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The aim of this work is to extend Benôıt’s theorem for the generic existence of “canards”
solutions in singularly perturbed dynamical systems of dimension three with one fast variable to
those of dimension four. Then, it is established that this result can be found according to the
Flow Curvature Method. Applications to Chua’s cubic model of dimension three and four enable
to state the existence of “canards” solutions in such systems.
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1. Introduction

Many systems in biology, neurophysiology, chem-
istry, meteorology, electronics exhibit several time
scales in their evolution. Such systems, today called
singularly perturbed dynamical systems, have been
modeled by a system of differential equations (1)
having a small parameter multiplying one or several
components of its vector field. Since the works of
Andronov and Khaikin [1937], Tikhonov [1948], the
singular perturbation method1 has been the subject
of many research works, among which we will quote
those of Argémi [1978] who carefully studied the

slow motion. According to Tikhonov [1948], Tak-
ens [1976], Jones [1994] and Kaper [1999], singularly
perturbed systems may be defined as:

x′ = εf(x,y, ε), y′ = g(x,y, ε), (1)

where x ∈ R
p, y ∈ R

m, ε ∈ R
+, and the prime

denotes differentiation with respect to the indepen-
dent variable t. The functions f and g are assumed
to be C∞ functions2 of x, y and ε in U × I, where
U is an open subset of R

p × R
m and I is an open

interval containing ε = 0.

1For an introduction to singular perturbation method see [O’Malley, 1974; Kaper, 1999].
2In certain applications these functions are supposed to be Cr, r ≥ 1.
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