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CANARDS EXISTENCE IN THE HINDMARSH–ROSE MODEL

JEAN-MARC GINOUX1, JAUME LLIBRE2 AND KIYOYUKI TCHIZAWA3

Abstract. In two previous papers we have proposed a new method for prov-

ing the existence of “canard solutions” on one hand for three and four-dimensional
singularly perturbed systems with only one fast variable and, on the other hand
for four-dimensional singularly perturbed systems with two fast variables. The

aim of this work is to extend this method which improves the classical ones
used till now to the case of three-dimensional singularly perturbed systems
with two fast variables. This method enables to state a unique generic condi-
tion for the existence of “canard solutions” for such three-dimensional singu-

larly perturbed systems which is based on the stability of folded singularities
(pseudo singular points in this case) of the normalized slow dynamics deduced
from a well-known property of linear algebra. Applications of this method to
a famous neuronal bursting model enables to show the existence of “canard

solutions” in the Hindmarsh-Rose model.

1. Introduction

The concept of “canard solutions” for three-dimensional singularly perturbed
systems with one slow variables and two fast has been introduced in the beginning
of the eighties by Benôıt and Lobry [2], Benôıt [3]. Their existence has been proved
by Benôıt [3, p. 170] in the framework of “Non-Standard Analysis” according to
a theorem which states that canard solutions exist in such systems provided that
the pseudo singular point of the slow dynamics, i.e., of the reduced vector field is
of saddle type. Nearly twenty years later, Szmolyan and Wechselberger [21] pro-
vided a “standard version” of Benôıt’s theorem [3]. Recently, Wechselberger [27]
generalized this theorem for n-dimensional singularly perturbed systems with k
slow variables and m fast (where n = k + m). The method they used require to
implement a “desingularization procedure” which can be summarized as follows:
first, they compute the normal form of such singularly perturbed systems which
is expressed according to some coefficients (a and b for dimension three and ã, b̃
and c̃1 for dimension four) depending on the functions defining the original vec-
tor field and their partial derivatives with respect to the variables. Secondly, they
project the “desingularized vector field” (originally called “normalized slow dynam-
ics” by Eric Benôıt [3, p. 166]) of such a normal form on the tangent bundle of
the critical manifold. Finally, they evaluate the Jacobian of the projection of this
“desingularized vector field” at the folded singularity (originally called pseudo sin-
gular points by José Argémi [1, p. 336]). This lead Szmolyan and Wechselberger
[21, p. 427] and Wechselberger [27, p. 3298] to a “classification of folded singulari-
ties (pseudo singular points)”. Thus, they showed that for three-dimensional (resp.
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four-dimensional) singularly perturbed systems such folded singularity is of saddle
type if the following condition is satisfied: a < 0 (resp. ã < 0).

In a first paper entitled: “Canards Existence in Memristor’s Circuits” (see Gi-
noux & Llibre [11]) we presented a method enabling to state a unique “generic”
condition for the existence of “canard solutions” for three and four-dimensional
singularly perturbed systems with only one fast variable which is based on the
stability of folded singularities of the normalized slow dynamics deduced from a
well-known property of linear algebra. We proved that this unique condition is
completely identical to that provided by Benôıt [3], Szmolyan and Wechselberger
[21] and Wechselberger [27].

In a second paper entitled: “Canards Existence in FitzHugh-Nagumo and Hodgkin-
Huxley Neuronal Models” (see Ginoux & Llibre [12]) we extended this method to
the case of four-dimensional singularly perturbed systems with k = 2 slow and
m = 2 fast variables. Then, we stated that the provided condition for the existence
of canards is “generic” since it is exactly the same for singularly perturbed systems
of dimension three and four with one or two fast variables. The method we used
led us to the following proposition: If the normalized slow dynamics has a pseudo
singular point of saddle type, i.e. if the sum σ2 of all second-order diagonal minors
of the Jacobian matrix of the normalized slow dynamics evaluated at the pseudo
singular point is negative, i.e. if σ2 < 0 then, the three-dimensional (resp. four-
dimensional) singularly perturbed system exhibits a canard solution which evolves
from the attractive part of the slow manifold towards its repelling part. Then, we
proved on one hand for three-dimensional singularly perturbed systems with only
one fast variable that the condition for which the pseudo singular point is of saddle
type, i.e. σ2 < 0 is identical to that proposed by Benôıt [3, p. 171] in his theorem,
i.e. D < 0 and also to that provided by Szmolyan and Wechselberger [21], i.e.
a < 0. On the other hand, we proved for four-dimensional singularly perturbed
systems with one or two fast variables that the condition for which the folded sin-
gularity (resp. the pseudo singular point) is of saddle type, i.e. σ2 < 0 is identical
to that proposed by Wechselberger [27, p. 3298] in his theorem, i.e. ã < 0. Such
three and four-dimensional singularly perturbed systems with k slow and m = 2
fast variables have been also extensively studied by K. Tchizawa (see [24, 25]).

