Z. Angew. Math. Phys. 62 (2011), 567–574
© 2011 Springer Basel AG
0044-2275/11/040567-8
published online February 22, 2011
DOI 10.1007/s00033-011-0116-5

Zeitschrift für angewandte Mathematik und Physik ZAMP

On the planar integrable differential systems

Jaume Giné and Jaume Llibre

Abstract. In this paper, we prove that the C^1 planar differential systems that are integrable and non-Hamiltonian roughly speaking are C^1 equivalent to the linear differential systems $\dot{u} = u$, $\dot{v} = v$. Additionally, we show that these systems have always a Lie symmetry. These results are improved for the class of polynomial differential systems defined in \mathbb{R}^2 or \mathbb{C}^2 .

Mathematics Subject Classification (2000). Primary 34C35. 34D30.

Keywords. Planar integrability \cdot Darboux theory of integrability \cdot Polynomial differential systems \cdot Linear differential systems.

1. Introduction and statement of the results

We deal with the planar differential systems

$$\dot{x} = P(x, y), \quad \dot{y} = Q(x, y), \tag{1}$$

where $P, Q: U \to \mathbb{R}$ are C^k functions in the variables x and y, U is an open subset of \mathbb{R}^2 , and the dot denotes derivative with respect to the independent variable t. The open set U is called the *domain of definition* of system (1). Here, k runs over $1, 2, \ldots, \infty, \omega$. Of course, C^{ω} denotes the class of analytic functions.

Let φ be the C^k flow defined by the differential system (1). We denote by Σ the union of all separatrices of φ , for a definition of separatrix, see [1,10]. It is known that Σ is a closed invariant subset of U. A component C_i of $U \setminus \Sigma$ with the restricted flow $\varphi|_{C_i}$ is called a *canonical region* of φ . Then, the local flow $\varphi|_{C_i}$ has a C^k first integral H_i on every canonical region C_i of φ , see [1,9], i.e., there exists a non-constant C^k function $H_i : C_i \to \mathbb{R}$, which is constant on the orbits of the flow contained in C_i , or equivalently $P(H_i)_x + Q(H_i)_y|_{C_i} = 0$.

When the differential system (1) has a non-constant function $H: U \setminus \Sigma \to \mathbb{R}$, which is constant on the orbits of the flow contained in $U \setminus \Sigma$ (or equivalently $PH_x + QH_y = 0$ on $U \setminus \Sigma$), we say that we have a *canonical first integral* of system (1). A planar differential system having a canonical first integral is called *canonical integrable*.

Since any flow on U has a first integral H_i on every canonical region C_i of $U \setminus \Sigma = \bigcup_{i \in I} C_i$ of the same differentiability than the flow, we have that for a C^r vector field with $r \neq \omega$ we always can define a C^r first integral H on $U \setminus \Sigma$ taking $H|_{C_i} = H_i$. So for $r \neq \omega$, any C^r planar flow is integrable on $U \setminus \Sigma$. A difficult problem, non-solved in general, is how compute such a first integral H?

Let $\Sigma' \subset \Sigma$, where as usual Σ is the set of all separatrices of the differential system (1). Then if system (1) has a non-constant function $H: U \setminus \Sigma' \to \mathbb{R}$ which is constant on the orbits of the flow contained in

The first author is partially supported by a MCYT/FEDER grant number MTM2008-00694 and by a CIRIT grant number 2009SGR 381. The second author is partially supported by a MCYT/FEDER grant number MTM2008-03437 and by a CIRIT grant number 2009SGR 410.