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Abstract. In this paper we find an upper bound for the maxi-
mum number of limit cycles bifurcating from the periodic orbits
of any planar polynomial quasi-homogeneous center, which can be
obtained using first order averaging method. This result improves
the upper bounds given in [7].

1. Introduction

In this work we deal with polynomial differential systems of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P (x, y), Q(x, y) ∈ R[x, y]. The dot denotes derivative with re-
spect to an independent variable t real. We say that the degree of the
system is n = max{degP, degQ}.
Let N denote the set of positive integers. The polynomial differential

system (1) is quasi–homogeneous if there exist p, q,m ∈ N such that for
arbitrary α ∈ R,

(2) P (αpx, αqy) = αp+m−1P (x, y), Q(αpx, αqy) = αq+m−1Q(x, y),

where p and q are called the weight exponents of system (1), and m the
weight degree with respect to the weight exponents p and q. We say that
system (1) satisfying conditions (2) is a quasi–homogeneous system of
weight (p, q,m). We remark that for the particular case p = q = 1,
system (1) is the classical homogeneous polynomial differential system
of degree m. We note that conditions (2) imply that the origin of
coordinates is a singular point of system (1). We will first characterize
when the origin of system (1) is a center (that is, it has a neighborhood
filled with periodic orbits with the exception of the origin). Lemma
4 statement (ii) (see below) are characterized all the centers of the
quasi–homogeneous systems. This characterization is well-known see
for instance [7]. Moreover in [1] the authors provide an algorithm for
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obtaining the quasi–homogeneous systems with a given degree which
is a combinatorial problem.
When the origin of system (1) is a center, we consider the one-

parametric family of systems

(3) ẋ = P (x, y) + εP̄ (x, y), ẏ = Q(x, y) + εQ̄(x, y),

where ε ∈ R is the perturbation parameter and P̄ and Q̄ ∈ R are
arbitrary polynomials of degree n. Our goal is to give the maximum
number of limit cycles which can bifurcate from the periodic orbits of
the center localized at the origin of system (1) with ε = 0, inside the
family (3) for ε 6= 0 sufficiently small. We can give this maximum
number in terms of p, q and n.

Moreover our result is a generalization of the one given in Theorem
A of [7] because we do not need the hypothesis that the polynomials P
and Q are coprime. Indeed, we will use the averaging method at first
order of ε instead of the Abelian integral which is used in [7]. In our
approach we use the classical trigonometric functions sin θ and cos θ
instead of the generalized trigonometric functions Cs θ and Sn θ which
are related to quasi-homogeneous functions. In our work the integral
that we find, see (5), instead of the Abelian integral is an integral of
elementary functions.

Our main result is the following one.

Theorem 1. We consider any quasi–homogeneous polynomial differ-
ential system of weight (p, q,m) of the form (1) having a center at the
origin. We denote by (p∗, q∗) = (p/M, q/M) where M = gcd(p, q). We
perturb system (1) inside the class of all polynomial differential systems
of degree n, that is, we consider systems of the form (3) where P̄ and Q̄
are arbitrary polynomials of degree n. We assume that n ≥ p∗ ≥ q∗ ≥ 1.
Then, the maximum number of zeros r0 > 0 taking into account their
multiplicity of the first averaging function (see (5)) is at most

(a) (2(n+1)p∗ − p∗2 + (3+ (−1)n+1)p∗ − 7)/4 if p∗ and q∗ are odd;
(b) (2(n+ 1)p∗ − p∗2 + 2p∗ − 4)/4 if p∗ is even and q∗ is odd; and
(c) (2(n + 1)p∗ − p∗2 + (−1)n + 2p∗ − 4)/4 if p∗ is odd and q∗ is

even.

Statements (b) and (c) of Theorem 1 are an improvement of the ones
given in [7] because the expression 2p∗ − 4 there appears as 4p∗ − 8.

The upper bounds provided in Theorem 1 cannot always be reached,
as the following result shows.

Proposition 2. We consider the system

(4) ẋ = −y3(x2 + y4) + εP̄ (x, y), ẏ = x(x2 + y4) + εQ̄(x, y),
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where ε ∈ R and P̄ (x, y), Q̄(x, y) are real polynomials of degree n =
7. The maximum number of zeros r0 > 0 taking into account their
multiplicity of the first averaging function (see (5)) is at most 5 and
there are polynomials P̄ (x, y), Q̄(x, y) for which this upper bound is
reached.

We remark that the bound 5 is lower than the bound given in The-
orem 1. In this example, proved in section 4, we can compute the first
averaging function and we can improve the bound given by Theorem 1
to get a sharp upper bound.

Another contribution of this paper is that we give the explicit func-
tion whose simple zeros provide the periodic solutions of the quasi–
homogeneous center in (1) which for ε sufficiently small persist as limit
cycles for system (3). This function is

(5) ψ̄1(z) =
∑

k∈S̃n

(
∫ 2π

0

ϕk(θ)dθ

)

zk,

where we define the set of indexes

S̃n = {ip+ jq : i, j ≥ 0, 0 < i+ j ≤ n+ 1},

the functions

ϕk(θ) =
(p cos2 θ + q sin2 θ)

g(θ)2

[

Q(cos θ, sin θ)P̄k−q(cos θ, sin θ)

−P (cos θ, sin θ)Q̄k−p(cos θ, sin θ)
]

u(θ)k−m−p−q+1,

where P̄ℓ and Q̄ℓ are the quasi–homogeneous terms of weight (p, q, ℓ)
in P̄ and Q̄, respectively, the trigonometric polynomials

f(θ) = P (cos θ, sin θ) cos θ +Q(cos θ, sin θ) sin θ,

g(θ) = pQ(cos θ, sin θ) cos θ − q P (cos θ, sin θ) sin θ.

and the 2π-periodic function, see Lemma 4 statement (ii),

u(θ) := exp

(
∫ θ

0

f(s)

g(s)
ds

)

.

In fact for homogeneous cubic systems perturbed inside the class
of all cubic polynomial systems these explicit formulas were given [6].
Some upper bounds for the number of limit cycles which bifurcate from
the period annulus of a quasi–homogeneous polynomial differential sys-
tem with a center have been given in [2]; see also the references therein.

The rest of the paper is organized as follows. In section 2 we present
some lemmas which will allow to prove Theorem 1 in section 3. Section
4 contains an application.
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2. Preliminary results

First we present the following technical result.

Lemma 3. Given a quasi–homogeneous system (1) of weight (p, q,m),
we can suppose without restriction that p and q are coprime.

