, 
it follows that the period function is monotonous for ϑ � 1

6 . Finally, the result follows by noting 
that, thanks to Lemma 3.4, the first period constant �1 is positive for ϑ � 1

6 . �
In order to study the period function of the center of system (7) for ϑ < 1

6 , we first recall the 
well-known Gelfand–Leray derivative, see for instance [28].

Lemma 3.6. Let ω and η be two rational 1-forms such that dω = dH ∧η and let γh ∈ H 1(Lh, Z)

be a continuous family of cycles on non-critical level curves Lh = {H = h} not passing through 
poles of neither ω nor η. Then

d

dh

∮
ω =

∮
η. (10)

We shall also use the following result, see [24, Lemma 4.1].

Lemma 3.7. Let γh be an oval inside the level curve {A(x) + C(x)y2 = h} and consider a 
function F such that F/A′ is analytic at x = 0. Then, for any k ∈ N,∫

γh

F (x)yk−2dx =
∫
γh

G(x)ykdx,

where G = 2 (
CF′

)′ − (
C′F′

)
.

k A A
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This allows us to prove the following result about the derivative of the period function associ-
ated to the center of the analytic differential system (6) satisfying hypothesis (H).

Lemma 3.8. Suppose that the analytic differential system (6) satisfies the hypothesis (H) with 
B = 0. Let T (h) be the period of the periodic orbit γh inside the energy level {H = h}. Then

T ′(h) = 1

h

∫
γh

R(x)
dx

y
,

where R= 1
2C

(
KA
A′

)′ − K(AC)′
4A′C2 .

Proof. Note first that if (6) satisfies (H) with B = 0, then dx
dt

= Hy(x,y)

K(x)
= 2C(x)y

K(x)
, so that

T (h) =
∫
γh

(
K

2C

)
(x)

dx

y
. (11)

Accordingly, since A(x) + C(x)y2 = h on γh we get

2hT (h) =
∫
γh

(
KA

C

)
(x)

dx

y
+

∫
γh

K(x)ydx =
∫
γh

(
G + K

)
(x) ydx,

with G := 2 
(

KA
A′

)′ − KAC′
A′C , where the second equality follows by applying Lemma 3.7 with 

F = KA
C

. Next we apply Lemma 3.6 taking H(x, y) = A(x) + C(x)y2, ω = (
G + K

)
(x) ydx

and η = (
G+K

2C

)
(x) dx

y
in order to get that

2
(
hT (h)

)′ = 2hT ′(h) + 2T (h) =
∫
γh

(
G + K

2C

)
(x)

dx

y
.

This equality, on account of (11), implies that 2hT ′(h) = ∫
γh

(
G−K

2C

)
(x) dx

y
. This proves the result 

because a straightforward computation shows that R = G−K
4C

. �
We are now in position to prove the following:

Lemma 3.9. If ϑ ∈ (0, 16 ), then the period function T (h) of the center at the origin of (7) verifies 
that limh→hm T ′(h) = −∞, where hm = A(−ϑ) is the energy level of the outer boundary of P , 
see Fig. 4.

Proof. By applying Lemma 3.8 taking A(x) = 1
2x2 − x3, C(x) = x + ϑ and K(x) = 2(x + ϑ)

it follows that T ′(h) = 1
h

∫
γh

R(x)dx
y

with

R(x):= x
(
4ϑ + 1 − (6ϑ + 1)x

)
2

.

4(x + ϑ)(3x − 1)
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Fig. 4. Root distribution of h − A(x) = (x − x−
h

)(x − x+
h

)(x − x̂h) in the proof of Lemma 3.9.

The relative position of the straight line x = −ϑ with respect to the graph of A is as displayed in 
Fig. 4 because A(−ϑ) − A( 1

3 ) = 1
54 (6ϑ − 1)(3ϑ + 1)2 and, by assumption, ϑ ∈ (0, 16 ). Accord-

ingly if h ∈ (0, 1
54 ) then h − A(x) = (x − x−

h )(x − x+
h )(x − x̂h), where x−

h < 0 < x+
h < 1

3 < x̂h. 
In particular, for h ∈ (0, hm), the projection of the periodic orbit γh on the x-axis is the interval 
[x−

h , x+
h ]. Hence T ′(h) = 2

h

(
I1(h) + I2(h)

)
, where

I1(h) =
0∫

x−
h

f (x,h)dx and I2(h) =
x+
h∫

0

f (x,h)dx

with

f (x,h) = R(x)
√

C(x)√
h − A(x)

= x
(
4ϑ + 1 − (6ϑ + 1)x

)
4(3x − 1)2

√
x + ϑ

√
(x − x−

h )(x − x+
h )(x − x̂h)

.

