

Nonlinear Analysis 41 (2000) 523-537

www.elsevier.nl/locate/na

On the shape of limit cycles that bifurcate from Hamiltonian centers

Hector Giacomini^a, Jaume Llibre^{b,*}, Mireille Viano^a

^a Laboratoire de Mathématiques et Physique Théorique, CNRS (UPRES-A 6083), Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont, 37200 Tours, France

et Techniques, Université de Tours, Parc de Granamont, 5/200 Tours, France

^b Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Received 29 September 1997; accepted 19 July 1998

Keywords: Limit cycles; Bifurcation theory

1. Introduction

The main problem in the qualitative theory of real planar differential equations is the determination of limit cycles. Limit cycles of planar vector fields were defined by Poincaré [13]. At the end of the 1920s van der Pol [14], Liénard [11] and Andronov [1] proved that a closed trajectory of a self-sustained oscillation occurring in a vacuum tube circuit was a limit cycle as considered by Poincaré. After these works, the non-existence, existence, uniqueness and other properties of limit cycles were studied extensively by mathematicians and physicists, and more recently also by chemists, biologists, economists, etc. (see for instance, the books [5, 17]).

In 1881–1886 Poincaré defined the notion of a center on the plane, as an isolated singular point surrounded by periodic orbits. Then one way to produce limit cycles is by perturbing a system which has a center, in such a way that limit cycles bifurcate in the perturbed system from some of the periodic orbits in the original system [15]. An understanding of this problem gives us an idea of how vast the second part of Hilbert's 16th problem really is [9], i.e. what is the maximum number of limit cycles of polynomial differential systems of a given degree? This problem is still unsolved even for the quadratic polynomial differential systems.

* Corresponding author. Tel.: +3-581-1304; fax: +3-581-2790.

E-mail address: jllibre@mat.uab.es (J. Llibre)