The proof of this lemma is an extension “mutatis-mutandi” of the
proof of Lemma 2.1 of [3] for systems with P and Q not coprime, see
also [1]. We give here its proof for completeness.

Proof. Let M be the greatest common divisor of p and q. Then p =
Mp∗ and q = Mq∗ with p∗ and q∗ coprime. If P (x, y) is not zero, let
xipyjp be a monomial with nonzero coefficient of P (x, y). Since

P (αpx, αqy) = αp+m−1P (x, y) for all α ∈ R.

we have that (αpx)ip(αqy)jp = αpipαqjpxipyjp = αp+m−1xipyjp which
implies that pip+qjp = p+m−1, or equivalently p(ip−1)+qjp = m−1.
Consequently m − 1 is divisible by M except if (ip, jp) = (1, 0). If
P (x, y) = x or P (x, y) ≡ 0, and Q(x, y) is not zero then we consider
the monomial xiqyjq with nonzero coefficient of Q(x, y). Taking into
account that

Q(αpx, αqy) = αq+m−1Q(x, y) for all α ∈ R,

we obtain p iq + q(jq − 1) = m − 1. From here we deduce that m − 1
is divisible by M except if (iq, jq) = (0, 1).
Therefore, either m−1 is divisible by M or system (1) writes as one

of the following four cases

ẋ = x,
ẏ = y,

ẋ = x,
ẏ = 0,

ẋ = 0,
ẏ = y,

ẋ = 0,
ẏ = 0,

which are homogenous systems of degree 1 with (p, q,m) = (1, 1, 1) and
therefore with p and q coprime.

In any other case we can write m− 1 =M(m∗ − 1). In this case we
claim that system (1) is (p∗, q∗, m∗) quasi–homogeneous with p∗ and q∗

coprime. Indeed, we have that any monomial xipyjp of P (x, y) must
verify that p(ip − 1) + q jp = m− 1 which can be divided by M to give
p∗(ip − 1) + q∗jp = m∗ − 1. In a similar way for any monomial xiqyjq

of Q(x, y) we obtain p∗ iq + q∗(jq − 1) = m∗ − 1. Hence we obtain a
quasi–homogeneous system of weight (p∗, q∗, m∗). �

In the following we assume that system (1) is a quasi–homogeneous
system of weight (p, q,m) with p and q coprime.
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Now we take the weighted blow–up x = rp cos θ, y = rq sin θ and we
apply it to system (1) which becomes

(6) ṙ =
rmf(θ)

p cos2 θ + q sin2 θ
, θ̇ =

rm−1g(θ)

p cos2 θ + q sin2 θ
,

with

f(θ) = P (cos θ, sin θ) cos θ +Q(cos θ, sin θ) sin θ,

g(θ) = pQ(cos θ, sin θ) cos θ − q P (cos θ, sin θ) sin θ.

We note that p cos2 θ + q sin2 θ > 0 for all θ ∈ R because p, q > 0.
The next well-known result characterizes when system (1) has a center
at the origin of coordinates in terms of trigonometric polynomials f(θ)
and g(θ). For completeness, we prove it here.

Lemma 4. Consider a polynomial system of the form (1).

(i) If system (1) has a singular point which is a center then this
singular point is at the origin of coordinates.

(ii) System (1) has a center (at the origin of coordinates) if and

only if g(θ) has no real roots and
∫ 2π

0
f(θ)
g(θ)

dθ = 0.

(iii) If system (1) has a center (at the origin of coordinates) its period
annulus is R2 \ {(0, 0)} (the whole plane).

Proof. (i) Let (x0, y0) be a point different from the origin of coordinates
which is a singular point of system (1). By the conditions (2) we see
that the whole algebraic curve L = {αpx0, α

qy0), α ∈ R} is full of
singular points of system (1) because

P (αpx0, α
qy0) = αp+m−1P (x0, y0) = 0,

Q(αpx0, α
qy0) = αq+m−1Q(x0, y0) = 0.

Therefore in any punctured neighborhood of (x0, y0) there are singular
points which implies that there cannot be any neighborhood filled with
periodic orbits. Hence (x0, y0) cannot be a center for system (1).

(ii) We consider system (6) which is a blow–up system of (1). If
g(θ∗) = 0 for θ∗ ∈ R, we have that the real algebraic curve L =
{rp cos θ∗, rq sin θ∗), r ∈ R} is invariant for system (1). In fact we have
L = {(x, y) ∈ R

2 : (cos θ∗)qyp − (sin θ∗)pxq = 0}. And if we define
ϕ(x, y) = (cos θ∗)qyp − (sin θ∗)pxq we have that (P,Q) · ∇ϕ|L = 0.
Moreover we see that ϕ(0, 0) = 0 and that in any neighborhood of the
origin of coordinates in R

2 there are points of the curve ϕ(x, y) = 0,
because we are assuming that p and q are coprime and therefore at
least one of them is odd. If p is odd, for instance, we see that the
function ϕ(0, y) = (cos θ∗)qyp changes sign in a neighborhood of y = 0
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(unless cos θ∗ = 0), which implies that ϕ(x, y) = 0 has a real branch
passing through (0, 0). If cos θ∗ = 0, since g(θ∗) = 0 we have that
sin θ∗P (0, sin θ∗) = 0 from here we get P (0, sin θ∗) = 0. This implies
that x divides P (x, y) and, therefore, there is an invariant algebraic
curve with real branch passing through (0, 0). Hence the origin cannot
be a center.
When g(θ) has no real roots, we can consider the differential equation

(7)
dr

dθ
= r

f(θ)

g(θ)
,

corresponding to system (6). We remark that system (1) has a center
at the origin if and only if all the orbits in a neighborhood of r = 0
in system (6) are periodic of period 2π. Indeed, this is the case if and
only if all the orbits in a neighborhood of r = 0 in equation (7) are
periodic of period 2π. We denote by r(θ; r0) the solution of (7) with
initial condition r(0; r0) = r0. We remark that

r(θ; r0) = r0 exp

(
∫ θ

0

f(s)

g(s)
ds

)

.

We see that these orbits are periodic of period 2π if and only if

(8)

∫ 2π

0

f(s)

g(s)
ds = 0.