The aim of this work is to extend this method to the case of three-dimensional
singularly perturbed systems with one slow and two fast variables and to show that
the provided condition for the existence of canards, i.e. σ2 < 0 still holds and is
consequently “generic”.

The outline of this paper is as follows. In Sec. 2, definitions of singularly
perturbed system, critical manifold, reduced system, “constrained system”, canard
cycles, folded singularities and pseudo singular points are recalled. The method
proposed in this article is presented in Sec. 3 for the case of three-dimensional
singularly perturbed systems with two fast variables. In Sec. 4, applications of
this method to the famous Hindmarsh-Rose model enables to show the existence of
“canard solutions” in such system.
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2. Definitions

2.1. Singularly perturbed systems. According to Tikhonov [23], Jones [16] and
Kaper [17] singularly perturbed systems are defined as:

(1)
x⃗′ = εf⃗ (x⃗, y⃗, ε) ,

y⃗′ = g⃗ (x⃗, y⃗, ε) ,

where x⃗ ∈ Rk, y⃗ ∈ Rm, ε ∈ R+, and the prime denotes differentiation with respect

to the independent variable t′. The functions f⃗ and g⃗ are assumed to be C∞

functions1 of x⃗, y⃗ and ε in U × I, where U is an open subset of Rk × Rm and I is
an open interval containing ε = 0.

In the case when 0 < ε ≪ 1, i.e. ε is a small positive number, the variable x⃗ is
called slow variable, and y⃗ is called fast variable. Using Landau’s notation: O (εp)
represents a function f of u and ε such that f(u, ε)/εp is bounded for positive ε
going to zero, uniformly for u in the given domain.

In general we consider that x⃗ evolves at an O (ε) rate; while y⃗ evolves at an O (1)
slow rate. Reformulating system (1) in terms of the rescaled variable t = εt′, we
obtain

(2)
˙⃗x = f⃗ (x⃗, y⃗, ε) ,

ε ˙⃗y = g⃗ (x⃗, y⃗, ε) .

The dot represents the derivative with respect to the new independent variable t.
The independent variables t′ and t are referred to the fast and slow times, respec-
tively, and (1) and (2) are called the fast and slow systems, respectively. These
systems are equivalent whenever ε ̸= 0, and they are labeled singular perturbation
problems when 0 < ε ≪ 1. The label “singular” stems in part from the discontinu-
ous limiting behavior in system (1) as ε → 0.

2.2. Reduced slow system. When ε → 0 system (2) leads to a system of differential-
algebraic equations (D.A.E.) called reduced slow system whose dimension decreases
from k + m = n to m. Then, the slow variable x⃗ ∈ Rk partially evolves in the
submanifold

(3) M0 :=
{
(x⃗, y⃗) : g⃗ (x⃗, y⃗, 0) = 0⃗

}
.

called the critical manifold2. The reduced slow system is

(4)
˙⃗x = f⃗ (x⃗, y⃗, ε) ,

0⃗ = g⃗ (x⃗, y⃗, ε) .

2.3. Slow Invariant Manifold. Such a normally hyperbolic invariant manifold
(3) of the reduced slow system (4) persists as a locally invariant slow manifold of
the full system (1) for ε sufficiently small. This locally slow invariant manifold is
O(ε) close to the critical manifold.

When Dx⃗f⃗ is invertible, thanks to the Implicit Function Theorem, M0 is given

by the graph of a C∞ function x⃗ = G⃗0 (y⃗) for y⃗ ∈ D, where D ⊆ Rk is a compact,

1In certain applications these functions will be supposed to be Cr, r > 1.
2It represents the approximation of the slow invariant manifold, with an error of O(ε).
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simply connected domain and the boundary of D is a (k − 1)–dimensional C∞

submanifold3.

According to Fenichel [4, 7] theory if 0 < ε ≪ 1 is sufficiently small, then there

exists a function G⃗ (y⃗, ε) defined on D such that the manifold

(5) Mε :=
{
(x⃗, y⃗) : x⃗ = G⃗ (y⃗, ε)

}
,

is locally invariant under the flow of system (1). Moreover, there exist perturbed
local stable (or attracting) Ma and unstable (or repelling) Mr branches of the slow
invariant manifold Mε. Thus, normal hyperbolicity of Mε is lost via a saddle-
node bifurcation of the reduced slow system (4). Then, it gives rise to solutions of
“canard” type.

