Canards existence in the Hindmarsh—Rose model

Jean-Marc Ginoux, Jaume Llibre, and Kiyoyuki Tchizawa

Laboratoire LSIS, CNRS, UMR 7296, Université de Toulon, BP 20132, F-83957 La Garde cedex, France

ginoux@univ-tln.fr

Departament de Matematiques
Edifici C, Facultat de Ciéncies Universitat Autdonoma de Barcelona 08193 Bellaterra (Barcelona), Spain
jllibre@mat.uab.cat

Institute of Administration Engineering, Ltd., Tokyo, 101-0021, Japan
tchizawakiyoyuki@aim.com

1 Introduction

The concept of “canard solutions” for three-dimensional singularly perturbed systems
with two slow variables and one fast has been introduced in the beginning of the eighties
by Benoit and Lobry [2], Benoit [3]. Their existence has been proved by Benoit [3, p.
170] in the framework of “Non-Standard Analysis” according to a theorem which states
that canard solutions exist in such systems provided that the pseudo singular point of
the slow dynamics, i.e., of the reduced vector field is of saddle type. Nearly twenty
years later, Szmolyan and Wechselberger [12] provided a “standard version” of Benoit’s
theorem [3]. Recently, Wechselberger [15] generalized this theorem for n-dimensional
singularly perturbed systems with k slow variables and m fast (where n = k 4+ m). The
method they used require to implement a “desingularization procedure” which can be
summarized as follows: first, they compute the normal form of such singularly perturbed
systems which is expressed according to some coefficients (a and b for dimension three
and @, b and ¢ for dimension four) depending on the functions defining the original vector
field and their partial derivatives with respect to the variables. Secondly, they project
the “desingularized vector field” (originally called “normalized slow dynamics” by Eric
Benoit [3, p. 166]) of such a normal form on the tangent bundle of the critical manifold.
Finally, they evaluate the Jacobian of the projection of this “desingularized vector field”
at the folded singularity (originally called pseudo singular points by José Argémi [1, p.
336]). This lead Szmolyan and Wechselberger [12, p. 427] and Wechselberger [15, p.
3298] to a “classification of folded singularities (pseudo singular points)”. Thus, they
showed that for three-dimensional (resp. four-dimensional) singularly perturbed systems
such folded singularity is of saddle type if the following condition is satisfied: a < 0 (resp.
a<0).

In a first paper entitled: “Canards Existence in Memristor’s Circuits” (see Ginoux
& Llibre [4]) we presented a method enabling to state a unique “generic” condition for
the existence of “canard solutions” for three and four-dimensional singularly perturbed
systems with only one fast variable which is based on the stability of folded singularities
of the normalized slow dynamics deduced from a well-known property of linear algebra.
We proved that this unique condition is completely identical to that provided by Benoit
[3], Szmolyan and Wechselberger [12] and Wechselberger [15].

In a second paper entitled: “Canards Existence in FitzHugh-Nagumo and Hodgkin-
Huxley Neuronal Models” (see Ginoux & Llibre [5]) we extended this method to the
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case of four-dimensional singularly perturbed systems with k£ = 2 slow and m = 2 fast
variables. Then, we stated that the provided condition for the existence of canards is
“generic” since it is exactly the same for singularly perturbed systems of dimension three
and four with one or two fast variables. The method we used led us to the following
proposition: If the normalized slow dynamics has a pseudo singular point of saddle type,
i.e. if the sum oo of all second-order diagonal minors of the Jacobian matriz of the
normalized slow dynamics evaluated at the pseudo singular point is negative, i.e. if
o9 < 0 then, the three-dimensional (resp. four-dimensional) singularly perturbed system
exhibits a canard solution which evolves from the attractive part of the slow manifold
towards its repelling part. Then, we proved on one hand for three-dimensional singularly
perturbed systems with only one fast variable that the condition for which the pseudo
singular point is of saddle type, i.e. o9 < 0 is identical to that proposed by Benoit [3, p.
171] in his theorem, i.e. D < 0 and also to that provided by Szmolyan and Wechselberger
[12], i.e. a < 0. On the other hand, we proved for four-dimensional singularly perturbed
systems with one or two fast variables that the condition for which the folded singularity
(resp. the pseudo singular point) is of saddle type, i.e. o3 < 0 is identical to that
proposed by Wechselberger [15, p. 3298] in his theorem, i.e. a < 0.

Notice that there is no proof of the approximation. It is not established that the
time—scaled reduced system holds on the approximation for the original system in the
case of k slow variables (k > 3), m fast variables (m > 2). It was proved in the case
k =2 and m = 1 by Benoit; constructing a local model and obtaining its solution, and
in the case k = 2 and m = 2 was also proved extensively by Tchizawa [13, 14]). For the
case k = 1 and m = 2 (Hindmarsch-Rose model), we shall construct a local model again
and we shall obtain their solutions, providing a constructive proof for the approximation.
Being the pseudo—singular point a saddle, or a node it does not ensure the existence of
canards, because it may not satisfy the approximation.