(iii) If system (1) has a center then we have that g(θ) has no real roots.
Therefore, system (6) has no singular points in the domain r > 0. We
note that since p, q > 0 then p cos2 θ+ q sin2 θ > 0 for all θ. Therefore,
system (1) has no singular points except the origin of coordinates and
all the orbits rotates in counterclockwise or clockwise sense, because
g(θ) > 0 for all θ or g(θ) < 0 for all θ, respectively. If the origin of
(1) is a center, then condition (8) is verified, this implies that all the
solutions of equation (7) are 2π–periodic in θ, that is, r(2π; r0) = r0
for all r0 ∈ R. Hence, any orbit of system (1) which is not the origin
of coordinates is periodic. We conclude that the period annulus of the
center at the origin is R2 \ {0, 0}. �
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We consider the perturbed system (3) and the weighted blow–up
x = rp cos θ, y = rq sin θ and we get

ṙ =
rmf(θ)

p cos2 θ + q sin2 θ

+ ε
r1−p cos θP̄ (rp cos θ, rq sin θ) + r1−q sin θQ̄(rp cos θ, rq sin θ)

p cos2 θ + q sin2 θ
,

θ̇ =
rm−1g(θ)

p cos2 θ + q sin2 θ

+ ε
r−qp cos θQ̄(rp cos θ, rq sin θ)− r−pq sin θP̄ (rp cos θ, rq sin θ)

p cos2 θ + q sin2 θ
.

We assume that system (1) is quasi–homogeneous of weight (p, q,m)
with p and q coprime (using Lemma 3) and that it has a center at the
origin of coordinates. By Lemma 4, this implies that g(θ) has no real
roots. Therefore, we can consider the ordinary differential equation
associated to the above differential system which is

(9)

dr

dθ
= r

f(θ)

g(θ)
+ ε

(p cos2 θ + q sin2 θ)

rm+p+q−2g(θ)2
[

rqQ(cos θ, sin θ)P̄ (rp cos θ, rq sin θ)

−rpP (cos θ, sin θ)Q̄(rp cos θ, rq sin θ)
]

+O(ε2)

= G0(r, θ) + εG1(r, θ) +O(ε2).

We will apply the averaging theory of first order in ε to the equation (9)
for studying the limit cycles which bifurcate from the period annulus P
surrounding the origin of the unperturbed system (1). We see that, by
hypothesis, an open interval with boundary the origin of coordinates
and belonging to {(x, y) ∈ R

2 : x > 0, y = 0} is a transversal section
for system (1) on the whole period annulus P. Therefore there exists an
ε sufficiently small such that this interval is also a transversal section
for system (3). We consider the Poincaré return map associated to this
transversal section and if we denote by ϕε(θ; r0) the solution of equation
(9) with initial condition ϕε(0; r0) = r0, the Poincaré return map is
ϕε(2π; r0). We remark that when ε = 0 we have that ϕ0(2π; r0) = r0
for all r0 ≥ 0, because all the orbits are periodic with the exception of
the origin. By the analytic dependence of the solutions of an ordinary
analytic differential equation with respect to parameters and initial
conditions we have that there exists an analytic function ψ1(r0) such
that

ϕε(2π; r0) = r0 + εψ1(r0) +O(ε2).
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We see that a limit cycle of (3) which bifurcates from a periodic orbit
of P corresponds to a value r∗ such that ϕε(2π; r

∗) = r∗. Therefore,
if ψ1(r0) is not identically zero, for each simple zero r∗ of ψ1(r0) there
exists a periodic solution of (9) whose initial condition tends to r∗ when
ε→ 0, see Corollary 5 (a) in [4]. In this case we say that a limit cycle
bifurcates from the periodic solution of (1) with initial condition at r∗

at first order in ε. In the aforementioned paper we give the formula for
ψ1(r0) and we present it below. We have that the explicit solution for
equation (9) with ε = 0 is

ϕ0(θ; r0) = r0 exp

(
∫ θ

0

f(s)

g(s)
ds

)

= r0u(θ).

Following Theorem 4 of [4] we have that

(10) ψ1(r0) =

∫ 2π

0

1

u(θ)
G1(θ, r0u(θ))dθ.

3. Proof of Theorem 1

Our proof is based on the one given in [7] in many aspects.
By Lemma 3, we assume that p and q are coprime. We first observe

that the number of zeros r0 > 0 of ψ1(r0) coincides with the number of
zeros z > 0 of ψ̄1(z) = zm+p+q−2ψ1(z). By (10) we have that
(11)

ψ̄1(z) =

∫ 2π

0

1

u(θ)m+p+q−1

(p cos2 θ + q sin2 θ)

g(θ)2

[

zqu(θ)qQ(cos θ, sin θ)P̄ (zpu(θ)p cos θ, zqu(θ)q sin θ)

−zpu(θ)pP (cos θ, sin θ)Q̄(zpu(θ)p cos θ, zqu(θ)q sin θ)
]

dθ.

We can write the polynomials P̄ and Q̄ as the sum of their quasi-
homogeneous parts.

P̄ (x, y) = P̄0 + P̄p(x, y) + · · ·+ P̄nq(x, y),

Q̄(x, y) = Q̄0 + P̄p(x, y) + · · ·+ P̄nq(x, y),

with P̄k and Q̄k polynomials which are quasi–homogeneous of weight
(p, q, k). We note that k takes values in the following set

Sn = {0, p, q, 2p, p+ q, 2q, . . . , np, (n− 1)p+ q, . . . , p+ (n− 1)q, nq}
= {ip+ jq : i, j ≥ 0, 0 ≤ i+ j ≤ n}.

All polynomial vector fields can be decomposed into quasi–homogeneous
components with respect to a given weight (p, q), see for instance [5,
page 46].
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Hence, from (11) we have
(12)

ψ̄1(z) =

∫ 2π

0

(p cos2 θ + q sin2 θ)

u(θ)m+p+q−1g(θ)2

[

zqu(θ)qQ(cos θ, sin θ)
∑

k∈Sn

P̄k(cos θ, sin θ)z
ku(θ)k

−zpu(θ)pP (cos θ, sin θ)
∑

k∈Sn

Q̄k(cos θ, sin θ)z
ku(θ)k

]

dθ.

We define

(13)
ϕk(θ) =

(p cos2 θ + q sin2 θ)

g(θ)2

[

Q(cos θ, sin θ)P̄k−q(cos θ, sin θ)

−P (cos θ, sin θ)Q̄k−p(cos θ, sin θ)
]

u(θ)k−m−p−q+1,

where P̄p−q(cos θ, sin θ) ≡ Q̄q−p(cos θ, sin θ) ≡ 0. By reparameterizing
the index k in (12) we get that

(14) ψ̄1(z) =
∑

k∈S̃n

∫ 2π

0

ϕk(θ)z
kdθ =

∑

k∈S̃n

(
∫ 2π

0

ϕk(θ)dθ

)

zk,

where

S̃n = {p, q, 2p, p+ q, 2q, . . . , (n+ 1)p, np+ q, . . . , p+ nq, (n+ 1)q}
= {ip+ jq : i, j ≥ 0, 0 < i+ j ≤ n + 1}.