2.4. Canards, singular canards and maximal canards. A canard is a solution
of a singularly perturbed dynamical system (1) following the attracting branch Ma

of the slow invariant manifold, passing near a bifurcation point located on the fold
of this slow invariant manifold, and then following the repelling branch Mr of the
slow invariant manifold.

A singular canard is a solution of a reduced slow system (4) following the attract-
ing branch Ma,0 of the critical manifold, passing near a bifurcation point located
on the fold of this critical manifold, and then following the repelling branch Mr,0

of the critical manifold.
A maximal canard corresponds to the intersection of the attracting and repelling

branches Ma,ε∩Mr,ε of the slow manifold in the vicinity of a non-hyperbolic point.
According to Wechselberger [27, p. 3302]:

“Such a maximal canard defines a family of canards nearby which
are exponentially close to the maximal canard, i.e. a family of
solutions of (1) that follow an attracting branch Ma,ε of the slow
manifold and then follow, rather surprisingly, a repelling/saddle
branch Mr,ε of the slow manifold for a considerable amount of slow
time. The existence of this family of canards is a consequence of the
non-uniqueness of Ma,ε and Mr,ε. However, in the singular limit
ε → 0, such a family of canards is represented by a unique singular
canard.”

Canards are a special class of solution of singularly perturbed dynamical systems
for which normal hyperbolicity is lost. Canards in singularly perturbed systems
with two or more slow variables (x⃗ ∈ Rk, k > 2) and one fast variable (y⃗ ∈ Rm,
m = 1) are robust, since maximal canards generically persist under small parameter
changes4.

2.5. Constrained system. In order to characterize the “slow dynamics”, i.e. the
slow trajectory of the reduced slow system (4) (obtained by setting ε = 0 in (2)),

3The set D is overflowing invariant with respect to (2) when ε = 0. See Kaper [17] and Jones

[16].
4See Benôıt [3], Szmolyan and Wechselberger [21] and Wechselberger [26, 27].
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Floris Takens [22] introduced the “constrained system” defined as follows:

(6)

˙⃗x = f⃗ (x⃗, y⃗, 0) ,

Dy⃗ g⃗. ˙⃗y = −(Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

Since, according to Fenichel [4, 7], the critical manifold g⃗ (x⃗, y⃗, 0) may be con-
sidered as locally invariant under the flow of system (1), we have:

dg⃗

dt
(x⃗, y⃗, 0) = 0 ⇐⇒ Dx⃗g⃗. ˙⃗x+Dy⃗ g⃗. ˙⃗y = 0⃗.

By replacing ˙⃗x by f⃗ (x⃗, y⃗, 0) leads to:

Dx⃗g⃗.f⃗ (x⃗, y⃗, 0) +Dy⃗ g⃗. ˙⃗y = 0⃗.

This justifies the introduction of the constrained system.
Now, let adj(Dy⃗ g⃗) denote the adjoint of the matrix Dy⃗ g⃗ which is the transpose

of the co-factor matrix Dy⃗ g⃗, then while multiplying the left hand side of (6) by the
inverse matrix (Dy⃗ g⃗)

−1 obtained by the adjoint method we have:

(7)

˙⃗x = f⃗ (x⃗, y⃗, 0) ,

det(Dy⃗ g⃗) ˙⃗y = −(adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

2.6. Normalized slow dynamics. By rescaling the time by setting t = −det(Dy⃗ g⃗)τ
in system (7) we obtain the following system which has been called by Eric Benôıt
[3, p. 166] “normalized slow dynamics”:

(8)

˙⃗x = −det(Dy⃗ g⃗)f⃗ (x⃗, y⃗, 0) ,

˙⃗y = (adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

where the overdot now denotes the time derivation with respect to τ . We notice that
Argémi [1] proposed to rescale the time by setting t = −det(Dy⃗ g⃗)sgn(det(Dy⃗ g⃗))τ
in order to keep the same flow direction in (8) as in (7).

2.7. Desingularized vector field. By application of the Implicit Function The-
orem, we suppose that we can explicitly express from Eq. (3), say without loss
of generality, x1 as a function ϕ1 of the other variables. This implies that M0 is
locally the graph of a function ϕ1 : Rk → Rm over the base U = (χ⃗, y⃗) where
χ⃗ = (x2, x3, ..., xk). Thus, we can span the “normalized slow dynamics” on the
tangent bundle at the critical manifold M0 at the pseudo singular point. This leads
to the so-called desingularized vector field :

