ON LIOUVILLIAN INTEGRABILITY OF THE FIRST-ORDER POLYNOMIAL ORDINARY DIFFERENTIAL EQUATIONS

JAUME GINÉ AND JAUME LLIBRE

Abstract

Recently the authors provided an example of an integrable Liouvillian planar polynomial differential system that has no finite invariant algebraic curves, see [8]. In this note we prove that if a complex differential equation of the form $y^{\prime}=a_{0}(x)+a_{1}(x) y+\cdots+a_{n}(x) y^{n}$ with $a_{i}(x)$ polynomials for $i=0,1, \ldots, n, a_{n}(x) \neq 0$ and $n \geq 2$ has a Liouvillian first integral, then it has a finite invariant algebraic curve. So, this result applies to the Riccati and Abel polynomial differential equations. We shall prove that in general this result is not true when $n=1$, i.e. for linear polynomial differential equations.

1. Introduction and the main results

By definition a complex planar polynomial differential system or simply a polynomial system is a differential system of the form

$$
\begin{equation*}
\frac{d x}{d t}=\dot{x}=P(x, y), \quad \frac{d y}{d t}=\dot{y}=Q(x, y) \tag{1}
\end{equation*}
$$

where the dependent variables x and y are complex, and the independent one (the time) t can be real or complex, and $P, Q \in \mathbb{C}[x, y]$ where $\mathbb{C}[x, y]$ is the ring of all polynomials in the variables x and y with coefficients in \mathbb{C}. We denote by $m=\max \{\operatorname{deg} P, \operatorname{deg} Q\}$ the degree of the polynomial system.

Let $f=f(x, y)=0$ be an algebraic curve in \mathbb{C}^{2}. We say that it is invariant or that it is a finite invariant algebraic curve by the polynomial system (1) if $P \partial f / \partial x+Q \partial f / \partial y=k f$, for some polynomial $k=k(x, y) \in \mathbb{C}[x, y]$, called the cofactor of the algebraic curve $f=0$. Note that the degree of the polynomial k is at most $m-1$.

Let $h, g \in \mathbb{C}[x, y]$ and assume that h and g are relatively prime in the ring $\mathbb{C}[x, y]$. Then the function $\exp (g / h)$ is called an exponential factor of the polynomial system (1) if for some polynomial $k \in \mathbb{C}[x, y]$ of degree at most $m-1$ it satisfies equation $P \partial \exp (g / h) / \partial x+Q \partial \exp (g / h) / \partial y=k \exp (g / h)$. If $\exp (g / h)$ is an exponential factor it is easy to show that $h=0$ is an invariant algebraic curve.

Let U be an open subset of \mathbb{C}^{2}. We say that a non-constant function $H: U \rightarrow \mathbb{C}$ is a first integral of the polynomial system (1) in U if H is constant on the trajectories of the polynomial system (1) contained in U.

We say that a non-constant function $R: U \rightarrow \mathbb{C}$ is an integrating factor of the polynomial system (1) in U if R satisfies that $\partial(R P) / \partial x+\partial(R Q) / \partial y=0$, in the points $(x, y) \in U$.

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary 34C05. Secondary 58F14.
 Key words and phrases. Liouvillian integrability, invariant algebraic curve, Riccati differential equation, Abel differential equation.

