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Abstract. We prove that the Volterra–Gause system of predator–prey type

exhibits two kinds of zero–Hopf bifurcations for convenient values of their
parameters. In the first one periodic solution bifurcates from a zero–Hopf
equilibrium, and in the second five periodic solutions bifurcate from another
zero–Hopf equilibrium. This study is done using the averaging theory of second

order.

1. Introduction

The very first mathematical predator-prey models have been originally proposed
by Lotka [8] and Volterra [12]. In their seminal works, the interaction between prey
x and predator y and between predator y and top-predator z was represented by
the functional responses xy and yz respectively. Nevertheless, such a representation
did not take into account the satiety of the predator and that of the top-predator,
i.e. the saturation of the predation rate which is in this case unlimited. In the
middle of the thirties Gause [3, 4] decided to make an “experimental verification
of the mathematical theory of the struggle for existence”. Then, he obtained a
reasonable fit to a predation rate curve by taking the square root of x (and of y
respectively)1. So, he replaced the functional response xy of the predator by x1/2y
and that of the top-predator yz can be replaced by y1/2z. Thus, the Volterra-Gause
model proposed by Ginoux et al. [5] is a three-dimensional model including a prey
x, a predator y and a top-predator z, which they named the Volterra-Gause model
because it combines the original model of Volterra [12] incorporating a logisitic
limitation of Verhulst [11] type on growth of the prey x and a limitation of Gause
[3, 4] type on the intensity of predation of the predator y on the prey x and of the
top-predator z on the predator y. In its original form the Volterra-Gause model
has eight parameters but expressing its equations in a dimensionless form makes
it possible to reduce this number to three. The dimensionless model is presented
below.

This differential system can be written as:

(1)
ẋ = a(x(1− x)−

√
xy),

ẏ = −by +
√
xy −√

yz,
ż = c(

√
y − d)z,

2010 Mathematics Subject Classification. Primary 34C23, 34C25, 37G10.
Key words and phrases. Volterra–Gause system; predator–prey system, zero–Hopf bifurcation;

periodic orbits.
1Let’s note that in the beginning of the seventies, Rosenzweig [9] generalized this procedure

by taking x to the gth power with 0 < g 6 1. Thus, the predator rate reads: xgy for the predator
and ygz for the top-predator.
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where a, b, c and d are parameters and the dot indicates derivative with respect to
the time t. Note that the domain of definition of system (1) is

D = {(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0}.

One of the main objectives in the qualitative theory of differential systems is
the study of the periodic orbits. Here we shall use the averaging theory of second
order for studying the periodic orbits which bifurcate from the zero-Hopf of the
Volterra–Gause system.

Here an equilibrium point with eigenvalues ±ωi and 0 will be called a zero–
Hopf equilibrium, and the study of the periodic orbits which can bifurcate from
this equilibrium moving the parameters of the system are the periodic orbits of a
zero-Hopf bifurcation.

1.1. The zero–Hopf equilibria. First we do inD the change of variables (x, y, z, t) 7→
(X,Y, Z, s) given by x = X2, y = Y 2, z = Z and t = 2s, then system (1) becomes

(2)
Ẋ = a(X − Y 2 −X3),

Ẏ = −bY − Z +XY,

Ż = −2c(d− Y )Z,

where now the dot denotes derivative with respect to the variable s, and the domain
of definition of this differential system is

{(X,Y, Z) ∈ R3 : X ≥ 0, Y ≥ 0},
which we continue denoting by D.

Easy but tedious computations show that the equilibria of the differential system
(2) in D are

E1 = (0, 0, 0),

E2 = (1, 0, 0),

E3 = (b,
√
b− b3, 0) when b ∈ (0, 1),

E4 =

(
R

21/3 · 32/3
+

(2/3)1/3

R
, d,

d(2 · 31/3 + 21/3R2)

62/3R
− bd

)
,

E5 =

(
−
(
1 + i

√
3
)
R

24/3 · 32/3
− 1− i

√
3

22/3 · 31/3R
, d, d

(
(2/3)1/3(−1 + i

√
3)

2R
− b−

(√
3i+ 1

)
R

24/3 · 32/3

))
,

where R = (
√
81d4 − 12 − 9d2)1/3, and the last two equilibria only exist when

d ∈ [0,
√
2/33/4]. Moreover, these last two equilibria coincide when d =

√
2/33/4

providing the equilibrium point

E5 = E6 =

(
1√
3
,

√
2

33/4
,

√
2
(√

3− 3b
)

37/4

)
.

