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ON THE MECHANISMS FOR PRODUCING LINEAR
TYPE CENTERS IN POLYNOMIAL DIFFERENTIAL

SYSTEMS

JAUME GINÉ1 AND JAUME LLIBRE2

Abstract. In this paper we study the different mechanisms that
give rise to linear type centers for polynomial differential systems.
The known mechanisms are the algebraic reversibility and the Li-
ouville integrability. In this paper are discussed such mechanisms
and established some open questions. The known mechanisms for
the nilpotent and degenerate centers are also summarized.

1. Introduction and preliminary results

A center for a real analytic differential system in the plane

(1) ẋ = P (x, y), ẏ = Q(x, y),

is a singularity p for which there exist a neighborhood U such that
U \ {p} is filled with periodic orbits.

A center is of linear type if the eigenvalues of its linear part are purely
imaginary. Determine linear type centers is a classical problem in the
qualitative theory of differential equations, see for instance [22, 33, 34,
36, 45, 47]. The linear type centers of the analytic differerential systems
(1) are characterized by a theorem of Poincaré-Liapunov [34, 45] which
says that a center is of linear type if and only if the system has a
non–constant analytic first integral defined in a neighborhood of it.

We say that the differential system (1) is polynomial when the func-
tions P and Q are polynomials. The degree of a polynomial differential
system (1) is the maximum degree of the polynomials P and Q.
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We recall that a function V is an inverse integrating factor associated
to the first integral H of system (1) if

P

V
=
∂H

∂y
, and

Q

V
= −∂H

∂x
.

We say that a polynomial differential system (1) has a Liouvillian
first integral H it its associated inverse integrating factor is of the form

(2) V = exp(D/E)
∏

Cαi
i ,

where D, E and the Ci are polynomials in C[x, y] and αi ∈ C, see
[12, 23, 46, 50]. The functions of the form (2) are called Darboux func-
tions. We recall that the Darboux functions essentially are due to the
existence of invariant algebraic curves and their multiplicities through
the exponential factors. We note that the curves Ci = 0 are invariant
algebraic curves of the polynomial differential system (1), and that the
exp(D/E) is a product of some exponential factors associated to the
invariant algebraic curves of the system or to the invariant straight line
at infinity, for more details see [7, 14, 15] or Chapter 8 of [17].

For polynomial differential systems it seems natural to think that
the analytic first integral, that exists in a neighborhood of a linear
type center, must be of algebraic nature attending to the algebraic na-
ture of the polynomial differential system. For an analytic first integral
of algebraic nature we first understand that the first integral is a Dar-
boux function. For some classes of polynomial differential systems of
lower degree this is true. For instance any linear center perturbed by
quadratic or cubic homogeneous polynomials has a Darboux first inte-
gral, see for instance [6, 21, 32, 49] and references therein. However,
in general, the analytic first integrals of the linear type centers of cu-
bic polynomial differential systems are not Darboux first integrals, and
more general mechanisms for producing centers should be introduced,
and of course this is also the case for polynomial differential systems
of higher degree, see [13, 16, 28].

One of the most studied polynomial differential equations is the poly-
nomial Liénard equation

(3) ẍ+ f(x)ẋ+ g(x) = 0,

where f(x) and g(x) are polynomials and its generalizations, see for
instance [8, 9, 10, 11, 13, 16, 24]. Equation (3) can be rewritten as the
differential system in the plane

(4) ẋ = y, ẏ = −g(x) − yf(x).



ON THE MECHANISMS FOR PRODUCING LINEAR TYPE CENTERS 3

These systems arise frequently in the study of various mathematical
models of physical, chemical, biological, physiological, economical and
other processes, see for instance [31, 35] and references therein.

For the Liénard differential system (4) Cherkas [8] was the first in
give necessary and sufficient conditions for the existence of a linear type
centers at the origin. His conditions were improved by Christopher
[11]. In fact the Liénard differential systems (4) with a center are
time–reversible (see below the definition) through an analytic invertible
transformation followed by a scaling of time.

