A note on Liouvillian first integrals and invariant algebraic curves

Jaume Giné ${ }^{\mathrm{a}}$, Maite Grau ${ }^{\mathrm{a}, *}$, Jaume Llibre ${ }^{\text {b }}$
${ }^{\text {a }}$ Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II 69, 25001 Lleida, Catalonia, Spain
${ }^{\text {b }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

ARTICLE INFO

Article history:

Received 2 July 2012
Received in revised form 10 September 2012
Accepted 10 September 2012

Keywords:

Liouvillian integrability
Invariant algebraic curve
Integrating factor
First integral

Abstract

In this work we study the existence and non-existence of finite invariant algebraic curves for a complex planar polynomial differential system having a Liouvillian first integral.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main results

In this work we consider a complex planar polynomial differential system

$$
\begin{equation*}
\frac{d x}{d t}=\dot{x}=P(x, y), \quad \frac{d y}{d t}=\dot{y}=Q(x, y) \tag{1}
\end{equation*}
$$

where the dependent variables x and y are complex, and the independent one (the time) t can be real or complex, and $P, Q \in \mathbb{C}[x, y]$, where $\mathbb{C}[x, y]$ is the ring of all polynomials in the variables x and y with coefficients in \mathbb{C}. We denote by $m=\max \{\operatorname{deg} P, \operatorname{deg} Q\}$ the degree of the polynomial system.

Let $f=f(x, y)=0$ be an algebraic curve in \mathbb{C}^{2}. We say that it is a finite invariant algebraic curve for the polynomial differential system (1) if

$$
\begin{equation*}
P \frac{\partial f}{\partial x}+Q \frac{\partial f}{\partial y}=k f \tag{2}
\end{equation*}
$$

for some polynomial $k=k(x, y) \in \mathbb{C}[x, y]$, called the cofactor of the algebraic curve $f=0$. From (2) it is easy to see that the degree of the polynomial k is at most $m-1$ and that the algebraic curve $f=0$ is formed by trajectories of the polynomial differential system (1).

Let $h, g \in \mathbb{C}[x, y]$ and assume that h and g are relatively prime in the ring $\mathbb{C}[x, y]$. Then the function $\exp (g / h)$ is called an exponential factor of the polynomial differential system (1) if for some polynomial $k \in \mathbb{C}[x, y]$ of degree at most $m-1$ it satisfies the equation

$$
\begin{equation*}
P \frac{\partial \exp (g / h)}{\partial x}+Q \frac{\partial \exp (g / h)}{\partial y}=k \exp (g / h) \tag{3}
\end{equation*}
$$

[^0]
[^0]: * Corresponding author.

 E-mail addresses: gine@matematica.udl.cat (J. Giné), mtgrau@matematica.udl.cat (M. Grau), jllibre@mat.uab.cat (J. Llibre).