Proposition 1. The following statements hold.

(a) The points E1 and E2 never are zero–Hopf equilibria.
(b) The point E3 is a zero-Hopf equilibrium point with eigenvalues 0 and ±ωi

for the following values of the parameters

(3) (a, b, c) =

(
3
√
3

4
ω2,

1√
3
, 0

)
;
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(c) The points E4 and E5 are only zero–Hopf equilibria with eigenvalues 0 and
±ωi when they coincide for the following values of the parameters

(4) (a, b, d) =

(
3
√
3

4
ω2,

1√
3
,

√
2

33/4

)
.

Proposition 1 is proved in section 2.

We note that the equilibrium E4 = E5 when b = 1/
√
3 coincide with the equi-

librium E3. So the following corollary is immediate:

Corollary 2. The unique zero–Hopf equilibrium point of the differential system (2)
with eigenvalues 0 and ±ωi is the equilibrium

E =

(
1√
3
,

√
2

33/4
, 0

)
,

for the values of the parameters given by either (3), or (4).

Theorem 3. The equilibrium point E of the Volterra–Gause system (2) exhibits

a zero–Hopf bifurcation for the choice of the parameters (3) with ω =
√
2/3, when

they are perturbed as follows

(5) (a, b, c) =

(
1

2
√
3
,
1√
3
+ b2ε

2, c2ε
2

)
,

where b2 < 0 and c2(
√
2 · 31/4 − 3d) ̸= 0. Then for ε ̸= 0 sufficiently small the

periodic solution

(6)

X(t, ε) =
1√
3
+ ε 23/2 · 3−1/4

√
−b2 sin

√
2

3
t+O(ε2),

Y (t, ε) =

√
2

33/4
+ ε 23/2

√
−b2 cos

√
2

3
t+O(ε2),

Z(t, ε) = O(ε2),

bifurcates from E.

Theorem 3 is proved in section 2.

We note that the condition
√
2 · 31/4 − 3d ̸= 0 inside Theorem 3 excludes the

values of the parameters (4), because there
√
2 · 31/4 − 3d = 0.

Theorem 4. The equilibrium point E of the Volterra–Gause system (2) exhibits

a zero–Hopf bifurcation for the choice of the parameters (4) with ω =
√
2/3, when

they are perturbed as follows

(7) (a, b, d) =

(
1

2
√
3
,
1√
3
+ b2ε

2,

√
2

3
+ d2ε

2

)
,
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where b2 < 0, d2 < 0, c ̸= 0,

A1 =
6b2(8

√
2c+ 31/4)− 2(4c(31/4 − 24

√
2c) +

√
6
)
d2√

3− 128c2
> 0,

A2 =
(16 · 31/4c+

√
6)d2 − 12b2(2

7/2c+ 31/4)√
3− 128c2

> 0,

A3 = 23/2 · 33/4b2 − d2 ̸= 0,

A4 = −3b2 − 12cd2 +
√
2 · 31/4d2 ̸= 0, and

A5 = 18(16c+
√
2 · 31/4)b22 + 31/4(

√
6 + 4c(31/4 − 24

√
2c))d22

+3
(
16c(24c+

√
2 · 31/4)− 5

√
3
)
d2b2 ̸= 0.

(We note that there are values of the parameters b2, d2 and c satisfying simultane-
ously the previous eight inequalities.) Then for ε ̸= 0 sufficiently small there are 5
periodic solutions of the form

(8)

X(t, ε) =
1√
3
+ ε

33/4√
2

(
wk − rk

√
2

3
sin

√
2t

3

)
+O(ε2),

Y (t, ε) =

√
2

33/4
+ ε rk cos

√
2

3
t+O(ε2),

Z(t, ε) = εwk +O(ε2),

bifurcating from E, where the values of (rk, wk) for k = 1, 2, 3, 4, 5 are given in
(13).