The known centers of the polynomial differential systems (4) and
its generalizations [25, 26, 28] arise either from the existence of a Li-
ouvillian first integral or from a simple form of algebraic reducibility
(see also definition below). Both mechanisms, as we will see, are of
algebraic nature.

The first mechanism is the Liouvillian integrability, i.e. the existence
of a Liouvillian first integral. However there are linear type centers of
polynomial differential systems without a Liouville first integral. A
simple example is the polynomial Liénard system

(5) ẋ = y + x4, ẏ = −x,

that has neither any invariant algebraic curve, nor an integrating factor
of the form (2) and consequently is not Liouvillian integrable, see [18].

Nevertheless, system (5) is invariant by the symmetry (x, y, t) →
(−x, y,−t) which implies that its phase portrait is symmetric respect
to the y axis and this property is called time-reversibilty. This sim-
ple example leads immediately to the second mechanism to produce
centers. This mechanism produces centers by pulling back a non–
singular differential system via an algebraic map which allows to obtain
a symmetric differential system. For system (5) the map is polynomial
(x̄, ȳ) 7→ (x2, y) and we obtain the nonsingular differential system

˙̄x = 2(ȳ + x̄2), ˙̄y = −1,

that is, a differential system without a singular point at the origin

This second mechanism is called algebraic reducibility, see [16]. A
polynomial differential system is algebraically reducible at a singular
point p if it is possible to find a map

(x, y) → (x̄, ȳ) = (f(x, y), g(x, y))

with f and g analytic functions (real or complex) in the neighborhood
of p, which are also algebraic over C(x, y) such that the differential
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equation Pdy−Qdx = 0 associated to system (1) is the pull-back of a
differential equation P̄ dȳ − Q̄dx̄ = 0 without singularities around the
image of p.

In [16] it is mentioned the algebraic reversible mechanism. A system
is algebraic reversible if there exists an algebraic map that transforms
it into a time-reversible system. In [51, 52] it is introduced the notion
of rationally reversibility, which is a particular case of the algebraic
reversibility because in this case the map is assumed to be rational.
Nevertheless any algebraic reversible system or rational reversible sys-
tem is also algebraic reducible, see [16].

These two mechanisms for producing centers, the Liouvillian integra-
bility and the algebraic reducibility, explain all the known linear type
centers of the polynomial differential systems studied up to now, see
for instance [2, 8, 9, 11, 16, 24, 25, 29, 30, 37, 38, 39, 40, 41, 42, 47, 48]
and the references therein. As far as we know does not exist a known
linear type center produced by a different mechanism than these two
explained mechanisms. Moreover both mechanisms are of algebraic
nature because in the first case the system has an integrating factor
constructed from invariant algebraic curves and exponential factors,
and in the second case the map which appears in the definition of alge-
braic reducibility is algebraic. This allows us to establish the following
conjecture.

Conjecture. Any center of a polynomial differential system is Liou-
villian integrable or algebraically reducible.

This conjecture was first established in [14] but in terms of a gen-
eralized symmetry which is equivalent to say that the system is alge-
braically reversible. If the conjecture is true then any linear type center
would be produced by algebraic mechanisms.

The algebraic nature of the algebraic reducibility, or of the Liou-
villian integrability allows to find, in general, the transformation to
the non–singular differential system, or the Liouvillian first integral.
In both cases these mechanisms provide the sufficient conditions for
the existence of a linear type center once we have found the necessary
conditions for such an existence.

In fact, from a theoretical point of view, both methods can be uni-
fied in a unique mechanism as the following result shows for analytic
differential systems. The proof of this result can be seen in [28].

Theorem 1. Any linear type center of an analytic differential system
is analytically reducible.
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The key point in the proof of Theorem 1 consists in writing system
(1) into its the Poincaré normal form through an analytic change of
variables, that we know that exists for any linear type center. However
we only can compute some of the terms of the Taylor series of the
analytic change that transforms the original system into its Poincaré
normal form.

2. Some open questions

When one does a classification of the linear type centers as we have
done in the conjecture it is important to know if there are elements
in each class that are not in the other one. In the example of system
(5) given above, we know that there are algebraic reducible linear type
centers that are not Liouvillian integrable. We do not know an example
in the converse sense. Therefore we have the following open question.