(9)
˙⃗χ = −det(Dy⃗ g⃗)f⃗ (χ⃗, y⃗, 0) ,

˙⃗y = (adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (χ⃗, y⃗, 0) .
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2.8. Pseudo singular points and folded singularities. As recalled by Guck-
enheimer and Haiduc [13, p. 91], pseudo-singular points have been introduced by
the late José Argémi [1] for low-dimensional singularly perturbed systems and are
defined as singular points of the “normalized slow dynamics” (8). Twenty-three
years later, Szmolyan and Wechselberger [21, p. 428] called such pseudo singular
points, folded singularities. In a recent publication entitled “A propos de canards”
Wechselberger [27, p. 3295] proposed to define such singularities for n-dimensional
singularly perturbed systems with k slow variables and m fast as the solutions of
the following system:

(10)

det(Dy⃗ g⃗) = 0,

(adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) = 0⃗,

g⃗ (x⃗, y⃗, 0) = 0⃗.

Thus, for dimensions higher than three, his concept encompasses that of Argémi.
Moreover, for k > 2), Wechselberger [27, p. 3296] proved that folded singularities
form a (k − 2)-dimensional manifold. Thus, for k = 2 the folded singularities are
nothing else than the pseudo singular points defined by Argémi [1]. Nevertheless,
for the degenerate case k = 1, folded singularities still form a zero-dimensional
manifold. So, we will see in the next Sec. 3 that the stability analysis of the pseudo
singular points will give rise to a condition for the existence of canard solutions in
the original system (1).

3. Three-dimensional singularly perturbed systems with two fast
variables

A three-dimensional singularly perturbed dynamical system (2) with k = 1 slow
variables and m = 2 fast may be written as:

ẋ1 = f1 (x1, y1, y2) ,(11a)

εẏ1 = g1 (x1, y1, y2) ,(11b)

εẏ2 = g2 (x1, y1, y2) ,(11c)

where x1 ∈ R, y⃗ = (y1, y2)
t ∈ R2, 0 < ε ≪ 1 and the functions fi and gi are

assumed to be C2 functions of (x1, y1, y2).

3.1. Critical Manifold. The critical manifold equation of system (11) is defined
by setting ε = 0 in Eqs. (11b & 11c). Thus, we obtain:

g1 (x1, y1, y2) = 0,(12a)

g2 (x1, y1, y2) = 0.(12b)

By application of the Implicit Function Theorem, we suppose that we can ex-
plicitly express from Eqs. (12a & 12b), say without loss of generality, x1 and y1 as
functions of the others variables:

y1 = ϕ1 (x1, y2) ,(13a)

x1 = ϕ2 (y1, y2) .(13b)
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3.2. Constrained system. The constrained system is obtained by equating to
zero the time derivative of g1,2 (x1, y1, y2):

dg1
dt

=
∂g1
∂x1

ẋ1 +
∂g1
∂y1

ẏ1 +
∂g1
∂y2

ẏ2 = 0,(14a)

dg2
dt

=
∂g2
∂x1

ẋ1 +
∂g2
∂y1

ẏ1 +
∂g2
∂y2

ẏ2 = 0.(14b)

Eqs. (14a & 14b) may be written as:

∂g1
∂y1

ẏ1 +
∂g1
∂y2

ẏ2 = − ∂g1
∂x1

ẋ1,(15a)

∂g2
∂y1

ẏ1 +
∂g2
∂y2

ẏ2 = − ∂g2
∂x1

ẋ1.(15b)

By solving the system of two equations (15a & 15b) with two unknowns (ẏ1, ẏ2)
we find:

ẏ1 = −

(
∂g1
∂x1

∂g2
∂y2

− ∂g1
∂y2

∂g2
∂x1

)
ẋ1

det
[
J(y1,y2)

] ,(16a)

ẏ2 = −

(
∂g1
∂y1

∂g2
∂x1

− ∂g1
∂x1

∂g2
∂y1

)
ẋ1

det
[
J(y1,y2)

] .(16b)

So, we have the following constrained system:

(17)

ẋ1 = f1 (x1, y1, y2) ,

ẏ1 = −

(
∂g1
∂x1

∂g2
∂y2

− ∂g1
∂y2

∂g2
∂x1

)
ẋ1

det
[
J(y1,y2)

] ,

ẏ2 = −

(
∂g1
∂y1

∂g2
∂x1

− ∂g1
∂x1

∂g2
∂y1

)
ẋ1

det
[
J(y1,y2)

] ,

0 = g1 (x1, y1, y2) ,

0 = g2 (x1, y1, y2) .