The following lemma corresponds to Proposition 3 of [7].

Lemma 5. We consider a quasi-homogeneous system (1) of weight
(p, q,m) with a center at the origin of coordinates. Then the following
statements hold.

(a) If p and q are odd, then m is odd and the periodic orbits of the
center are symmetric with respect to the origin of coordinates.

(b) If p and q are even, then m is odd.
(c) If p is odd and q is even, then m is even and the periodic orbits

of the center are symmetric with respect to the y-axis.
(d) If p is even and q is odd, then m is even and the periodic orbits

of the center are symmetric with respect to the x-axis.

We remark that since we can assume; without loss of generality, that
p and q are coprime, statement (b) of Lemma 5 can be discarded. The
described symmetries in statements (a), (c) and (d) mean that
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If p and q are odd, by statement (a) of Lemma 5 m is odd, and
from (2), we have that

(15) P (−x,−y) = −P (x, y), Q(−x,−y) = −Q(x, y);

if p is even and q is odd, by statement (d) of Lemma 5 m is
even, and from (2), it follows that

(16) P (x,−y) = −P (x, y), Q(x,−y) = Q(x, y);

if p is odd and q is even, by statement (c) of Lemma 5 m is
even, and from (2), we obtain that

(17) P (−x, y) = P (x, y), Q(−x, y) = −Q(x, y);

for all (x, y) ∈ R
2.

Lemma 6. Let P and Q be polynomials which define the quasi-homogeneous
system (1) of weight (p, q,m). Assume that g(θ) has no real roots and
that u(2π) = 1 (that is, system (1) has a center at the origin). Then

(i) If p and q are odd, u(θ + π) = u(θ) and g(θ + π) = g(θ) for all
θ.

(ii) If p is even and q is odd, u(−θ) = u(θ) and g(−θ) = g(θ) for
all θ.

(iii) If p is odd and q is even, u(π − θ) = u(θ) and g(π − θ) = g(θ)
for all θ.

Proof. (i) If p and q are odd, we need to show that

(18)

∫ θ+π

0

f(s)

g(s)
ds−

∫ θ

0

f(s)

g(s)
ds = 0,

for all θ, this implies that u(θ + π) = u(θ) for all θ. We have that
∫ 2π

0

f(s)

g(s)
ds =

∫ π

0

f(s)

g(s)
ds+

∫ 2π

π

f(s)

g(s)
ds.

In the second integral we do the change s = τ + π and we have
∫ 2π

π

f(s)

g(s)
ds =

∫ π

0

f(τ + π)

g(τ + π)
dτ.

We recall that cos(τ +π) = − cos τ and sin(τ +π) = − sin τ . Therefore
using (15) we have

f(τ + π) = −P (− cos τ,− sin τ) cos τ −Q(− cos τ,− sin τ) sin τ

= P (cos τ, sin τ) cos τ +Q(cos τ, sin τ) sin τ = f(τ).

and g(τ + π) = g(τ) analogously. Therefore,
∫ π

0

f(τ + π)

g(τ + π)
dτ =

∫ π

0

f(τ)

g(τ)
dτ.



LIMIT CYCLES BIFURCATING FROM QUASI–HOMOGENEOUS CENTERS 11

Thus
∫ 2π

0

f(s)

g(s)
ds = 2

∫ π

0

f(s)

g(s)
ds = 0,

because by assumption the first integral is zero. Now we consider the
left-hand side of (18)

∫ θ+π

0

f(s)

g(s)
ds−

∫ θ

0

f(s)

g(s)
ds =

∫ θ+π

θ

f(s)

g(s)
ds =

∫ π

0

f(s)

g(s)
ds = 0,

because we have shown in the previous paragraph that f(s)/g(s) is a
π-periodic function.

(ii) If p is even and q is odd, we need to show that

(19)

∫ −θ

0

f(s)

g(s)
ds−

∫ θ

0

f(s)

g(s)
ds = 0,

for all θ, this implies that u(−θ) = u(θ) for all θ. We recall that
cos(−s) = cos s and sin(−s) = − sin s. Therefore using (16) we have

f(−s) = P (cos s,− sin s) cos s−Q(cos s,− sin s) sin s

= −P (cos s, sin s) cos s−Q(cos s, sin s) sin s = −f(s).

and g(−s) = g(s) analogously. Doing the change s = −τ , we see that
∫ −θ

0

f(s)

g(s)
ds =

∫ θ

0

f(−τ)

g(−τ)
(−dτ) =

∫ θ

0

f(τ)

g(τ)
dτ.

Therefore (19) is satisfied.

(iii) If p is odd and q is even, we want to show that

(20)

∫ π−θ

0

f(s)

g(s)
ds−

∫ θ

0

f(s)

g(s)
ds = 0,

for all θ, this implies that u(π − θ) = u(θ) for all θ. We recall that
cos(π − s) = − cos s and sin(π − s) = sin s. Thus using (17) we have

f(π − s) = P (− cos s, sin s) cos s+Q(− cos s, sin s) sin s

= −P (cos s, sin s) cos s−Q(cos s, sin s) sin s = −f(s).

and g(π− s) = g(s) analogously. Doing the change s = π− τ , we have
∫ π−θ

0

f(s)

g(s)
ds =

∫ θ

π

f(π − τ)

g(π − τ)
(−dτ) =

∫ θ

π

f(τ)

g(τ)
dτ.

The left-hand side of (17) using the previous equality writes as
∫ π−θ

0

f(s)

g(s)
ds−

∫ θ

0

f(s)

g(s)
ds =

∫ θ

π

f(s)

g(s)
ds+

∫ 0

θ

f(s)

g(s)
ds = −

∫ π

0

f(s)

g(s)
ds.
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On the other hand,doing s = π − τ , we have that
∫ π

0

f(s)

g(s)
ds =

∫ 0

π

f(τ)

g(τ)
dτ = −

∫ π

0

f(τ)

g(τ)
dτ.

Hence

∫ π

0

f(τ)

g(τ)
dτ = 0 and (20) is satisfied. �

We consider the functions ϕk(θ) defined in (13). We can establish
the following result.