Open problem 1. Are there linear type centers of polynomial differ-
ential systems which are Liouvillian integrable but are not algebraically
reducible?

System (1) with a singular point at the origin candidate to be a
linear type center can be written into the form

(6) ẋ = −y + P (x, y), ẏ = x+Q(x, y),

where P and Q are analytic functions without constant and linear
terms, i.e. P =

∑∞
i=2 Pi(x, y) and Q =

∑∞
i=2Qi(x, y), where Pi and Qi

are homogeneous polynomials of degree i. We note that taking polar
coordinates x = r cos θ and y = r sin θ system (6) takes the form

(7) ṙ =
∞∑
s=2

fs(θ)r
s, θ̇ = 1 +

∞∑
s=2

gs(θ)r
s−1,

where

fi(θ) = cos θPi−1(cos θ, sin θ) + sin θQi−1(cos θ, sin θ),

gi(θ) = cos θQi−1(cos θ, sin θ) − sin θPi−1(cos θ, sin θ).

We remark that fi and gi are homogeneous polynomials of degree i in
the variables cos θ and sin θ. In the region R = {(r, θ) : θ̇ > 0} the
differential system (7) is equivalent to the differential equation

(8)
dr

dθ
=

∑∞
s=2 fs(θ)r

s

1 +
∑∞

s=2 gs(θ)r
s−1

.
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Since P and Q are analytic functions, we can expand the right-hand
side of (8) as an analytic series in r to obtain the differential equation

(9)
dr

dθ
=

∞∑
i=1

ai(θ)r
i+1,

whose coefficients are trigonometric polynomials. This reduces the cen-
ter problem for the planar differential system (6) to the center problem
for the class of differential equations (9).

An explicit expression for the first return map of the differential
equation (9) is given in [3], see also [5]. This expression is given in
terms of the following iterated integrals, of order k,

Ii1,...,ik(a) :=

∫
· · ·

∫
0≤s1≤···≤sk≤2π

aik(sk) · · · ai1(s1) dsk · · · ds1,

where, by convention, for k = 0 we assume that this equals 1. Let
ρ(θ; ρ0; a), θ ∈ [0, 2π], be the Lipschitz solution of the differential equa-
tion (9) corresponding to a sequence a = (a1, a2, . . .) of parameters
of equation (9) with initial value ρ(0; ρ0; a) = ρ0. Then P (a)(ρ0) :=
ρ(2π; ρ0; a) is the first return map of this differential equation, and in
[3, 5] it is proved the following:

Theorem 2. For sufficiently small initial values ρ0 the first return
map P (a) is an absolute convergent power series P (a)(ρ0) = ρ0 +∑∞

n=1 cn(a)ρn+1
0 , where

cn(a) =
∑

i1+···+ik=n

ci1,...,ikIi1,...,ik(a), and

ci1,...,ik = (n− i1 + 1) · (n− i1 − i2 + 1) · (n− i1 − i2 − i3 + 1) · · · 1.

The following definition is given in [4]. Equation (9) determines a
universal center if for all positive integers i1, . . . , ik with k ≥ 1 the
iterated integral Ii1,...,ik(a) = 0.

In [27] it is proved that equation (9) with all ai trigonometric poly-
nomials has a universal center if and only if there are a trigonometric
polynomial q and polynomials pi,∈ C[z] for i ≥ 1 such that

(10) ãi = pi ◦ q, 1 ≤ i ≤ n, ãi(θ) =

∫ θ

0

ai(s)ds.

The conditions (10) are called composition conditions. Therefore the
universality condition for a center of (9) is equivalent to the compo-
sition conditions for (9) of all the trigonometric polynomials ai. The
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composition conditions were defined by first time in [1]. In summary
we have the following result proved in [27].

Theorem 3. Any center of the differential equation (9) is universal if
and only if the differential equation (9) satisfies the composition condi-
tions (10).

In [27] it is also proved that any linear type center of the differential
system (6) after an analytic change of variables is a universal center.
Moreover, also in [27], that any time–reversible center of the differential
system (6) is a universal center.

