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CENTERS AND ISOCHRONOUS CENTERS

FOR GENERALIZED QUINTIC SYSTEMS

JAUME GINÉ1, JAUME LLIBRE2 AND CLAUDIA VALLS3

Abstract. In this paper we classify the centers and the isochronous centers
of certain polynomial differential systems in R2 of degree d ≥ 5 odd that in

complex notation can be written as

ż = (λ+ i)z + (zz̄)
d−5
2 (Az5 +Bz4z̄ + Cz3z̄2 +Dz2z̄3 + Ezz̄4 + F z̄5),

where λ ∈ R and A,B,C,D,E, F ∈ C. Note that if d = 5 we obtain the

full class of polynomial differential systems of the form a linear system with
homogeneous polynomial nonlinearities of degree 5. Our study uses algorithms
of computational algebra based on the Groebner basis theory and modular
arithmetics for simplifying the computations.

1. Introduction and statement of the main results

The center-focus problem is one of the main problems in the qualitative theory
of real planar polynomial systems. For nondegenerate singular points this problem
is equivalent to have an analytic first integral in a neighborhood of the singular
point, see [26, 27] and [3, 14, 15].

We recall that a singular point is a center if it has a neighborhood such that
all the orbits, with the exception of the singular point, in this neighborhood are
periodic, and that a singular point is a focus if it has neighborhood such that all
the orbits, with the exception of the singular point, spiral either in forward or in
backward time to the singular point.

In this paper we study the center-focus problem for a class of polynomial systems
which generalizes the class of polynomial systems with homogeneous nonlinearities
of degree 5. The characterization of the centers of the polynomial differential sys-
tems begun with the quadratic ones and the class of cubic polynomial systems with
only homogeneous nonlinearities, see [2, 25, 32, 34]. See [30, 31] for an update
on these cases. Actually we are very far from obtaining a complete classification
of the centers for the class of all polynomial systems of degree 3. However some
subclasses of cubic systems with centers are know, see for instance [35, 36] and
references therein. The centers of polynomial systems of the form a linear center
with homogeneous polynomial nonlinearities of degree k > 3 are not classified, but
there are partial results for k = 4, 5, 6, 7 see [4, 5, 13, 18, 19, 20, 21, 22, 23, 24].
However the huge amount of computations which usually are necessary becomes
the center problem in general computationally intractable, see [17] and references
therein.
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2 J. GINÉ, J. LLIBRE AND C. VALLS

In this paper we consider the real polynomial differential systems in the plane
that has a singular point at the origin with eigenvalues λ±i and that can be written
in complex notation as

(1) ż = (λ+ i)z + (zz̄)
d−5
2 (Az5 +Bz4z̄ + Cz3z̄2 +Dz2z̄3 + Ezz̄4 + F z̄5),

where z = x + iy, d ≥ 5 is an arbitrary odd integer, λ ∈ R and A,B,C,D,E, F ∈
C. For some particular systems first we want to determine the conditions that
ensure that the origin is a center. Of course, these systems for d = 5 coincide
with the class of polynomial differential systems of the form a linear system with
homogeneous polynomial nonlinearities of degree 5. So the class of polynomial
differential systems (1) of odd degree d ≥ 5 generalizes the linear systems with
homogeneous polynomial nonlinearities of degree 5. We remark that there are
very few results about the centers for classes of polynomial differential systems of
arbitrary degree. The resolution of this problem implies the effective computation
of the Poincaré-Liapunov constants. Indeed, setting

A = a1 + ia2, B = a3 + ia4, C = a5 + ia6,

D = a7 + ia8, E = a9 + ia10, F = a11 + ia12,

and writing (1) in polar coordinates, i.e., doing the change of variables r2 = zz̄ and
θ = arctan(Im z/Re z), system (1) becomes

(2) ṙ = λr + F (θ) rd, θ̇ = 1 +G(θ) rd−1,

where F (θ) and G(θ) are the homogeneous trigonometric polynomials

F (θ) = a5 + (a3 + a7) cos(2θ) + (a8 − a4) sin(2θ) + (a1 + a9) cos(4θ)

+(a10 − a2) sin(4θ) + a11 cos(6θ) + a12 sin(6θ),

G(θ) = a6 + (a4 + a8) cos(2θ) + (a3 − a7) sin(2θ) + (a10 + a2) cos(4θ)

+(a1 − a9) sin(4θ) + a12 cos(6θ)− a11 sin(6θ).

