

International Journal of Bifurcation and Chaos, Vol. 23, No. 4 (2013) 1330010 (13 pages) © World Scientific Publishing Company

DOI: 10.1142/S0218127413300103

CANARDS FROM CHUA'S CIRCUIT

JEAN-MARC GINOUX

Laboratoire PROTEE, Université du Sud, I.U.T. de Toulon, BP 20132, F-83957 La Garde Cedex, France qinoux@univ-tln.fr

JAUME LLIBRE

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain jllibre@mat.uab.cat

LEON O. CHUA

EECS Department, University of California, Berkeley, 253 Cory Hall #1770, Berkeley, CA 94720-1770, USA chua@eecs.berkeley.edu

Received January 16, 2013

The aim of this work is to extend Benoît's theorem for the generic existence of "canards" solutions in *singularly perturbed dynamical systems* of dimension three with one fast variable to those of dimension four. Then, it is established that this result can be found according to the *Flow Curvature Method*. Applications to Chua's cubic model of dimension three and four enable to state the existence of "canards" solutions in such systems.

Keywords: Geometric singular perturbation method; flow curvature method; singularly perturbed dynamical systems; canard solutions.

1. Introduction

Many systems in biology, neurophysiology, chemistry, meteorology, electronics exhibit several time scales in their evolution. Such systems, today called singularly perturbed dynamical systems, have been modeled by a system of differential equations (1) having a small parameter multiplying one or several components of its vector field. Since the works of Andronov and Khaikin [1937], Tikhonov [1948], the singular perturbation method¹ has been the subject of many research works, among which we will quote those of Argémi [1978] who carefully studied the

slow motion. According to Tikhonov [1948], Takens [1976], Jones [1994] and Kaper [1999], singularly perturbed systems may be defined as:

$$\mathbf{x}' = \varepsilon \mathbf{f}(\mathbf{x}, \mathbf{y}, \varepsilon), \quad \mathbf{y}' = \mathbf{g}(\mathbf{x}, \mathbf{y}, \varepsilon),$$
 (1)

where $\mathbf{x} \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}^m$, $\varepsilon \in \mathbb{R}^+$, and the prime denotes differentiation with respect to the independent variable t. The functions \mathbf{f} and \mathbf{g} are assumed to be C^{∞} functions² of \mathbf{x} , \mathbf{y} and ε in $U \times I$, where U is an open subset of $\mathbb{R}^p \times \mathbb{R}^m$ and I is an open interval containing $\varepsilon = 0$.

¹For an introduction to singular perturbation method see [O'Malley, 1974; Kaper, 1999].

²In certain applications these functions are supposed to be C^r , $r \ge 1$.