Lemma 7. The following statements hold.

(i) If p and q are odd, then

∫ 2π

0

ϕk(θ) dθ = 0 when k is odd.

(ii) If p or q is even, then

∫ 2π

0

ϕk(θ) dθ = 0 when k is even.

Proof. (i) If p and q are odd by Lemma 6 we have that u(θ + π) =
u(θ) and g(θ + π) = g(θ). We recall that cos(θ + π) = − cos θ and
sin(θ + π) = − sin θ. Hence we have

P (− cos θ,− sin θ) = −P (cos θ, sin θ),

Q(− cos θ,− sin θ) = −Q(cos θ, sin θ),

which is (15). Now we consider a P̄k−q(x, y) which is a quasi-homogeneous
polynomial of weight (p, q, k − q). Then

P̄k−q((−1)px, (−1)qy) = (−1)k−qP̄k−q(x, y).

Therefore P̄k−q(−x,−y) = P̄k−q(x, y) because p, q and k are odd. In
the same way

Q̄k−p((−1)px, (−1)qy) = (−1)k−pQ̄k−p(x, y).

So Q̄k−p(−x,−y) = Q̄k−p(x, y). Hence

ϕk(θ + π) =
(p cos2 θ + q sin2 θ)

g(θ)2

[

−Q(cos θ, sin θ)P̄k−q(cos θ, sin θ)

+P (cos θ, sin θ)Q̄k−p(cos θ, sin θ)
]

u(θ)k−m−p−q+1 = −ϕk(θ).

Consequently
∫ 2π

0

ϕk(θ) dθ =

∫ π

0

ϕk(θ) dθ +

∫ 2π

π

ϕk(θ) dθ.

Now doing the change θ = s+ π in the second integral we obtain
∫ π

0

ϕk(θ) dθ +

∫ π

0

ϕk(s+ π) ds =

∫ π

0

ϕk(θ) dθ −

∫ π

0

ϕk(s) ds = 0.
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(ii) If p is even and q is odd by Lemma 6 we have that u(−θ) = u(θ)
and g(−θ) = g(θ). We recall that cos(−θ) = cos θ and sin(−θ) =
− sin θ. Hence we have

P (cos θ,− sin θ) = −P (cos θ, sin θ),

Q(cos θ,− sin θ) = Q(cos θ, sin θ),

which is (16). Now we consider a P̄k−q(x, y) which is a quasi-homogeneous
polynomial of weight (p, q, k − q). Then

P̄k−q((−1)px, (−1)qy) = (−1)k−qP̄k−q(x, y).

Therefore P̄k−q(x,−y) = −P̄k−q(x, y) because q is odd and p and k are
even. In the same way

Q̄k−p((−1)px, (−1)qy) = (−1)k−pQ̄k−p(x, y).

So Q̄k−p(x,−y) = Q̄k−p(x, y). Hence

ϕk(−θ) =
(p cos2 θ + q sin2 θ)

g(θ)2

[

Q(cos θ, sin θ)(−P̄k−q(cos θ, sin θ))

+P (cos θ, sin θ)Q̄k−p(cos θ, sin θ)
]

u(θ)k−m−p−q+1 = −ϕk(θ).

Since ϕk(θ) is a 2π-periodic function we have

(21)

∫ 2π

0

ϕk(θ) dθ =

∫ π

−π

ϕk(θ) dθ =

∫ 0

−π

ϕk(θ) dθ +

∫ π

0

ϕk(θ) dθ.

Now doing the change θ = −s in the first integral we obtain
∫ 0

π

ϕk(−s)(−ds) +

∫ π

0

ϕk(θ) dθ = −

∫ π

0

ϕk(s) ds+

∫ π

0

ϕk(θ) dθ = 0.

If p is odd and q is even by Lemma 6 we have that u(π − θ) =
u(θ) and g(π − θ) = g(θ). We recall that cos(π − θ) = − cos θ and
sin(π − θ) = sin θ. Hence we have

P (− cos θ, sin θ) = P (cos θ, sin θ),

Q(− cos θ, sin θ) = −Q(cos θ, sin θ),

that is, we obtain (17). Now we consider a P̄k−q(x, y) which is a quasi-
homogeneous polynomial of weight (p, q, k − q). Then

P̄k−q((−1)px, (−1)qy) = (−1)k−qP̄k−q(x, y).

Therefore P̄k−q(−x, y) = P̄k−q(x, y) because p is odd and q and k are
even. In the same way

Q̄k−p((−1)px, (−1)qy) = (−1)k−pQ̄k−p(x, y).
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So Q̄k−p(x,−y) = −Q̄k−p(x, y). Hence

ϕk(π − θ) =
(p cos2 θ + q sin2 θ)

g(θ)2

[

−Q(cos θ, sin θ)P̄k−q(cos θ, sin θ)

−P (cos θ, sin θ)(−Q̄k−p(cos θ, sin θ))
]

u(θ)k−m−p−q+1 = −ϕk(θ).

Consequently we get
∫ 2π

0

ϕk(θ) dθ =

∫ π

0

ϕk(θ) dθ +

∫ 2π

π

ϕk(θ) dθ.

Now doing the change θ = π − s in the second integral we have
∫ π

0

ϕk(θ) dθ +

∫ −π

0

ϕk(π − s)(−ds) =

∫ π

0

ϕk(θ) dθ −

∫ 0

−π

ϕk(θ) dθ.

Since ϕk(θ) is a 2π-periodic function it satisfies equality (21). Therefore
∫ 0

−π

ϕk(θ) dθ +

∫ π

0

ϕk(θ) dθ =

∫ π

0

ϕk(θ) dθ −

∫ 0

−π

ϕk(θ) dθ,

which implies
∫ 0

−π

ϕk(θ) dθ = 0.

Moreover doing the change θ = π − s we have that
∫ π

0

ϕk(θ) dθ =

∫ 0

π

ϕk(π−s)(−ds) =

∫ π

0

ϕk(π−s) ds = −

∫ π

0

ϕk(s) ds.

Therefore
∫ π

0

ϕk(θ) dθ = 0.

Finally
∫ 2π

0

ϕk(θ) dθ =

∫ 0

−π

ϕk(θ) dθ +

∫ π

0

ϕk(θ) dθ = 0.

�

The difference between the bounds in Theorem 1 and the ones in [7]
comes from the fact that in [7] it was erroneously stated that if p or

q is even, then
∫ 2π

0
ϕk(θ) dθ = 0 when k is odd, instead of the correct

statement (ii) of Lemma 7.