3.3. Normalized slow dynamics. By rescaling the time by setting t = −det
[
J(y1,y2)

]
τ

we obtain the “normalized slow dynamics”:

(18)

ẋ1 = −f1 (x1, y1, y2) det
[
J(y1,y2)

]
= F1 (x1, y1, y2) ,

ẏ1 = f1 (x1, y1, y2)

(
∂g1
∂x1

∂g2
∂y2

− ∂g1
∂y2

∂g2
∂x1

)
= G1 (x1, y1, y2) ,

ẏ2 = f1 (x1, y1, y2)

(
∂g1
∂y1

∂g2
∂x1

− ∂g1
∂x1

∂g2
∂y1

)
= G2 (x1, y1, y2) ,

0 = g1 (x1, y1, y2) ,

0 = g2 (x1, y1, y2) ,

where the overdot now denotes the time derivation with respect to τ .
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3.4. Desingularized system on the critical manifold. Since we have supposed
that y1 and y2 may be explicitly expressed as functions of the others variables (13a
& 13b), they can be used to project the normalized slow dynamics (18) on the
tangent bundle of the critical manifold. So, we have:

(19)

ẋ1 = −f1 (x1, y1, y2) det
[
J(y1,y2)

]
= F1 (x1, y2) ,

ẏ2 = f1 (x1, y1, y2)

(
∂g1
∂y1

∂g2
∂x1

− ∂g1
∂x1

∂g2
∂y1

)
= G2 (x1, y2) .

3.5. Pseudo singular points. Pseudo-singular points are defined as singular points
of the “normalized slow dynamics”, i.e. as the set of points for which we have:

det
[
J(y1,y2)

]
= 0,(20a) (

∂g1
∂x1

∂g2
∂y2

− ∂g1
∂y2

∂g2
∂x1

)
= 0,(20b) (

∂g1
∂y1

∂g2
∂x1

− ∂g1
∂x1

∂g2
∂y1

)
= 0,(20c)

g1 (x1, y1, y2) = 0,(20d)

g2 (x1, y1, y2) = 0.(20e)

Remark. We notice on the one hand that Eqs. (20b) & (20c) are linearly
dependent and on the other hand that contrary to previous works we do not use
the “desingularized vector field” (19) but the “normalized slow dynamics” (18).

The Jacobian matrix of system (18) reads:

(21) J(F1,G1,G2) =



∂F1

∂x1

∂F1

∂y1

∂F1

∂y2

∂G1

∂x1

∂G1

∂y1

∂G1

∂y2

∂G2

∂x1

∂G2

∂y1

∂G2

∂y2


.

3.6. Extension of Benôıt’s generic hypothesis. Without loss of generality,
it seems reasonable to extend Benôıt’s generic hypotheses introduced for three-
dimensional singularly perturbed systems with only one fast variable to the case
of two variables. So, first, we suppose that by a “standard translation” the pseudo
singular point can be shifted at the origin O(0, 0, 0) and that by a “standard ro-
tation” of y1-axis that the slow manifold is tangent to (x1, y1)-plane, so we have

g1 (0, 0, 0) = g2 (0, 0, 0) = 0,(22a)

∂g1
∂y1

∣∣∣∣
(0,0,0)

=
∂g2
∂y1

∣∣∣∣
(0,0,0)

= 0,(22b)

∂g1
∂y2

∣∣∣∣
(0,0,0)

=
∂g2
∂y2

∣∣∣∣
(0,0,0)

= 0.(22c)

Then, we make the following assumptions for the non-degeneracy of the pseudo
singular point :

(23) f1 (0, 0, 0) ̸= 0.
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Thus, we have the following Cayley-Hamilton eigenpolynomial associated with such
a Jacobian matrix (21) evaluated at the pseudo singular point, i.e. at the origin:

(24) λ3 − σ1λ
2 + σ2λ− σ3 = 0.

First, it can be proved that the sum of all first-order diagonal minors of J(F1,G1,G2),
i.e. σ1 = Tr(J(F1,G1,G2)) = 0 due to circular permutations of the partial deriva-
tives. Secondly, it can also be proved that σ3 = |J(F1,G1,G2)| = 0 vanishes at a
pseudo singular point provided that generic condition (22b) is satisfied. So, the
eigenpolynomial (24) is reduced to

(25) λ
(
λ2 + σ2

)
= 0

Let λi be the eigenvalues of the eigenpolynomial (25) and we denote by λ3 = 0 the
obvious root of this polynomial. We have:

(26) σ2 =
3∑

i=1

∣∣∣J ii
(F1,G1,G2)

∣∣∣ = λ1λ2.

where σ2 =
∑3

i=1

∣∣∣J ii
(F1,G1,G2)

∣∣∣ = q represents the sum of all second-order diagonal

minors of J(F1,G1,G2). Obviously, the pseudo singular point is of saddle-type if and
only if σ2 < 0. This leads to the the following condition:

(27) C1 : q < 0.