Let us write f (x, h) = g1(x,h)√
(x+ϑ)(x−x−

h )
, where

g1(x,h):= x
(
4ϑ + 1 − (6ϑ + 1)x

)
4(3x − 1)2

√
(x − x+

h )(x − x̂h)

.

Note that g1 is a continuous function on (−∞, 0] ×(0, 1
54 ). Consequently there exists M1 ∈ R

such that M1 := sup
{
g1(x, h); (x, h) ∈ [− 1

6 , 0] ×[ 1
2hm, hm]}. In addition, observe that M1 is 

strictly negative because one can verify that 4ϑ + 1 − (6ϑ + 1)x > 0 for all x < 0 and ϑ > 0. 
Thus for h ∈ ( 1

2hm, hm) we have that

I1(h) =
0∫

x−
h

g1(x,h)dx√
(x + ϑ)(x − x−

h )

� M1

0∫

x−
h

dx√
(x + ϑ)(x − x−

h )

= M1 log

⎛
⎜⎝ϑ − x−

h +
√

−ϑx−
h

ϑ + x−
h

⎞
⎟⎠ −→ −∞ as h −→ hm.

In the inequality above we take − 1
6 < −ϑ < x−

h into account, whereas the limit follows by using 
M1 < 0 and the fact that x− tends to −ϑ as h −→ hm. Accordingly,
h
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lim
h→hm

I1(h) = −∞. (12)

In order to study I2 let us write f (x, h) = g2(x,h)√
x+
h −x

, where

g2(x,h):= x
(
4ϑ + 1 − (6ϑ + 1)x

)
4(3x − 1)2

√
(x + ϑ)(x − x−

h )(x̂h − x)

.

Since g2 is continuous on [0, 13 ) ×(0, 1
54 ), M2 := sup

{
g2(x, h); (x, h) ∈ [0, xr ] ×[ 1

2hm, hm]} is a 
well defined real number. Consequently if h ∈ ( 1

2hm, hm), then

I2(h) =
x+
h∫

0

g2(x,h)dx√
x+
h − x

� M2

x+
h∫

0

dx√
x+
h − x

= 2M2

√
x+
h <

2M2√
3

.

Due to T ′(h) = 2
h

(
I1(h) + I2(h)

)
, the above inequality together with (12) imply the result. �

Proof of Theorem 2.5. Thanks to Proposition 3.5 it suffices to consider ϑ ∈ (0, 16 ). For these 
parameter values, see Fig. 4, the projection of the period annulus on the x-axis is (−ϑ, xr), 
where A(xr) = A(−ϑ). We proceed in exactly the same way as we did with Proposition 3.5, i.e., 
by applying Proposition 3.1 together with Proposition 3.2, but in this case we must use �3, since 
neither �1 nor �2 provides decisive information. Since Bσ (f ) ◦σ = −Bσ (f ) and σ maps (0, xr)

to (x�, 0), for convenience we shall study the latter interval, which in this case is (−ϑ, 0). One 
can verify that

�3(x) = p(x)

(3x − 1)7(x + ϑ)5/2
,

where p is a polynomial of degree 7 in x (depending also polynomially on ϑ ), which we do not 
write for the sake of brevity. Therefore L

(
x, �3(x)

) ≡ 0 with L(x, y) := (x + ϑ)5(3x − 1)14y2 −
p(x)2. Recall also that S

(
x, σ(x)

) ≡ 0, where S is the polynomial given in (8). A computa-

tion shows that Resz

(
L(x, z), L(y, z)

) = 2−20(x − y)2T̂ (x, y)2, with T̂ ∈ R[x, y] of degree 32, 
depending also polynomially on ϑ . Finally R(x) := Resy

(
S(x, y), T (x, y)

) = (3x − 1)20R(x), 
where R ∈ R[x, ϑ] with deg(R; x) = 44. For each ϑ ∈ (0, 16 ) let us define Z(ϑ) to be the num-
ber of zeros, counted with multiplicities, of R on (−ϑ, 0). To study this number we consider the 
value of R at the endpoints of (−ϑ, 0),

R(0) = 21153 ϑ12 (1 + 4ϑ)
(

60ϑ2 + 12ϑ − 1
)(

48ϑ2 + 24ϑ − 1
)

(2ϑ + 1)5 ,

and

R(−ϑ) = 16ϑ12 (1 + 3ϑ)10 (2ϑ + 1)12 (6ϑ − 1)14 ,
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together with the discriminant of R with respect to x, Discx(R), which is a polynomial D(ϑ)

of degree 1586 that we do not write here for brevity. One can easily check that R(−ϑ) does not 
vanish and that R(0) has exactly two roots on (0, 16), namely