By (14) and Lemma 7 we have that

(22) ψ̄1(z) =
∑

k∈S̃n

(
∫ 2π

0

ϕk(θ)dθ

)

zk =
∑

k∈S̃∗

n

(
∫ 2π

0

ϕk(θ)dθ

)

zk,
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where S̃n = {ip+ jq : i, j ≥ 0, 0 < i+ j ≤ n+ 1} = Sn+1 \ {0} and
we define

(23) S̃∗
n =

{

{k = ip+ jq ∈ S̃n : k even} if p and q odd,

{k = ip+ jq ∈ S̃n : k odd} if p or q even.

Recall that p and q are assumed to be coprime by Lemma 3. We
define the following set of indexes from which we will determine its
cardinal:
(24)
B(p, q, n) =

=

{

k = ip + jq : i, j ≥ 0, 0 ≤ i+ j ≤ n,
k even if p and q odd
k odd if p or q even

}

=

{

ip + jq : i, j ≥ 0, 0 ≤ i+ j ≤ n,
i+ j even if p and q odd
j odd if p even and q odd
i odd if p odd and q even

}

We remark that if p and q are odd, the cardinal of the set S̃∗
n is

the cardinal of the set B(p, q, n + 1) minus 1. This “minus 1” comes
from the fact that the value i + j = 0 is not considered in S̃∗

n. If p or

q is even, the cardinal of the set S̃∗
n coincides the cardinal of the set

B(p, q, n+ 1).

Next lemma provides the cardinal of the set B(p, q, n).

Lemma 8. Let p, q and n be positive integers with p and q coprime
and such that n ≥ p ≥ q.

(a) If p and q are odd, then

|B(p, q, n)| =
2np− p2 + (3 + (−1)n)p+ 1

4
.

(b) If p is even and q is odd, then

|B(p, q, n)| =
2np− p2 + 2p

4
.

(c) If p is odd and q is even, then

|B(p, q, n)| =
2np− p2 + 2p− (−1)n

4
.

Proof. We first consider the particular case that p = q = 1. Then we
have that Sn = {i : 0 ≤ i ≤ n+ 1}, S̃n = Sn \ {0} and

S̃∗
n =

{

k ∈ S̃n : k even
}

.
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We see that

B(1, 1, n) = {k : 0 ≤ k ≤ n, k even}

and its cardinal is (n+1)/2 if n is odd and (n+2)/2 if n is even. These
values coincide with statement (a) of the lemma substituting p by 1.
For the rest of the proof, we assume that p > q.

We first consider the set {ip+ jq : i, j ≥ 0, 0 ≤ i+ j ≤ n}. We de-
pict its values in the following way: we take the first quadrant of coor-
dinate axes with i in the horizontal axes and j in the vertical axes. The
values of these coordinates belong to the triangle i, j ≥ 0, 0 ≤ i+j ≤ n.
Next to each point (i, j) belonging to this triangle, we write the value
ip+ jq. Figure 1 corresponds to this triangle for the case n = 12, p = 3
and q = 2.
We define the trapezoid Tp,q,n = {(i, j) : i, j ≥ 0, 0 ≤ i+ j ≤ n, j <

p}. Figure 2 shows this trapezoid for the case n = 12, p = 3 and q = 2.
If (i, j) and (i′, j′) are two different points on the triangle i, j ≥ 0, 0 ≤

i + j ≤ n, for which ip + jq = i′p + j′q, then i 6= i′ and j 6= j′. We
take, for instance, the case i > i′. Then, we have (i− i′)p = (j′ − j)q.
Since p > q ≥ 1 and p and q are coprime, we deduce that the value
j′ − j is a multiple of p, say j′ − j = mp for a positive integer m, and
i− i′ = mq. Geometrically, one sees that the relation ip+ jq = i′p+ j′q
can only be satisfied if the points (i′, j′) and (i, j) are the vertices north-
west and south-east of a rectangle of height mp and width mq. As a
consequence of this fact, we claim that all the values of the function
ip + jq are different for different points on the trapezoid Tp,q,n; and
that each of all the values of the set {ip + jq : i, j ≥ 0, 0 ≤ i+ j ≤ n}
is taken exactly once by one point on the trapezoid Tp,q,n. The first
claim comes from the fact that no rectangle of height a multiple of p
is contained in the trapezoid Tp,q,n and the second claim from the fact
that from any point of the triangle i, j ≥ 0, 0 ≤ i+ j ≤ n one can draw
a rectangle of height mp and width mq whose south-east vertex reaches
the trapezoid Tp,q,n. For the rest of the proof, we will only consider the
points in the trapezoid Tp,q,n. There are three cases p and q odd; p even
and q odd; and p odd and q even.

(a) Assume that p and q are odd. We have the set

B(p, q, n) = {ip + jq : i, j ≥ 0, 0 ≤ i+ j ≤ n, i+ j even} .

The elements of the set B(p, q, n) are the points of the trapezoid Tp,q,n

which belong to segments of slope −1 with one vertex in the point
(i, 0) for i even and the other vertex in the point (i − p + 1, p − 1) if
i − p + 1 > 0 or (0, i) otherwise. Figure 3 shows the values of the set
B(5, 1, 8) encircled, and Figure 4 the values of the set B(5, 1, 9).
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Figure 1. The triangle i, j ≥ 0, 0 ≤ i + j ≤ 8 with
values 3i+ 2j.

We first assume that n is even and we compute the cardinal of the
set B(p, q, n). We see that in the row corresponding to the line j = 0,
there are n/2 + 1 points encircled. In each of the rows corresponding
to the lines j = 1 and j = 2, there are n/2 points. In each of the
rows corresponding to the lines j = 3 and j = 4, there are n/2 − 1
points. Each time that we take a row twice higher, we lose one point.
Each of the last two rows, corresponding to the lines j = p − 2 and
j = p − 1 (recall that p is odd by assumption), contain (n − p + 3)/2
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Figure 2. The trapezoid T3,2,8.

points. Therefore, the cardinal of the set B(p, q, n) is the sum

n

2
+ 1 + 2

(p−3)/2
∑

ℓ=0

n− ℓ

2
.

By adding up this arithmetic progression, we get that

|B(p, q, n)| =
2np− p2 + 4p+ 1

4
.
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Figure 3. The values of set B(5, 1, 8) are encircled.

Figure 4. The values of set B(5, 1, 9) are encircled.