In order to determine the necessary conditions to have a center we work with the
Poincaré series

H(r, θ) =
∞∑

n=2

Hn(θ)r
n,

where H2(θ) = 1/2 and Hn(θ) are homogeneous trigonometric polynomials respect
to θ of degree n. Imposing that this power series is a formal first integral of system
(2) we obtain

Ḣ(r, θ) =
∞∑
k=2

V2kr
2k = 0.

where V2k are the Poincaré-Lyapunov constants that depend on the parameters of
system (1). Indeed, it is easy to see from the recursive equations that generate the
V2k, that these V2k are polynomials in the parameters of system (1) see [16]. As sys-
tem (1) is polynomial, due to the Hilbert Basis theorem, the ideal J =< V2, V4, ... >
generated by the Poincaré-Liapunov constants is finitely generated, i.e. there exist
W1,W2, ...,Wk in J such that J =< W1,W2, ...,Wk >. Such a set of generators
is called a basis of J and is a finite set of necessary conditions to have a center
for system (1). The set of coefficients for which all the Poincaré-Liapunov con-
stants V2k vanish is called the center variety of the family of polynomial differential
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systems and also it is an algebraic set. The determination of the first Poincaré-
Liapunov constants has been made using Mathematica and it took several hours of
computation.

In practice we determine a number of Poincaré-Liapunov constants assuming
that inside these number there is the set of generators of all Poincaré-Liapunov
constants. From this set the much harder problem is to decompose this algebraic
set into its irreducible components. For simple cases this can be done by hand,
see [4, 5, 18]. However for more difficult systems the use of a computer algebra
system is essential. The computational tool which we use is the routine minAssGTZ
[10] of the computer algebra system Singular [12] which is based on the Gianni-
Trager-Zacharias algorithm [11]. Since computations are too laborious they cannot
be completed in the field of rational numbers. Therefore we choose the approach
based on making use of modular computations [29]. We have chosen the prime
p = 32003. To perform the rational reconstruction we used the Mathematica
code presented in [29]. We follow the algorithm described in [29]. The last step
of this algorithm has not been verified because computations cannot be overcome.
This step ensures that all the points of the center variety have been found. That
is, we know that all the encountered points belong to the decomposition of the
center variety but we do not know whether the given decomposition is complete.
We remark that, nevertheless, it is practically sure that the given list is complete,
see also [29]. Therefore in the following we provide necessary conditions for having
a center (a complete list of them with very high probability), and later on we shall
prove that they sufficient. We remark that since the computations were performed
using modular arithmetics we cannot guarantee that we obtain all the centers, but
the probability that this not be the case is very small.

From system (2) we can obtain the associated equation

(3)
dr

dθ
=

λr + F (θ) rd

1 +G(θ) rd−1
,

It is clear that equation (3) is well defined in a sufficient small neighborhood of the

origin. Hence if system (2) has a center at the origin, then equation (3) when θ̇ > 0
also has a center at the origin. The transformation (r, θ) → (ρ, θ) introduced by
Cherkas [8] defined by

(4) ρ =
rd−1

1 +G(θ)rd−1
, whose inverse is r =

ρ1/(d−1)

(1− ρG(θ))1/(d−1)
,

is a diffeomorphism from the region θ̇ > 0 into its image. If we transform equation
(3) using the transformation (4), we obtain the following Abel equation

(5)

dρ

dθ
= (d− 1)G(θ)[λG(θ)− F (θ)]ρ3

+[(d− 1)(F (θ)− 2λG(θ))−G ′(θ)]ρ2 + (d− 1)λρ

= A(θ)ρ3 +B(θ)ρ2 + Cρ.

The solution ρ(θ, ρ0) of (5) satisfying that ρ(0, ρ0) = ρ0 can be expanded in a
convergent series of ρ0 ≥ 0 sufficiently small of the form

(6) ρ(θ, ρ0) = ρ1(θ)ρ0 + ρ2(θ)ρ
2
0 + ρ3(θ)ρ

3
0 + · · ·
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with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, ρ̃0] → R be the Poincaré
return map defined by P (ρ̃0) = ρ(2π, ρ̃0) for a convenient ρ̃0. System (1) has a
center at the origin if and only if ρk(2π) = 0 for every k ≥ 2. If we assume that
ρ2(2π) = · · · = ρm−1(2π) = 0 we say that vm = ρm(2π) is the m-th Poincaré-
Liapunov-Abel constant of system (1). Of course the set of coefficients for which all
the Poincaré-Liapunov-Abel constants vm vanish is the same that the set for which
all the Poincaré-Liapunov constants V2k vanish. This set, as we mentioned, is the
center variety of system (1).

Once we have determined the center variety of system (1) we also can to deter-
mine which of these centers are isochronous. A center of system (1) is isochronous
if the period of all periodic orbits in a neighborhood of the origin is constant. In
fact the isochronous centers of the linear centers perturbed by fifth degree polyno-
mials are known, see [28]. The contribution of this work is the classification of the
isochronous centers for the generalized families studied.

From the second equation of (2) we have

(7) T =

∫ 2π

0

dθ

θ̇
=

∫ 2π

0

1

1 +G(θ)r(θ)d−1
dθ.