3.7. Canard existence in R1+2. In an article entitled “Systèmes lents-rapides
dans R3 et leurs canards”, Benôıt [3, p. 171] has stated in the framework of “non-
standard analysis” a theorem that can be written as follows:

Benôıt’s theorem [1983]. If the desingularized vector field (17) has a pseudo
singular point of saddle type, then system (11) exhibits a canard solution which
evolves from the attractive part of the slow manifold towards its repelling part. A
few years later, Szmolyan and Wechselberger [21] gave a “standard version” of
Benôıt’s theorem [3] (see Benôıt’s theorem above) for three-dimensional singularly
perturbed systems with k = 2 slow variables andm = 1 fast. While using “standard
analysis” and blow-up technique, Szmolyan and Wechselberger [21, p. 427] stated
in their Lemma 2.1, while using “a smooth change of coordinates” (see Ginoux et
al. [11, 12]), that the original system can be transformed into a “normal form” (28)
from which they deduced that the condition for the pseudo singular point to be of
saddle type is a < 0. Then, they proved the existence of canard solutions for the
original system according to their Theorem 4.1(a).

In our previous papers (see Ginoux et al. [11, 12]), we have established the
following Prop. 1 for three and four-dimensional singularly perturbed systems
with k = 1 fast variable and for four-dimensional singularly perturbed systems
with k = 2 fast variables. In this work we show that this proposition still holds
for three-dimensional singularly perturbed systems with k = 2 fast variables and
m = 1 slow variable.

Proposition 1. If the normalized slow dynamics (18) has a pseudo singular point
of saddle type, i.e. if the sum σ2 of all second-order diagonal minors of the Jacobian
matrix of the normalized slow dynamics (18) evaluated at the pseudo singular point
is negative, i.e. if σ2 < 0 then, system (11) exhibits a canard solution which evolves
from the attractive part of the slow manifold towards its repelling part.
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Proof. The method used by Benôıt [3], Szmolyan and Wechselberger [21] and Wech-
selberger [27] requires to implement a “desingularization procedure” which implies
to project the “normalized slow dynamics” (18) on the tangent bundle of the criti-
cal manifold and, to evaluate the Jacobian of the projection of this “desingularized
system” (19) at the pseudo singular points. As previously recalled, the method
presented in this paper does not use the “desingularized system” (18) but the “nor-
malized slow dynamics” (19). So, to prove the Prop. 1, we have just to show that
the determinant of the Jacobian of the “desingularized system” (18) is identical
to the sum σ2 of all second-order diagonal minors of the Jacobian matrix of the
“normalized slow dynamics” (19). According to Eq. (26):

σ2 =
3∑

i=1

∣∣∣J ii
(F1,G1,G2)

∣∣∣ = ∣∣∣J11
(F1,G1,G2)

∣∣∣+ ∣∣∣J22
(F1,G1,G2)

∣∣∣+ ∣∣∣J33
(F1,G1,G2)

∣∣∣ .
While using the generic hypotheses Eqs. (22), it is easy to prove that:∣∣∣J11

(F1,G1,G2)

∣∣∣ = ∣∣∣J33
(F1,G1,G2)

∣∣∣ = 0

The remaining determinant
∣∣∣J22

(F1,G1,G2)

∣∣∣ is exactly that of the “desingularized sys-

tem” (19). So, Prop. 1 can be also used to state the existence of canard solution
for such systems. �

4. Canards Existence in the Hindmarsh–Rose model

The Hindmarsh-Rose model [14] describes the basic properties of individual neu-
rons and appears as a reduction of the conductance based in the Hodgkin-Huxley
model for neural spiking, see for more details [15]. Thus, the three-dimensional
Hindmarsh-Rose polynomial ordinary differential system was originally written as:

(28)

dx

dt
= y − ax3 + bx2 − z + I,

dy

dt
= c− dx2 − y,

dz

dt
= r [s (x− α)− z] ,

where x is a transmembrane neuron potential, y and z are the characteristics of
ionic currents dynamic, I is ambient current. The other parameters (a, b, c, d,
I, s, α and r) reflect the physical features of the neurons and the dot indicates
derivative with respect to the time t. We notice that the parameter r << 1.
Existence of canard solutions in such system (28) has been originally suspected by
Shilnikov et al. [19, p. 2149] and highlighted by Shchepakina [20]. Thus, according
to the previous definitions, the Hindmarsh-Rose model may be written as a three-
dimensional singularly perturbed system with k = 1 slow variable and m = 2 fast
variables. By posing x → y2, y → y1, z → x1 and t′ → εt with ε = r, we obtain:

ẋ1 = f1 (x1, y1, y2) = s (y2 − α)− x1,(29a)

εẏ1 = g1 (x1, y1, y2) = c− dy22 − y1,(29b)

εẏ2 = g2 (x1, y1, y2) = y1 − ay32 + by22 − x1 + I,(29c)
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where x1 ∈ R, y⃗ = (y1, y2)
t ∈ R2, 0 < ε ≪ 1 and the functions fi and gi are

assumed to be C2 functions of (x1, y1, y2) and the dot now indicates derivative
with respect to the time t′.