If n is odd, we see that the values of the set B(p, q, n) coincide with
the values of the set B(p, q, n− 1), see Figures 3 and 4. Therefore

|B(p, q, n)| =
2(n− 1)p− p2 + 4p+ 1

4
=

2np− p2 + 2p+ 1

4
.
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The latter expressions coincide with the ones given in statement (a) of
Lemma 8.

(b) Assume that p is even and q is odd. We have the set

B(p, q, n) = {ip+ jq : i, j ≥ 0, 0 ≤ i+ j ≤ n, j odd} .

The elements of this set are the points of the trapezoid Tp,q,n which
belong to horizontal lines with one vertex in the point (0, j) for j odd
and the other vertex in the point (n− j, j). Figure 5 shows the values
of the set B(4, 1, 7) encircled.

Figure 5. The values of set B(4, 1, 7) are encircled.

We see that the row corresponding to j = 1 contains n points en-
circled. The row corresponding to level j = 3 contains n − 2 points.
Each time that we take a higher row (with j odd) we lose 2 points.
The last row, which corresponds to j = p− 1 (recall that p is even by
assumption), contains n− p+ 2 points. Therefore, the cardinal of the
set B(p, q, n) is the sum of an arithmetic progression:

|B(p, q, n)| =

p/2−1
∑

ℓ=0

n− 2ℓ =
2np− p2 + 2p

4
.

(c) Assume that p is odd and q is even. We have the set

B(p, q, n) = {ip + jq : i, j ≥ 0, 0 ≤ i+ j ≤ n, i odd} .
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The elements of this set are the points of the trapezoid Tp,q,n which
belong to vertical lines with one vertex in the point (i, 0) for i odd and
the other vertex in the point (i, p−1) if i ≤ p−1, or (i, n−i) otherwise.
Figure 6 shows the values of the set B(5, 2, 7) encircled and Figure 7
the values of the set B(5, 2, 8).

Figure 6. The values of set B(5, 2, 7) are encircled.

Assume first that n is odd. See Figure 6 for an example. In the first
(n−p+2)/2 columns (recall that p is odd by assumption), correspond-
ing to the lines i = 1, 3, 5, . . . , n − p + 1, we have p points encircled.
Then we lose two points each time we move one line to the right (that
is, from the line of abscissa i to the line of abscissa i+2). The vertical
line i = n− p+ 3 contains p− 2 points of the trapezoid Tp,q,n, the ver-
tical line i = n− p+ 5 contains p− 4 points, and the last “line” (with
abscissa i = n) contains just 1 point. Hence the cardinal of the set
B(p, q, n) is the product of the p points in each of the first (n−p+2)/2
columns plus the sum of an arithmetic progression:

|B(p, q, n)| = p
n− p+ 2

2
+

(p−3)/2
∑

ℓ=0

2ℓ+ 1 =
2np− p2 + 2p+ 1

4
.

Assume now that n is even. See Figure 7 for an example. As in the
previous case, in the first (n − p + 1)/2 columns (recall that p is odd
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Figure 7. The values of set B(5, 2, 8) are encircled.

by assumption), corresponding to the lines i = 1, 3, 5, . . . , n − p, we
have p points encircled. The next column at the right, corresponding
to i = n − p + 2 contains p − 1 points. Then we lose two points each
time we move one line to the right (that is, from the line of abscissa i
to the line of abscissa i + 2). The vertical line i = n − p + 4 contains
p− 3 points of the trapezoid Tp,q,n, and the last column (with abscissa
i = n− 1) contains 2 points. Hence the cardinal of the set B(p, q, n) is
the product of the p points in each of the first (n − p + 1)/2 columns
plus the sum of an arithmetic progression:

|B(p, q, n)| = p
n− p+ 1

2
+

(p−1)/2
∑

ℓ=1

2ℓ =
2np− p2 + 2p− 1

4
.

The latter expressions coincide with the ones given in statement (c) of
Lemma 8. �

By Lemma 3, we can assume that p and q are coprime and, thus,
the bounds given in Theorem 1 in terms of p∗ and q∗ can be rewritten
using p and q. The first averaging function is defined in (10) and from
its expression given in (22), we have that the maximum number of its

zeros r0 > 0 is the number of monomials in S̃∗
n minus 1. Indeed, as we

have already stated, if p and q are odd, then |S̃∗
n| = |B(p, q, n+1)|−1;

and if p or q is even, then |S̃∗
n| = |B(p, q, n + 1)|; see (23) and (24).
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Therefore, the maximum number of zeros r0 > 0 of the first averaging
function is |B(p, q, n+1)|−2 if p and q are odd and |B(p, q, n+1)|−1
if p or q is even. The bounds provided in Theorem 1 are these values,
once taking Lemma 8 into account.

4. Example

We consider the following planar polynomial differential system

ẋ = −y3(x2 + y4), ẏ = x(x2 + y4),

which is quasi-homogeneous of weight (2, 1, 6). We note that the poly-
nomials P (x, y) and Q(x, y) which define this system are not coprime.
The function H(x, y) = 2x2 + y4 is a first integral of this system and,
therefore, the origin is a center. We perturb this center with polyno-
mials of degree 7 and we get Proposition 2.

Proof of Proposition 2. We take

P̄ (x, y) =

7
∑

i=0

7−i
∑

j=0

pijx
iyj, Q̄(x, y) =

7
∑

i=0

7−i
∑

j=0

qijx
iyj,

where pij and qij are real constants. The weighted blow-up x = r2 cos θ,
y = r sin θ, transforms the unperturbed system (4) with ε = 0 into

ṙ =
r6 f(θ)

2 cos2 θ + sin2 θ
, θ̇ =

r5 g(θ)

2 cos2 θ + sin2 θ
,

with f(θ) = cos3 θ sin θ(cos2 θ + sin4 θ) and g(θ) = (2 cos2 θ + sin4 θ)
(cos2 θ + sin4 θ). The first averaging function is defined in (10), where
the function G1(r, θ) is given in (9) and the function u(θ) is

u(θ) = exp

(
∫ θ

0

f(s)

g(s)
ds

)

= exp

(
∫ θ

0

cos3 s sin s

2 cos2 s+ sin4 s
ds

)

=
21/4

(

2 cos2 θ + sin4 θ
)1/4

.