Theorem 4 is proved in section 2.

2. Proof of the results

Proof of Proposition 1. The Jacobian matrix of the vector field associated to system
(2) is

M =

 a(1− 3X2) −2aY 0
Y X − b −1
0 2cZ 2c(Y − d)

 .

In order that the eigenvalues of the matrix M at some equilibrium Ek for k =
1, 2, 3, 4, 5 be 0 and ±ωi, the characteristic polynomial of M must be −λ(λ2 +ω2).
Imposing this fact for every equilibrium Ek for k = 1, 2, 3, 4, 5 we obtain the results
stated in the statement of the proposition. �

.

Proof of Theorem 3. We consider system (2) for the values of the parameters given
in (5). We translate the equilibrium point E of this system when ε = 0 to the
origin of coordinates doing the change of variables (X,Y, Z) 7→ (U, V,W ) with

X = U + b, Y = V +
√
b− b3 and Z = W . After we do the change of coordinates

(U, V,W ) 7→ (U, V ,W ) with U = εU , V = εV and W = εW . Doing these two
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changes of variables system (2) becomes

(9)

U̇ = −
√
2

35/4
V − 1

6

(
3U

2
+
√
3V

2
)
ε− 1

6
U
(√

3U
2
+ 6b2

)
ε2 +O(ε3),

V̇ =
1

3

(√
2 · 31/4 U − 3W

)
+ U V ε+O(ε3),

Ẇ =
2

3
c2
(√

2 · 31/4 − 3d
)
Wε2 +O(ε3).

Doing the change of variables (U, V ,W ) 7→ (u, v, w) with U =
3
√
2w − 2v

2 · 31/4
,

V = u and W = w the linear part of the differential system (9) is written in its real
Jordan normal form, and system (9) is transformed in
(10)

u̇ = −
√
2

3
v + ε

u
(
3
√
2w − 2v

)
2 · 31/4

+O(ε3),

v̇ =

√
2

3
u+ ε

2u2 + 2v2 + 9w2 − 6
√
2 vw

4 · 31/4
+

ε2

[
c2(2 · 31/4 − 3

√
2d)w +

3
√
2w − 2v

12

[
(3
√
2w − 2v)2

4
+ 6b2

]]
+O(ε3),

ẇ = ε2
2

3
c2
(√

2 · 31/4 − 3d
)
w +O(ε3).

Now we change the coordinates (u, v, w) 7→ (r, θ, w) with u = r cos θ and v =
r cos θ, and taking θ as the new independent variable system (10) writes

(11)
r′ = εF11 + εF21 +O(ε3),

w′ = εF12 + εF22 +O(ε3),

where the prime denotes derivative with respect to the variable θ, and

F11 = −33/4 cos(2θ) sin θ

2
√
2

r2 +
37/4

2
cos(2θ)wr +

311/4w2 sin θ

4
√
2

,

F12 = 0,

F21 =
1

64

(
−16

√
2 sin4 θ − 3

√
3(sin(2θ)− 4 sin(4θ) + sin(6θ))

)
r3

+
9

16

(
4 sin3 θ −

√
6(cos θ + 2 cos(3θ)− cos(5θ))

)
wr2

+
3

16
sin θ

(
9
√
3w2(3 cos θ + 5 cos(3θ))− 2

√
2(9w2 + 4b2) sin θ

)
r

+
3

16

(
9
(
2 sin θ − 3

√
6 cos(3θ)

)
w2 + 8

(
3b2 + 23/2 · 31/4c2 − 6c2d

)
sin θ

)
w

−243
√
3 cos θ sin θw4

32 r
,

F22 = c2
(
2 4
√
3− 3

√
2d
)
w.

