Contents lists available at ScienceDirect

Nonlinear Science, and Nonequilibrium and Complex Phenomena journal homepage: www.elsevier.com/locate/chaos

Integrability conditions of a resonant saddle in generalized Liénard-like complex polynomial differential systems

Jaume Giné^{a,*}, Jaume Llibre^b

^a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain ^b Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69; 25001 Lleida, Catalonia, Spain

ARTICLE INFO

Article history: Received 20 July 2016 Accepted 25 January 2017

MSC: Primary 34C05 Secondary 37C10

Keywords: Center problem Analytic integrability Polynomial complex differential systems

1. Introduction

The center problem for polynomial vector fields in the real plane with an elementary singular point of the form

$$\dot{x} = -y + \cdots, \qquad \dot{y} = x + \cdots,$$

where the dots means higher order terms is a subject of much work during these last decades, see for instance [2,6]. These type of systems can be embedded by the change of variable u = x + iy and the corresponding conjugate variable v = x - iy into the complex system of the form

 $\dot{u} = u + \cdots, \qquad \dot{v} = -v + \cdots.$

The next generalization of the above system is to consider the case of a polynomial system in the complex plane of the form

$$\dot{u} = \lambda_1 u + \cdots, \qquad \dot{v} = -\lambda_2 v + \cdots,$$
 (1)

where $\lambda_1, \lambda_2 \in \mathbb{C}$. However if $k := (\lambda_1, \lambda_2)$ does not satisfies the resonant condition $(\alpha, k) - \lambda_m = 0$, for all $m \in \{1, 2\}$ and for all $\alpha \in \mathbb{N}_0^2$ with $|\alpha| \ge 2$ then system (1) is formally equivalent to its normal form $\dot{u} = \lambda_1 u$, $\dot{v} = -\lambda_2 v$, see [6]. Hence we consider the case with a p : -q resonant elementary singular point

$$\dot{u} = p \, u + \cdots, \qquad \dot{v} = -q \, v + \cdots, \tag{2}$$

im:៖/វ្នាង doi.org/10.1016/j.chaos.2017.01.014

0960-0779/© 2017 Published by Elsevier Ltd.

http://www.gsc

ABSTRACT

We consider a complex differential system with a resonant saddle at the origin. We compute the resonant saddle quantities and using Gröbner bases we find the integrability conditions for such systems up to a certain degree. We also establish a conjecture about the integrability conditions for such systems when they have arbitrary degree.

© 2017 Published by Elsevier Ltd.

with $p, q \in \mathbb{Z}$. If p, q > 0, (p, q) = 1 then the linear part has the analytic first integral $H_0 = x^q y^p$ and we can seek the conditions for the existence of an analytic first integral $H = H_0 + \cdots$ for system (2). Hence get the equation $\dot{H} = v_1 H_0^2 + v_3 H_0^3 + \cdots$, and the so-called p : -q resonant saddle quantities v_i are polynomials in the coefficients of system (2). If all the v_i are zero we say that we have an *analytic resonant saddle*, see [7,8] and references therein.

In this work we aim to study analytic differential systems in the complex plane of the form

$$\dot{x} = x + g(x)y, \qquad \dot{y} = -y + f(y)x,$$
(3)

where $f(y) = \sum_{j\geq 1} a_j y^j$ and $g(x) = \sum_{j\geq 1} b_j x^j$ are analytic functions without constant terms. In fact system (3) has a 1 : -1 resonant saddle singular point at the origin. System (3) with g(x) = 0 was studied in [4] where the following result was given.

Theorem 1. [4] The complex polynomial differential system (3) with g(x) = 0 has an integrable saddle at the origin if and only if one of the following two conditions holds:

(1)
$$a_1 = a_2 = 0;$$

(2) $a_i = 0$ for $i \ge 2.$

The case $g(x) \neq 0$ is much harder and we have studied the polynomial case when f and g are polynomials of degree less than or equal to 6, and we have obtained the following result.

Theorem 2. The complex polynomial differential system (3) when f and g are polynomials of degree ≤ 6 has an analytic integrable saddle

^{*} Corresponding author. Tel.: +34973702778. E-mail addresses: gine@matematica.udl.cat (J. Giné), llibre@mat.uab.cat (J. Llibre).