We consider the functions ϕk(θ) defined in (13) and the expression of
the first averaging function (14) as the sum of monomials of z whose
coefficients are the integrals of the functions ϕk(θ) over a period. As
a consequence of the proof of Theorem 1 (see the proof of Lemma 8),
we only need to take the values of k which are odd and belong to the
trapezoid T2,1,7. The values on the trapezoid are depicted in Figure 8
and the values of k to be considered are encircled.
Therefore we only need to consider the functions ϕ1, ϕ3, ϕ5, ϕ7, ϕ9,

ϕ11, ϕ13 because the integral over a period of ϕk(θ) for k even is null,
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Figure 8. The values k to be considered are encircled.

see Lemma 7. We have 7 functions but we will show that the integral
of ϕ1 over a period is null and that the integrals over a period of the
other functions ϕk, k = 3, 5, 7, 9, 11, 13, can be taken to be not null.
From (13) we have that

ϕ1(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)p00

]

u(θ)−7;

ϕ3(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p10 cos θ + p02 sin
2 θ)

+ sin3 θ(cos2 θ + sin4 θ)q01 sin θ
]

u(θ)−5;

ϕ5(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p20 cos
2 θ

+p12 cos θ sin
2 θ + p04 sin

4 θ) + sin3 θ(cos2 θ + sin4 θ)

(q11 cos θ sin θ + q03 sin
3 θ)

]

u(θ)−3;

ϕ7(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p30 cos
3 θ

+p22 cos
2 θ sin2 θ + p14 cos θ sin

4 θ + p06 sin
6 θ)

+ sin3 θ(cos2 θ + sin4 θ)(q21 cos
2 θ sin θ + q13 cos θ sin

3 θ

+q05 sin
5 θ)

]

u(θ)−1;
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ϕ9(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p40 cos
4 θ

+p32 cos
3 θ sin2 θ + p24 cos

2 θ sin4 θ + p16 cos θ sin
6 θ)

+ sin3 θ(cos2 θ + sin4 θ)(q31 cos
3 θ sin θ + q23 cos

2 θ sin3 θ

+q15 cos θ sin
5 θ + q07 sin

7 θ)
]

u(θ);

ϕ11(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p50 cos
5 θ

+p42 cos
4 θ sin2 θ + p34 cos

3 θ sin4 θ) + sin3 θ(cos2 θ + sin4 θ)

(q41 cos
4 θ sin θ + q33 cos

3 θ sin3 θ + q25 cos
2 θ sin5 θ)

]

u(θ)3;

ϕ13(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p60 cos
6 θ

+p52 cos
5 θ sin2 θ) + sin3 θ(cos2 θ + sin4 θ)(q51 cos

5 θ sin θ

+q43 cos
4 θ sin3 θ)

]

u(θ)5.

We observe that if a periodic function ϑ(θ) of period 2π is such that
ϑ(π − θ) = −ϑ(θ), then the value of the integral of this function over
a period is null. This observation implies that

∫ 2π

0

ϕ1(θ) dθ = 0.

Analogously, if a periodic function ϑ(θ) of period 2π is such that
ϑ(−θ) = −ϑ(θ), then the value of the integral of this function over a
period is null. Using these observations, we can get rid of some terms
and we can define the functions ϕ̃k(θ), for k = 3, 5, 7, 9, 11, 13, such
that

∫ 2π

0

ϕ̃k(θ) dθ =

∫ 2π

0

ϕk(θ) dθ.

We have
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ϕ̃3(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)p10 cos θ

+ sin3 θ(cos2 θ + sin4 θ)q01 sin θ
]

u(θ)−5;

ϕ̃5(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)p12 cos θ sin
2 θ

+ sin3 θ(cos2 θ + sin4 θ)q03 sin
3 θ

]

u(θ)−3;

ϕ̃7(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p30 cos
3 θ

+p14 cos θ sin
4 θ) + sin3 θ(cos2 θ + sin4 θ)(q21 cos

2 θ sin θ

+q05 sin
5 θ)

]

u(θ)−1;

ϕ̃9(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p32 cos
3 θ sin2 θ

+p16 cos θ sin
6 θ) + sin3 θ(cos2 θ + sin4 θ)(q23 cos

2 θ sin3 θ

+q07 sin
7 θ)

]

u(θ);

ϕ̃11(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)(p50 cos
5 θ

+p34 cos
3 θ sin4 θ) + sin3 θ(cos2 θ + sin4 θ)(q41 cos

4 θ sin θ

+q25 cos
2 θ sin5 θ)

]

u(θ)3;

ϕ̃13(θ) =
(2 cos2 θ + sin2 θ)

g(θ)2

[

cos θ(cos2 θ + sin4 θ)p52 cos
5 θ sin2 θ

+ sin3 θ(cos2 θ + sin4 θ)q43 cos
4 θ sin3 θ

]

u(θ)5.

We note that each of the periodic functions appearing in ϕ̃2ℓ+1 with
ℓ = 1, 2, . . . , 6 whose coefficients are p10, q01, p12, q03, p30, p14, q21, q05,
p32, p16, q23, q07, p50, p34, q41, q25, p52, q23 are strictly positive. This
implies that given any point (c1, c2, c3, c4, c5, c6) ∈ R

6, there is a choice
of the polynomials P̄ (x, y) and Q̄(x, y) for which

∫ 2π

0

ϕ̃2ℓ+1(θ) dθ = cℓ, ℓ = 1, 2, . . . , 6.
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We have, as a consequence of (14), that the first averaging function
becomes

(25) ψ̄1(z) =

6
∑

ℓ=1

(
∫ 2π

0

ϕ2ℓ+1(θ)dθ

)

z2ℓ+1 =

6
∑

ℓ=1

cℓ z
2ℓ+1.

Therefore the polynomial ψ̄1(z) has at most 5 positive roots and there
are values of cℓ for which it has exactly 5 positive and simple roots. �

We remark that for any given system (3), we can remove useless
terms from the integrand of (5) in an analogous way as we did in the
previous example. Indeed, only integrands which are strictly positive
will appear, and consequently the sharp upper bound of simple ze-
ros of the function ψ̄1(z) can always be computed as in the proof of
Proposition 2.
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[4] J. Giné, M. Grau and J. Llibre, Averaging theory at any order for com-

puting periodic orbits, Physica D 250 (2013), 58–65.
[5] A. Goriely, Integrability and nonintegrability of dynamical systems, Ad-

vanced Series in Nonlinear Dynamics, 19. World Scientific Publishing Co.,
Inc., River Edge, NJ, 2001.

[6] C. Li and J. LLibre, Cubic homogeneous polynomial centers, Publ. Mat. 58
(2014), suppl., 297–308.

[7] W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the

period annulus of quasi-homogeneous centers, J. Dynam. Differential Equations
21 (2009), 133–152.
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