4.1. Critical Manifold. The critical manifold equation of system (29) is defined
by setting ε = 0 in Eqs. (29b & 29c). Thus, we have:

g1 (x1, y1, y2) = c− dy22 − y1 = 0,(30a)

g2 (x1, y1, y2) = y1 − ay32 + by22 − x1 + I = 0.(30b)

This leads to the following critical manifold equation:

(31) y1 = ϕ (y2) = c+ I − ay32 + (b− d) y22 .

4.2. Constrained system. According to Eqs. (17), we have the following con-
strained system:

(32)

ẋ1 = f1 (x1, y1, y2) = s (y2 − α)− x1,

ẏ1 = −−2dy2f1 (x1, y1, y2)

3ay22 − 2 (b− d) y2
,

ẏ2 = − f1 (x1, y1, y2)

3ay22 − 2 (b− d) y2
,

0 = c− dy22 − y1,

0 = y1 − ay32 + by22 − x1 + I.

4.3. Normalized slow dynamics. By rescaling the time by setting t′ = −(3ay22
−2 (b− d) y2)τ we obtain the “normalized slow dynamics”:

(33)

ẋ1 = −
[
3ay22 − 2 (b− d) y2

]
[s (y2 − α)− x1] = F1 (x1, y1, y2) ,

ẏ1 = −2dy2 [s (y2 − α)− x1] = G1 (x1, y1, y2) ,

ẏ2 = [s (y2 − α)− x1] = G2 (x1, y1, y2) ,

0 = c− dy22 − y1,

0 = y1 − ay32 + by22 − x1 + I.

4.4. Desingularized system on the critical manifold. The projection of the
normalized slow dynamics (32) on the tangent bundle of the critical manifold reads:

(34)
ẋ1 = −

[
3ay22 − 2 (b− d) y2

]
[s (y2 − α)− x1] = F1 (x1, y2) ,

ẏ2 = [s (y2 − α)− x1] = G2 (x1, y2) .

4.5. Pseudo singular points. According to Eqs. (20) the pseudo-singular points
of system (29) are:

(x̃1, ỹ1, ỹ2) = (c+ I, c, 0) ,(35a)

(x̃1, ỹ1, ỹ2) =

(
ỹ1 − aỹ32 + bỹ22 + I, c− dỹ22 ,

2

3a
(b− d)

)
.(35b)
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4.6. Canard existence. The Jacobian matrix of system (33) evaluated at the
pseudo singular points (35a) reads:

(36) J(F1,G1,G2) =


0 0 −2 (b− d) (c+ I + sα)

0 0 2d (c+ I + sα)

−1 0 s

 .

According to Eqs. (26) we find that:

p = σ1 = Tr [J ] = s,

q = σ2 = −2 (b− d) (c+ I + sα) .

Thus, according to Prop. 1, the pseudo singular point is of saddle-type if:

(37) −2 (b− d) (c+ I + sα) < 0.

In her work Shchepakina [20] used the following parameter set: a = 1, b = 3,
c = 1, d = 0.275255, I = 2.7 and α = −1.2. She found a canard without head (see
Fig. 1) for the “duck parameter” value s = 3.0810445478558141214. According to
Eq. (37) and with such a parameter set, i.e. b − d > 0, the pseudo singular point
is of saddle-type if and only if:

s <
c+ I

α
.

With c = 1, I = 2.7 and α = −1.2, we find that: s < 3.0833. Thus, Shchepakina
highlighted a canard without head in the Hindmarsh-Rose model (see Fig. 1) for
the “duck parameter” value s = 3.0810445478558141214 < 3.0833.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

3

4

5

6

7

Figure 1. Canard solution of the Hindmarsh-Rose (28) model in
the (x, z) plane phase with the following parameter set: a = 1,
b = 3, c = 1, d = 0.275255, I = 2.7, α = −1.2 and for the “duck
parameter” value s = 3.0810445478558141214.
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In the inset of Fig. 1, the zoom in highlights a large distance between the canard
solution and that of the critical manifold (31). This is due to the fact that this
latter corresponds to zero-order approximation in ε of the slow invariant manifold.
Nevertheless, while using the so-called Flow Curvature Method Ginoux and Rossetto
[9] have already provided a second-order approximation in ε of the slow invariant
manifold of the Hindmarsh-Rose model (28). The result is presented in Fig. 2.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

3

4

5

6

7

Z

Figure 2. Canard solution of the Hindmarsh-Rose (28) model
in the (x, z) plane phase, its critical manifold (in green) and the
second-order approximation in ε of the slow invariant manifold
(in blue) with the following parameter set: a = 1, b = 3, c = 1,
d = 0.275255, I = 2.7, α = −1.2 and for the “duck parameter”
value s = 3.0810445478558141214.

