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INTEGRABILITY CONDITIONS OF A RESONANT
SADDLE IN GENERALIZED LIÉNARD-LIKE

COMPLEX POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME GINÉ1 AND JAUME LLIBRE2

Abstract. We consider a complex differential system with a res-
onant saddle at the origin. We compute the resonant saddle quan-
tities and using Gröbner bases we find the integrability conditions
for such systems up to a certain degree. We also establish a con-
jecture about the integrability conditions for such systems when
they have arbitrary degree.

1. Introduction

The center problem for polynomial vector fields in the real plane
with an elementary singular point of the form

ẋ = −y + · · · , ẏ = x+ · · · ,
where the dots means higher order terms is a subject of much work
during these last decades, see for instance [2, 6]. These type of systems
can be embedded by the change of variable u = x + iy and the corre-
sponding conjugate variable v = x− iy into the complex system of the
form

u̇ = u+ · · · , v̇ = −v + · · · .
The next generalization of the above system is to consider the case of
a polynomial system in the complex plane of the form

(1) u̇ = λ1 u+ · · · , v̇ = −λ2 v + · · · ,
where λ1, λ2 ∈ C. However if k := (λ1, λ2) does not satisfies the reso-
nant condition (α, k) − λm = 0, for all m ∈ {1, 2} and for all α ∈ N2

0

with |α| ≥ 2 then system (1) is formally equivalent to its normal form
u̇ = λ1 u, v̇ = −λ2 v, see [6]. Hence we consider the case with a p : −q
resonant elementary singular point

(2) u̇ = p u+ · · · , v̇ = −q v + · · · ,
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with p, q ∈ Z. If p, q > 0, (p, q) = 1 then the linear part has the
analytic first integral H0 = xqyp and we can seek the conditions for
the existence of an analytic first integral H = H0 + · · · for system
(2). Hence get the equation Ḣ = v1H

2
0 + v3H

3
0 + · · · , and the so-called

p : −q resonant saddle quantities vi are polynomials in the coefficients
of system (2). If all the vi are zero we say that we have an analytic
resonant saddle, see [7] and references therein.

In this work we aim to study analytic differential systems in the
complex plane of the form

(3) ẋ = x+ g(x)y, ẏ = −y + f(y)x,

where f(y) =
∑

j≥1 ajy
j and g(x) =

∑
j≥1 bjx

j are analytic functions

without constant terms. In fact system (3) has a 1 : −1 resonant saddle
singular point at the origin. System (3) with g(x) = 0 was studied in
[4] where the following result was given.

Theorem 1. ([4]) The complex polynomial differential system (3) with
g(x) = 0 has an integrable saddle at the origin if and only if one of the
following two conditions holds:

(1) a1 = a2 = 0;
(2) ai = 0 for i ≥ 2.

The case g(x) ̸= 0 is much harder and we have studied the polynomial
case when f and g are polynomials of degree less than or equal to 6,
and we have obtained the following result.

Theorem 2. The complex polynomial differential system (3) when f
and g are polynomials of degree ≤ 6 has an analytic integrable saddle
at the origin, if and only if, the following conditions hold:

a2 + b2 = −a1a3 + b1b3 = a21a4 + b21b4 = −a31a5 + b31b5 = a41a6 + b41b6 = 0.

The proof of this theorem is given in section 2.

From this result we can establish the following conjecture for the
complex polynomial differential system (3) when the degrees of the
polynomials f and g are arbitrary.

Conjecture 3. The complex polynomial differential system (3) has an
analytic integrable saddle at the origin, if and only if, the following
conditions holds:

a2 + b2 = 0,
−ai−2

1 ai + bi−2
1 bi = 0, for i odd,

ai−2
1 ai + bi−2

1 bi = 0, for i even.



INTEGRABILITY CONDITIONS OF A RESONANT SADDLE 3

2. Proof of Theorem 2

The sufficiency of Theorem 2 is proved in the following lemma.

Lemma 4. System (3) when f and g are polynomials of degree ≤ 6 with
a2 + b2 = −a1a3 + b1b3 = a21a4 + b21b4 = −a31a5 + b31b5 = a41a6 + b41b6 = 0
has an analytic first integral defined in a neighborhood of the origin.

Proof. First we vanish the conditions taking b2 = −a2, a3 = k3b1,
b3 = k3a1, a4 = −k4b

2
1, b4 = k4a

2
1, a5 = k5b

3
1, b5 = k5a

3
1, a6 = −k6b

4
1,

b6 = k6a
4
1, where k3, k4, k5 and k6 are arbitrary constants. System (3)

takes the form

ẋ = x+ (a1x+ a2x
2 + b1k3x

3 − b21k4x
4 + b31k5x

5 − b41k6x
6)y,

ẏ = −y + (b1y − a2y
2 + a1k3y

3 + a21k4y
4 + a31k5y

5 + a41k6y
6)x.