The aim of this work is to extend this method to the case of three-dimensional
singularly perturbed systems with one slow and two fast variables and to show that the
provided condition for the existence of canards, i.e. o9 < 0 still holds and is consequently
“generic”.

The Hindmarsh-Rose model [8] describes the basic properties of individual neurons
and appears as a reduction of the conductance based in the Hodgkin-Huxley model for
neural spiking, see for more details [9]. Thus, the three-dimensional Hindmarsh-Rose
polynomial ordinary differential system was originally written as:

d
d—f:y—ax3+bx2—z+1,
d

W Y sy,
d
Z —rls@—a) -4,

where z is a transmembrane neuron potential, y and z are the characteristics of ionic
currents dynamic, I is ambient current. The other parameters (a, b, ¢, d, I, s, « and )
reflect the physical features of the neurons and the dot indicates derivative with respect
to the time t. We notice that the parameter » << 1. Existence of canard solutions in such
system (1) has been originally suspected by Shilnikov et al. [10, p. 2149] and highlighted
by Shchepakina [11]. Thus, according to the previous definitions, the Hindmarsh-Rose
model may be written as a three-dimensional singularly perturbed system with k = 1
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FIGURE 1. Canard solution of the Hindmarsh-Rose (1) model in the (z, 2)
plane phase with the following parameter set: a = 1, b = 3, ¢ = 1,
d = 0.275255, I = 2.7, a = —1.2 and for the “duck parameter” value
s = 3.0810445478558141214.

slow variable and m = 2 fast variables. By posing  — y2, y — y1, 2 — x1 and ¢’ — &t
with € = r, we obtain:

o1 = f1(z1,y1,92) = 5 (Y2 — ) — 21,
(2) etn = g1 (21, Y1, y2) = ¢ — dy3 — v,
g2 = g2 (T1,y1,y2) = Y1 — ays + by3 — a1 + 1,

where 21 € R, 7 = (y1,2)! € R?, 0 < ¢ < 1 and the functions f; and g; are assumed to
be C? functions of (z1,y1,y2) and the dot now indicates derivative with respect to the
time ¢’

We have proved the existence of different kind of canard solutions for system (2) see
Figures 1, 2 and 3.

In fact in the work Shchepakina [11] already was found the canard of Figure 1. We
proved the existence of this canard showing the existence of a pseudo singular point
of saddle-type when the parameters satisfy s < (¢ + I)/a. With ¢ = 1, [ = 2.7 and
a = —1.2, we find that: s < 3.0833. Thus, Shchepakina highlighted a canard without
head in the Hindmarsh-Rose model (see Fig. 1) for the “duck parameter” value s =
3.0810445478558141214 < 3.0833.

In the inset of Fig. 1, the zoom in highlights a large distance between the canard solu-
tion and that of the critical manifold. This is due to the fact that this latter corresponds
to zero-order approximation in € of the slow invariant manifold. Nevertheless, while us-
ing the so-called Flow Curvature Method Ginoux and Rossetto [7] have already provided
a second-order approximation in € of the slow invariant manifold of the Hindmarsh-Rose
model (1). The result is presented in Fig. 2.
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FIGURE 2. Canard solution of the Hindmarsh-Rose (1) model in the (z, 2)
plane phase, its critical manifold (in green) and the second-order approx-
imation in € of the slow invariant manifold (in blue) with the following
parameter set: a =1, b=3, c=1,d =0.275255, I = 2.7, « = —1.2 and
for the “duck parameter” value s = 3.0810445478558141214.
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FIGURE 3. Canard solution of the Hindmarsh-Rose (1) model in the (z, 2)
plane phase, its critical manifold (in green) and the second-order approx-
imation in € of the slow invariant manifold (in blue) with the following
parameter set: a =1, b=3, c=1,d =0.275255, I = 2.7, « = —1.2 and
for the “duck parameter” value s = 2.220095.



With ¢ =1, I = 2.7 and o = —1.2, we find that: s < 2.2200954. Thus, we have
highlighted a canard with head in the Hindmarsh-Rose model (see Fig. 3) for the “duck
parameter” value s = 2.220095 < 2.2200954. For this parameters set the second-order
approximation in ¢ of the slow invariant manifold of the Hindmarsh-Rose model (1) can
be provided while using the Flow Curvature Method introduced by Ginoux and Rossetto
[7]. The result is presented in Fig. 3.

All the details of the existence of these three different canards in the Hindmarsh-Rose
model [8] can be found in [6].
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