Additionally in several paper, see [27] and references therein, it is
proved that the differential equation (9) have centers which are not
universal, and consequently the differential system (6) also has no uni-
versal centers. In fact these examples are Liouvillian integrable. As far
as we know up to now there are no examples of algebraically reducible
centers which are not Liouvillian integrable and that do not satisfy the
composition condition. In the next section we will provide an example
that satisfies these conditions.

The next open problem is about the relations of the universality
condition or composition condition with the other two mechanism to
have a center for system (1).

Open problem 2. Are there linear type centers of polynomial differ-
ential systems which satisfy the composition condition but are neither
Liouvillian integrable nor algebraic reducible?

If this open question has a positive answer, the conjecture does not
hold, and we will have to add the composition condition as a new
mechanism for having linear type centers.

In [51, 52] Żo ladek established a conjecture about the linear type
centers of the cubic polynomial differential systems that said that any
linear type cubic center is Liouvillian integrable or rationally reversible.
Moreover in these works he gave the classification of the linear type
rationally reversible cubic polynomial differential systems with a linear
type center.

Recently Nicklason in [43] has presented a particular cubic polyno-
mial differential system which appears to be a counterexample to the
conjecture given by Żo ladek in [51, 52].
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3. The example of Nicklason

Nicklason in [43] uses the properties of the solutions of the Abel dif-
ferential equations to investigate the integrability of some cubic poly-
nomial differential systems, and he is able to give some sufficient condi-
tions in order that such systems have a linear type center at the origin.
Inside these examples he founded the following one

ẋ = − y − Ax2 − xy − Ax3,

ẏ =x+ x2 + (2A− 1)xy − 2

3
y2 + 2A(1 − 5A)x3 +

(2A− 1)

3
x2y,

(11)

where for the values A = 0, 1/4 this differential system is solvable in
terms of special functions. Thus, when A = 0 we have the differential
system

(12) ẋ = −y − xy, ẏ = x+ x2 − xy − x2y

3
− 2y2

3
,

which has the associated differential equation

(13)
dy

dx
=

−3x− 3x2 + 3xy + x2y + 2y2

3(1 + x)y
.

Equation (13) can be transformed by a complicate transformation of
the dependent and independent variables together with a scaling of
time into the Abel differential equation du/dt = u3 − 2tu2 which is
solvable in terms of Airy functions. In fact a first integral for system
(12) is given by

H =
32/3(3 + x)Ai(s(x)) + 6(1 + x)1/3Ai′(s(x))

32/3(3 + x)Bi(s(x)) + 6(1 + x)1/3Bi′(s(x))
,

where s(x) = ((3+x)2−4y)/(4·32/3(1+x)2/3) and Ai(z) and Bi(z) is the
pair of linearly independent solutions of the Airy differential equation
w′′ = zw, which have the next integral representation

Ai(z) =
1

π

∫ ∞

0

cos[t3/3 + zt] dt,

Bi(z) =
1

π

∫ ∞

0

(
exp[−t3/3 + zt] + sin[t3/3 + zt]

)
dt.

We claim that system (12) is not Liouvillian integrable because the
inverse integrating factor associated to the first integral H is not a
Darboux function. At the end of this section we shall prove this claim.

On the other hand, Nicklason affirms that system (12) is not included
in the classification of the rational reversible linear type centers of the
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cubic polynomial differential systems given by Żo ladek in [51, 52]. We
do not know if the classification of Żo ladek is complete. If this is the
case this would imply that system (12) would be a counterexample to
the Żo ladek’s conjecture. The question that we want to consider now
is if system (12) is a counterexample to our conjecture.

System (12) is a Cherkas system, see [24, 25, 28]. Any Cherkas
system can be transformed into a Liénard differential system (4). More
precisely, the change y1 = yψ = ye−

∫ x
0 P2/P3 dx transforms the system

(14) ẋ = P3(x)y, ẏ = P0(x) + P1(x)y + P2(x)y2,

into the Liénard differential system

(15) ẋ = y1, ẏ1 =
P0

P3

ψ2 +
P1

P3

ψy1.