Now we do the change of coordinates X = b1x and Y = a1y and the
scaling of time dt = dτ/(b1a1) and the system is transformed into

Ẋ = X(b1a1 + Y (b1a1 + a2X + k3X
2 − k4X

3 + k5X
4 − k6X

5)),

Ẏ = Y (−b1a1 +X(b1a1 − a2Y + k3Y
2 + k4Y

3 + k5Y
4 + k6Y

5)).

Finally we do a rotation of angle φ = π/4 which is given by the linear
change

u =
X√
2
− Y√

2
, v =

X√
2
+

Y√
2
,

and the system takes the form

(4) u̇ = v + vP (u, v2), v̇ = u+Q(u, v2).

System (4) is invariant by the symmetry (u, v, t) → (u,−v,−t). hence
the system is a time-reversible system following the definition given
in [5]. Moreover all the time-reversible systems are inside the Sibirsky
subvariety which are inside the Center variety i.e., systems (4) that have
an analytic first of the form H = uv + · · · around the origin. Hence
system (4) and the original one have a resonant integrable saddle at
the origin. �

The necessity condition of Theorem 2 is proved in the following
lemma.

Lemma 5. If system (3) when f and g are of degree ≤ 6 has an
integrable saddle at the origin then the following conditions hold:

a2 + b2 = −a1a3 + b1b3 = a21a4 + b21b4 = −a31a5 + b31b5 = a41a6 + b41b6 = 0.
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Proof. In system (3) with f and g polynomials of degree ≤ 6 we intro-
duce the change of variables X = x+ iy, Y = x− iy and the scaling of
time t 7→ −t/i. With this change the system becomes into the form

(5)
Ẋ = −Y + F (X, Y ),

Ẏ = X +G(X, Y ),

where the coefficients of F and G are complex. Next we take polar
coordinates, i.e., X = r cos θ and Y = r sin θ and doing this change of
variables system (5) takes the form

(6) ṙ =
7∑

s=2

Ps(θ) r
s, θ̇ = 1 +

7∑
s=2

Qs(θ) r
s−1,

where Ps and Qs are trigonometric polynomials of degree s. To de-
termine the necessary conditions to have a formal first integral in a
neighborhood of the origin we propose a Poincaré series of the form
H(r, θ) =

∑∞
m=2Hm(θ)r

m, where H2(θ) = 1/2 and Hm(θ) are homo-
geneous trigonometric polynomials respect to θ of degree m. Imposing
that this power series is a formal first integral of system (6) we obtain
Ḣ(r, θ) =

∑∞
k=2 V2kr

2k, where the V2k are in fact the saddle quantities
that depend on the parameters of system (3). From the recursive equa-
tions that generate V2k we can see that these V2k are polynomials in
the parameters of system (3), see [1, 3, 6]. Due to the Hilbert Basis
theorem, the ideal J =< V4, V6, ... > generated by the saddle quan-
tities is finitely generated, i.e. there exist v1, v2, ..., vk in J such that
J =< v1, v2, ..., vk >. Such a set of generators is called a basis of J and
the conditions vj = 0 for j = 1, . . . , k provide a finite set of necessary
conditions to have a formal first integral around the origin.

In fact we determine a number of saddle quantities thinking that
inside these number there is the set of generators.

In our case the necessity is straightforward because the first saddle
quantity is V4 = a2 + b2. Then we take b2 = −a2. The next saddle
quantity is V6 = a1a3− b1b3. To vanish this quantity we take a3 = k3b1
and b3 = k3a1 where k3 is an arbitrary constant. We compute the next
saddle quantity and we obtain V8 = a21a4 + b21b4. Hence we take, as
before, a4 = k4b

2
1 and b4 = −k4a

2
1, where k4 is an arbitrary constant.

The next saddle quantity is V10 = a31a5−b31b5. Hence we take, as before,
a5 = k5b

3
1 and b5 = k5a

3
1, where k5 is an arbitrary constant. Under these

conditions V12 = a41a6 + b41b6 and we take a6 = k6b
4
1 and b6 = −k6a

4
1,

where k6 is an arbitrary constant. The next saddle quantity V14 is zero
and we assume that the rest are also zero and that we have vanished a
set of generators. �
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Proof of Theorem 2. The proof of Theorem 2 is an immediate conse-
quence of Lemmas 4 and 5. �
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