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On the planar integrable differential systems
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Abstract. In this paper, we prove that the C1 planar differential systems that are integrable and non-Hamiltonian roughly
speaking are C1 equivalent to the linear differential systems u̇ = u, v̇ = v. Additionally, we show that these systems have
always a Lie symmetry. These results are improved for the class of polynomial differential systems defined in R

2 or C
2.
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1. Introduction and statement of the results

We deal with the planar differential systems

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P,Q : U → R are Ck functions in the variables x and y, U is an open subset of R
2, and the dot

denotes derivative with respect to the independent variable t. The open set U is called the domain of
definition of system (1). Here, k runs over 1, 2, . . . ,∞, ω. Of course, Cω denotes the class of analytic
functions.

Let ϕ be the Ck flow defined by the differential system (1). We denote by Σ the union of all sepa-
ratrices of ϕ, for a definition of separatrix, see [1,10]. It is known that Σ is a closed invariant subset of
U . A component Ci of U \ Σ with the restricted flow ϕ|Ci

is called a canonical region of ϕ. Then, the
local flow ϕ|Ci

has a Ck first integral Hi on every canonical region Ci of ϕ, see [1,9], i.e., there exists a
non-constant Ck function Hi : Ci → R, which is constant on the orbits of the flow contained in Ci, or
equivalently P (Hi)x + Q(Hi)y|Ci

= 0.
When the differential system (1) has a non-constant function H : U \ Σ → R, which is constant on

the orbits of the flow contained in U \ Σ (or equivalently PHx + QHy = 0 on U \ Σ), we say that we
have a canonical first integral of system (1). A planar differential system having a canonical first integral
is called canonical integrable.

Since any flow on U has a first integral Hi on every canonical region Ci of U \Σ = ∪i∈ICi of the same
differentiability than the flow, we have that for a Cr vector field with r �= ω we always can define a Cr

first integral H on U \ Σ taking H|Ci
= Hi. So for r �= ω, any Cr planar flow is integrable on U \ Σ. A

difficult problem, non-solved in general, is how compute such a first integral H?
Let Σ′ ⊂ Σ, where as usual Σ is the set of all separatrices of the differential system (1). Then if system

(1) has a non-constant function H : U \ Σ′ → R which is constant on the orbits of the flow contained in
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