Differential system (11) is written in the normal form (15) for applying the av-
eraging theory, where using the notation of the appendix we have t = θ, x = (r, w),
T = 2π, n = 2, F1 = (F11, F12) and F2 = (F21, F22). Since all the assumptions of
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Theorem 5 of the appendix are satisfied we can apply it to system (11). Then the
first averaged function f1(r, w) defined in (16) is identically zero, and the second
averaged function f2(r, w) = (f21(r, v), f22(r, v)) is

f21(r, v) = −3r(r2 + 18w2 + 8b2)

16
√
2

,

f22(r, v) = c2(2 · 31/4 − 3
√
2d)w.

The unique zero of the second averaged function f2(r, w) which going back
through the changes of variables are not associated to an equilibrium point of
system (2) and which have r ≥ 0 is (r, w) = (2

√
−2b2, 0), which is real because

by assumptions b2 < 0. Since the Jacobian of the function f2(r, w) at that zero

is 3b2c2(
√
2 · 31/4 − 3d) ̸= 0 by assumptions, it follows from Theorem 5 that the

differential system (11) has a periodic solution (r(θ, ε), w(θ, ε)) such that

(r(0, ε), w(0, ε)) = (2
√

−2b2, 0) +O(ε).

Going back through the changes of variables the periodic solution (r(θ, ε), w(θ, ε))
solution of system (11) becomes the periodic solution (u(t, ε), v(t, ε), w(t, ε)) of sys-
tem (10) satisfying that

(u(0, ε), v(0, ε), w(0, ε)) = (2
√
−2b2 cos(

√
2t/3), 2

√
−2b2 sin(

√
2t/3), 0) +O(ε).

And this periodic solution provides the periodic solution (U(t, ε), V (t, ε),W (t, ε))
of system (9) such that

(U(0, ε), V (0, ε),W (0, ε)) =

(
23/2 · 3−1/4

√
−b2 sin

√
2t

3
, 2
√
−2b2 cos

√
2t

3
, 0

)
+O(ε).

Finally going back first to the coordinates (U, V,W ) and after to (X,Y, Z) we obtain
the periodic solution of system (2) described in the statement of the theorem.

Now the theorem will be proved if repeating the previous computations but
starting with the more general parameters

(12) (a, b, c) =

(
3
√
3

4
ω2 + εa1 + ε2a2,

1√
3
+ εb1 + ε2b2, εc1 + ε2c2

)
,

we shall show that the averaged function of first order f1(r, w) = (f11(r, v), f12(r, v))
given by

f11(r, v) =
r(
√
2 · 33/4w(2− 9ω2)− 18b1ω

2)

8ω
,

f12(r, v) =
2c1(

√
2 · 31/4 − 3d)w

3ω
,

never provide information about the periodic solutions of system (2), and conse-

quently we need to take f1(r, w) identically zero doing b1 = c1 = 0, ω =
√
2/3,

and additionally to show that the parameters a1 and a2 do not play any role in the
zeros of the averaged function of second order.

Indeed, the unique zeros (r, w) of the function f1(r, w) are either (0, 0), or the
continuums r = 0, or w = 0. Going back through the changes of variables the zero
(0, 0) only produces the equilibrium point E instead of a periodic solution. If we
have a continuum of zeros the Jacobian determinant in these zeros of f1(r, w) will
be zero, and the averaging theory of first order thus not provide any information
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about the periodic solutions of the system. Hence we need to take b1 = c1 = 0 and
ω =

√
2/3, for doing the first averaged function identically zero, and compute the

second averaged function. Finally we note that computing the zeros of the second
averaged function the parameters a1 and a2 do not play any role. In short we only
need to study the periodic solutions for the values of the parameters given in (5),
and this is what we have done at the beginning. The proof is complete. �

We note that in the proof of Theorem 3 we did not provide the expressions of
the corresponding differential systems (9), (10) and (11) with the values of the
parameters (12) because they are very long, and really they do not provide a better
understanding of the proof.