For system (12) we have P3 = −(1 + x) and P2 = 2/3 and we obtain
ψ = 1/(3 + 3x)2/3. By the transformation y1 = yψ and the scaling of
time dt/dτ = −32/3(1 + x)5/3 the differential system (12) becomes

(16) ẋ = y1, ẏ1 = − x

3 · 31/3(1 + x)4/3
+

x(3 + x)

3 · 32/3(1 + x)5/3
y1.

Now for the Liénard differential system (4) we define F =
∫ x

0
f(s)ds

and G =
∫ x

0
g(s)ds, and the change of variables y = Y − F (x) trans-

forms system (4) into the differential system

(17) ẋ = Y − F (x), Ẏ = −g(x),

which are also called Liénard differential systems.

For system (16) the system (17) is

(18) ẋ = Y − 9 + 6x+ x2 − 9(1 + x)2/3

4 · 32/3(1 + x)2/3
, Ẏ = − x

3 · 31/3(1 + x)4/3
.

System (18) has a linear type center at the origin, and consequently it
must satisfy the following theorem, see [8, 11].

Theorem 4. System (17) has a center at the origin if and only if
F (x) = Φ(G(x)), for some analytic function Φ with Φ(0) = 0.

For system (18) we have that F = G2 − 32/3G.

Following [8, 11], since 2G(x) = g′(0)x2 + · · · we introduce the in-

vertible analytic transformation u =
√

2G(x) sgn(x) whose inverse is
x = x(u), and system (17) takes the form

(19) u̇ =
g(x(u))

u

[
Y − F (x(u))

]
, Ẏ = −g(x(u)).
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Since g(x(u))/u =
√
g′(0) + · · · is non–zero doing a scaling of time we

get the system

(20) u̇ = Y − F (x(u)), Ẏ = −u.

The corresponding system (20) for the system (18) takes the form

(21) u̇ = Y − 1

2
32/3u2 − 1

4
u4, Ẏ = −u,

which is a time-reversible system, because system (21) is invariant by
the symmetry (u, Y, t) → (−u, Y,−t). Consequently system (21) is al-
gebraically reducible via the map (x̄, ȳ) 7→ (u2, Y ). Going back through
all the changes done in order to arrive to system (21) we obtain that
the origin system (12) is algebraically reducible. Therefore, system (12)
is not a counterexample to our conjecture.

Now we shall prove the claim that system (12) is not Liouvillian
integrable. Note that it is sufficient to prove that system (21) that
has not an inverse integrating factor of the form (2). From the results
obtained by Odani in [44] system (21) does not have invariant algebraic
curves. Hence, if system (21) is Liouvillian integrable, then the only
possible inverse integrating factor of the form (2) is an exponential
factor of the form exp(h) with h ∈ C[x, y], which must come from the
multiplicity of the invariant straight line at infinity, see for more details
[15]. But from the definition of inverse integrating factor we have that
X (exp(h)) = (divX ) exp(h), where X is the vector field associated to
system (21), that is

(22) (Y − 1

2
32/3u2 − 1

4
u4)

∂h

∂u
− u

∂h

∂Y
= −32/3u− u3,

where we have simplified the common factor exp(h). Let h(u, Y ) =∑N
i=0 hi(Y )ui, where hi(Y ) ∈ C[Y ] with hN(Y ) ̸≡ 0. Equating the

highest degree terms in both sides of the equality (22), we obtain that
NhN(Y )uN+3 = 0. This implies N = 0 which gives a contradiction.
Therefore system (21) does not have any Liouvillian first integral. Con-
sequently, taking into account the changes of variables for going from
system (12) to system (21), it follows that system (12) has no Liouvil-
lian first integrals, the claim is proved.

Now we take polar coordinates in system (12) and we construct the
associated equation (8). Next we expand the right–hand side of (8) as
an analytic series in r to obtain equation (9), which for the system (12)
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its first three coefficients are

a1(θ) =
1

12
(−3 cos θ + 3 cos(3θ) − 6 sin θ + 2 sin(3θ)),

a2(θ) =
1

288
(12 cos(2θ) − 12 cos(6θ) + sin(2θ) − 8 sin(4θ) + 5 sin(6θ)),

a3(θ) =
1

6912

(
− 234 cos θ − 36 cos(3θ) + 156 cos(5θ) + 105 cos(7θ)

+ 9 cos(9θ) − 100 sin θ + 24 sin(3θ) + 136 sin(5θ)

− 34 sin(7θ) − 46 sin(9θ)
)
.