Remark. We notice on the one hand that the Flow Curvature Method provides
a better of the approximation of the slow invariant manifold of such system and,
on the other hand, that it could also be used to highlight the bifurcation leading to
a canard solution as emphasized by Ginoux and Llibre [10] in the case of the Van
der Pol model.

The Jacobian matrix of system (33) evaluated at the pseudo singular points (35b)
reads:

(38) J(F1,G1,G2) =


0 0 −2 (b− d) [s (ỹ2 − α)− x̃1]

−2dỹ2 0 2d [s (α− 2ỹ2) + x̃1]

−1 0 s

 .

According to Eqs. (26) we find that:

p = σ1 = Tr [J ] = s,

q = σ2 = −2 (b− d) [s (ỹ2 − α)− x̃1] .
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Thus, according to Prop. 1, the pseudo singular point is of saddle-type if and only
if:

(39) −2 (b− d) [s (z̃ − α)− x̃] < 0.

In her work Shchepakina [20] used the following parameter set: a = 1, b = 3,
c = 1, d = 0.275255, I = 2.7 and α = −1.2. According to Eq. (39) and with such
a parameter set, i.e. b − d > 0, the pseudo singular point is of saddle-type if and
only if:

s <
4 (b− d)

3
+ 27a2 (c+ I)

9a [2 (b− d)− 3aα]

With c = 1, I = 2.7 and α = −1.2, we find that: s < 2.2200954. Thus, we have
highlighted a canard with head in the Hindmarsh-Rose model (see Fig. 3) for the
“duck parameter” value s = 2.220095 < 2.2200954. For this parameters set the
second-order approximation in ε of the slow invariant manifold of the Hindmarsh-
Rose model (28) can be provided while using the Flow Curvature Method introduced
by Ginoux and Rossetto [9]. The result is presented in Fig. 3.
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Figure 3. Canard solution of the Hindmarsh-Rose (28) model
in the (x, z) plane phase, its critical manifold (in green) and the
second-order approximation in ε of the slow invariant manifold
(in blue) with the following parameter set: a = 1, b = 3, c = 1,
d = 0.275255, I = 2.7, α = −1.2 and for the “duck parameter”
value s = 2.220095.
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5. Discussion

In a previous paper entitled: “Canards Existence in Memristor’s Circuits” (see
Ginoux & Llibre [11]) we have proposed a new method for proving the existence
of “canard solutions” for three and four-dimensional singularly perturbed systems
with only one fast variable which is based on the stability of folded singularities
of the normalized slow dynamics deduced from a well-known property of linear
algebra. Thus, we proved that this unique condition is completely identical to
that provided by Benôıt [3], Szmolyan and Wechselberger [21] and Wechselberger
[27]. In a second paper entitled: “Canards Existence in FitzHugh-Nagumo and
Hodgkin-Huxley Neuronal Models” (see Ginoux & Llibre [12]) we extended this
method to the case of four-dimensional singularly perturbed systems with k = 2
slow and m = 2 fast variables. In this work we have extended this new method to
the case of three-dimensional singularly perturbed systems with one slow and two
fast variables and we have stated that the condition for the existence of “canard
solutions” in such systems is exactly identical to those proposed in our previous
paper. This result confirms the genericity of the condition (σ2 < 0) that we have
highlighted and provides a simple and efficient tool for testing the occurrence of
“canard solutions” in any three or four-dimensional singularly perturbed systems
with one or two fast variables. Applications of this method to the famous coupled
Hindmarsh-Rose model has enabled to confirm the existence of “canard solutions”
in such systems as already stated by Shchepakina [20]. However, in this paper, only
the case of pseudo singular points or folded singularities of saddle-type has been
analyzed. Of course, the case of of pseudo singular points or folded singularities of
node-type and focus-type could be also studied with the same method.
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[27] M. Wechselberger, À propos de canards, Trans. Amer. Math. Soc., 364 (2012) 3289–3309.

1 Laboratoire LSIS, CNRS, UMR 7296, Université de Toulon, BP 20132, F-83957 La
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