ϑ1 := −1

4
+ 1

6

√
3 ≈ 0.03867 and ϑ2 := − 1

10
+ 1

15

√
6 ≈ 0.06330

By applying Sturm’s Theorem to each factor, we conclude that on (0, 16 ) the discriminant 
D(ϑ) vanishes only at ϑ = ϑ2. Hence Z(ϑ) is constant on I1 := (0, ϑ1), I2 := (ϑ1, ϑ2) and 
I3 := (ϑ2, 16 ). Taking one parameter value on each interval and applying Sturm’s Theorem once 
again we can assert that Z(ϑ) = 0 for all ϑ ∈ I1, Z(ϑ) = 1 for all ϑ ∈ I2 and Z(ϑ) = 2 for all 
ϑ ∈ I3. Therefore, by Proposition 3.2, it follows that the number of zeros, counted with multiplic-
ities, of Bσ

(
�3

)
(x) on (−ϑ, 0) is at most 0, 1 and 2, for ϑ ∈ I1, ϑ ∈ I2 and ϑ ∈ I3, respectively. 

Hence, thanks to Proposition 3.1, we can assert that the period function is monotonous for ϑ ∈ I1, 
whereas it has at most 1 (respectively, 2) critical periods for ϑ ∈ I2 (respectively, ϑ ∈ I3), counted 
with multiplicities.

Recall at this point that, in view of Lemma 3.4, the first period constant of the center is given 
by �1 = 60ϑ2 + 12ϑ − 1. On the other hand, by Lemma 3.8, we know that limT ′(h) = −∞ as 
h tends to hm for all ϑ ∈ (0, 16 ). Since �1 = 0 for ϑ = − 1

10 ± 1
15

√
6, we conclude that T (h) is 

monotonous decreasing near the endpoints of (0, hm) for all ϑ ∈ (0, ϑ2). For the same reason, if 
ϑ ∈ I3 then T (h) is increasing near h = 0 and decreasing near h = hm. On account of the upper 
bounds on the number of critical periods that we have previously obtained, we conclude that 
the period function is monotonous decreasing for ϑ ∈ I1 ∪ I2 and it has a unique critical period, 
which is a maximum, for ϑ ∈ I3.

The fact that the period function is monotonous decreasing for ϑ = ϑ1 can be proved by 
showing that Bσ

(
�1

)
does not vanish on (−ϑ1, 0) and using that �1 < 0 at ϑ = ϑ1. Since this is 

easy we do not include it here for the sake of brevity. The proof for ϑ = ϑ2 is slightly different but 
straightforward as well. We show first that Bσ

(
�3

)
has at most one zero on (−ϑ2, 0) counted with 

multiplicities. By Proposition 3.1 this implies that the period function has at most one critical 
period. To prove that it has none we take the behavior of the period function at the endpoints of 
(0, hm) into account. Since �1 = �2 = 0 and �3 < 0 at ϑ = ϑ2 by Lemma 3.4, we have that it 
is decreasing near h = 0. We know that it is also decreasing near h = hm thanks to Lemma 3.8. 
Thus it cannot have any critical period. This completes the proof. �
Remark 3.10. By means of standard techniques one can obtain the limit value of the integral 
defining the period function at the endpoints of its interval of definition. Combining this infor-
mation with the results in Theorem 2.5 and Section 3 we get the graphs of the period function 
T (h) displayed in Fig. 5. For the sake of brevity we omit the computations of the explicit values

T0 = 2π
√

2ϑ and T1 = 2 ln

(
(2ϑ + 1)(1 − 6ϑ)

1 + 6ϑ − 4
√

ϑ(1 + 3ϑ)

)
.

Note that T0 and T1 are strictly positive whenever they are defined. Taking into account the 
relation between period and wave length, cf. Remark 2.4, this shows that there do not exist 
smooth periodic TWS of CH with arbitrarily small wave length. Finally, we point out that ϑ =
− 1

10 + 1
15

√
6 and ϑ = 1/6 are, respectively, bifurcation values of the period function at the inner 

and outer boundary of the period annulus, see [37]. �
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Fig. 5. Sketch of the graph of the period function T (h) corresponding to Theorem 2.5: (a) for ϑ ∈ (0, − 1
10 + 1

15

√
6 ]; 

(b) for ϑ ∈ (− 1
10 + 1

15

√
6, 1/6); and (c) for ϑ ∈ [1/6, ∞).
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