Proof of Theorem 4. We consider system (2) for the values of the parameters given
in (7). Doing the same changes of variables and computations we obtain that the
first averaged function is identically and the second averaged function f2(r, w) =
(f21(r, v), f22(r, v)) is

f21(r, v) = − 3

32
r(
√
2r2 + 18(

√
2− 4 · 33/4c)w2 + 8

√
2b2),

f22(r, v) = −3

4
cw(4

√
2d2 + 33/4(2r2 + 9w2)).

When c ̸= 0 under the assumptions of the theorem the function f2(r, w) has 5 zeros
in D, namely

(13)

(r1, w1) = (23/2
√
−b2, 0),

(r2, w2) =

(
0,

25/4√
−d2

)
,

(r3, w3) = (r2,−w2),

(r4, w4) =

(
2
√
A1

37/8
,
2
√
A2

315/8

)
,

(r5, w5) = (r4,−w4),

A and A2 are defined in the statement of the theorem. The Jacobian determinant
Dk of the function f2(r, w) at the zero (rk, wk) is

D1 = 9b2cA3,

D2 = D3 = 3cd2A4,

D4 = D5 =
2c√

3− 128c2
A5,

where again A3, A4 and A5 are defined in the statement of the theorem. Note that
by assumptions Dk ̸= 0 for k = 1, 2, 3, 4, 5, and consequently by Theorem 5, they
provide 5 periodic solutions of the differential (r′, w′) equivalent to the differential
system (11) obtained with the values of the parameters given in (7). Going back
these 5 periodic solutions through the changes of variables we obtain the 5 periodic
solutions described in the statement of the theorem.
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The proof of the theorem will be completed if repeating the computations done
in the proof of Theorem 3 but starting with the more general parameters

(14) (a, b, d) =

(
3
√
3

4
ω2 + εa1 + ε2a2,

1√
3
+ εb1 + ε2b2,

√
2

33/4
+ εc1 + ε2c2

)
,

we shall show that the averaged function of first order f1(r, w) = (f11(r, v), f12(r, v))
given by

f11(r, v) =
r(
√
2 · 33/4w(2− 9ω2)− 18b1ω

2)

8ω
,

f12(r, v) = −2cd1w

ω
,

never provide information about the periodic solutions of system (2), and conse-

quently we need to take f1(r, w) identically zero doing b1 = d1 = 0, ω =
√
2/3,

and additionally to show that the parameters a1, a2 do not play any role in the
zeros of the averaged function of second order. The same arguments of the proof
of Theorem 3 work here, this completes the proof of the theorem. �

3. Appendix: The averaging theory of first and second order

In this appendix we summarize the averaging theory of second order for finding
periodic orbits. For a proof see [1] or [6]. For the general theory on averaging
theory see the book [10], for another application to a zero-Hopf bifurcation see [2].

Theorem 5. Consider the differential system

(15) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R×D → Rn, R : R×D× (−εf , εf ) → Rn are continuous functions,
T-periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypothesis (i) and (ii) hold.

(i) F1(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, R and DxF1 are locally Lipschitz
with respect to x, and R is differentiable with respect to ε. We define
f1, f2 : D → Rn as

(16)

f1(z) =

∫ T

0

F1(s, z)ds,

f2(z) =

∫ T

0

[DzF1(s, z)

∫ s

0

F1(t, z)dt+ F2(s, z)]ds.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0}, there
exist a ∈ V such that f1(a)+εf2(a) = 0 and the Brouwer degree of f1+εf2
at a is not zero.

Then for |ε| > 0 sufficiently small, there exists a T−periodic solution x(t, ε) of the
system such that x(0, ε) → a when ε → 0.

The Brouwer degree of a function f at its fixed point a is non–zero, if the Jacobian
determinant of the function f at a (when it is defined) is non–zero, see for more
details [7].

When the function f1 is not identically zero, the zeros of f1 + εf2 are essentially
the zeros of f1 for ε sufficiently small. Then Theorem 5 provides the averaging
theory of first order.
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When the function f1 is identically zero and f2 is not identically zero, the zeros
of f1 + εf2 are the zeros of f2, and Theorem 5 provides the averaging theory of
second order.
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