Denote by

ãi(θ) :=

∫ θ

0

ai(s)ds.

Then the iterated integral

I13(a) =

∫
0≤s1≤s2≤2π

a1(s2) a3(s1) ds2 ds1 =

∫ 2π

0

ã3(s) a1(s) ds =
11π

864
.

Therefore the center of system (12) is not universal, or which is equiva-
lent, system (12) does not satisfy the composition conditions, see The-
orem 3. Summarizing we have proved the following result.

Theorem 5. The polynomial differential system (12) is algebraically
reducible, but it is not Liouvillian integrable, and it does not satisfy the
composition conditions.

In the case that A = 1/4 the differential system (11) takes the form

(23) ẋ = −x
2

4
− x3

4
− y − xy, ẏ = x+ x2 − x3

8
− xy

2
− x2y

6
− 2y2

3
,

In this case we take as a new variable z = x2 + 4y and system (23)
becomes

(24) ẋ = −1

4
(1 + x)z, ż = 4x+ 4x2 − xz − x2z

3
− z2

6
.

System (24) is also a Cherkas system that can be transformed into a
Liénard system (4). Following the same steps that for the case A = 0
we obtain that this case is also algebraically reducible.

4. Nilpotent and Degenerate centers

The nilpotent and degenerate center problem is much more difficult
than the linear type center problem, see [19, 20, 36]. First it is not
true that any nilpotent and degenerate center has an analytic first
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integral defined around the origin, consequently Theorem 1 is not true
for such centers. In any case the two mechanisms described for linear
type centers, Liouvillian integrability and algebraic reducibility, can
also be applied to obtain nilpotent and degenerate centers. The unique
difference is that the Liouvillian first integral can be non-analytic. See
for instance some examples in [20] and references therein. However, as
far as we know all the known nilpotent and degenerate center satisfy
our conjecture. Hence we extend the conjecture to any center of a
polynomial differential system (1).
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verse integrating factor, J. Differential Equations 194 (2003), no. 1, 116–139.

[8] L.A. Cherkas, On the conditions for a center for certain equations of the
form yy′ = P (x)+Q(x)y+R(x)y2, Differ. Uravn. 8 (1972), 1435-1439; Differ.
Equ. 8 (1972), 1104–1107.

[9] L.A. Cherkas, Conditions for a center for the equation P3(x)yy
′ =∑2

i=0 Pi(x)y
i, Differ. Uravn. 10 (1974), 367–368; Differ. Equ. 10 (1974), 276–

277.



ON THE MECHANISMS FOR PRODUCING LINEAR TYPE CENTERS 13

[10] L.A. Cherkas, Conditions for a center for a certain Liénard equation, Differ.
Uravn. 12 (1976), 292–298; Differ. Equ. 12 (1976), 201–206.

[11] C.J. Christopher, An algebraic approach to the classification of centres in
polynomial Liénard systems, J. Math. Anal. Appl. 229 (1999), 319–329.

[12] C.J. Christopher, Liouvillian first integrals of second order polynomial dif-
ferential equations, Electron. J. Differential Equations 1999, No. 49, 7 pp.

[13] C.J. Christopher, C. Li, Limit cycles of differential equations, Advanced
Courses in Mathematics. CRM Barcelona. Birkhäuser–Verlag, Basel, 2007.
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[30] J. Giné, J. Llibre, C. Valls, Centers for the Kukles homogeneous systems
with odd degree, Bull. Lond. Math. Soc. 47 (2015), no. 2, 315–324.

[31] N. Glade, L. Forest, J. Demongeot, Liénard systems and potential–
Hamiltonian decomposition III - applications, C. R. Math. Acad. Sci. Paris
344 (2007), no. 4, 253–258.
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lytic differential systems, J. Differential Equations 258 (2015), 4348–4367.
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