Using the change (4) the previous integral becomes

T =

∫ 2π

0

(1−G(θ)ρ(θ))dθ = 2π −
∫ 2π

0

G(θ)ρ(θ)dθ,

where ρ(θ) =
∑

j≥1 ρj(θ)ρ
j
0 is the solution given in (6). System (1) has an isochronous

center at the origin if it is a center and satisfies∫ 2π

0

G(θ)ρ(θ)dθ =
∑
j≥1

(∫ 2π

0

G(θ)ρj(θ)dθ

)
ρj0 = 0.

That is T =

∫ 2π

0

dθ/θ̇ = 2π −
∑
j≥1

Tjρ
j
0 = 2π, where

Tj =

∫ 2π

0

G(θ)ρj(θ)dθ,

are called the period Abel constants.

The next result proved in [33] gives the relationship between the existence of a
transversal commuting and the existence of an isochronous center.

Theorem 1. Let (S) and (ST ) be transversal plane differential systems of class
C2. Assume that the local flows defined by the solutions of (S) and (ST ) commute
(in the sense of the Lie bracket). Then any center of (S) is isochronous.

We note that the space of systems (1) with a center at the origin is invariant
with respect to the action group C∗ of change of variables z → ξz:

(8)
A → ξ(d−7)/2ξ̄(d−5)/2ξ5A, B → ξ(d−7)/2ξ̄(d−5)/2ξ4ξ̄B.
C → ξ(d−7)/2ξ̄(d−5)/2ξ3ξ̄2C, D → ξ(d−7)/2ξ̄(d−5)/2ξ2ξ̄3D.
E → ξ(d−7)/2ξ̄(d−5)/2ξξ̄4E, F → ξ(d−7)/2ξ̄(d−5)/2ξ̄5F.

The next result will be used to check when system (1) is reversible with respect
to a straight line through the origin. Indeed system (1) is invariant with respect
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to a straight line through the origin if it is invariant under the change of variables
w = eiγz, τ = −t for some real γ. The next result proved in [9].

Lemma 2. System (1) is reversible if and only if

A = −Āe−4iγ , B = −B̄e−2iγ , C = −C̄,
D = −D̄e2iγ , E = −Ēe4iγ , F = −F̄ e6iγ ,

for some γ ∈ R. Furthermore, in this situation the origin of system (1) has a center
at the origin.

The main results of this paper are Theorem 3 where we classify the centers of
the polynomial differential systems (1) for two particular subclasses, namely

(c.1) A = Im(C) = 0, (c.2) E = Im(C) = 0,

determining the conditions on the parameters λ,A,B,C,D,E and F in order that
the origin of the polynomial differential system (1) of degree d ≥ 5 odd be a center,
and Theorem 4 where we classify the isochronous centers for such families.

Theorem 3. For d ≥ 5 odd the following statement hold.

(a) System (1) satisfying conditions (c.1) has a center at the origin if one of
the following conditions hold:
(a.1) λ = C = E = 2B + D̄ = 0,
(a.2) λ = C = F = 3B + D̄ = 0,
(a.3) λ = C = E = F = (d− 3)B + (d+ 1)D̄ = 0,
(a.4) λ = C = Im(BD) = Re(DEF̄ ) = Re(B̄EF̄ ) = Re(D2Ē) = Re(BD̄E) =

Re(B2E) = Im(DĒ2F ) = Im(DE2F̄ ) = Im(D3F̄ ) = Im(D2B̄F̄ ) =
Im(B̄2DF̄ ) = Im(B3F ) = Re(E3F̄ 2) = 0.

(b) System (1) satisfying conditions (c.2) has a center at the origin if one of
the following conditions hold:
(b.1) λ = C = F = B + 3D̄ = 0 for d = 5,
(b.2) λ = A = C = F = (d− 3)B + (d+ 1)D̄ = 0,
(b.3) λ = A = C = D + 2B̄ = 0,
(b.4) λ = B = C = 0 and conditions (16) (see below) for d = 5,
(b.5) λ = C = Im(BD) = Re(DĀF̄ ) = Re(B̄ĀF̄ ) = Re(D2A) = Re(BAE) =

Re(B2Ā) = Im(DA2F ) = Im(DĀ2F̄ ) = Im(D3F̄ ) = Im(D2B̄F̄ ) =
Im(B̄2DF̄ ) = Im(B3F ) = Re(Ā3F̄ 2) = 0.

The proof of statements (a) and (b) of Theorem 3 are given in sections 2 and 3,
respectively.

Theorem 4. For d ≥ 5 odd the following statement hold.

(a) System (1) satisfying conditions (c.1) has an isochronous center at the ori-
gin if one of the following conditions hold:
(a.1) λ = C = E = F = (d− 3)B + (d+ 1)D̄ = 0,
(a.2) λ = C = E = F = D − B̄ = 0,
(a.3) λ = C = D = E = 0, F = −B̄2/B with B ̸= 0 and d = 7,
(a.4) λ = C = D = E = 0, B = −F , Im(F ) = 0 and d = 7,
(a.5) λ = C = D = E = 0, B = e±iπ/3, Im(F ) = 0 and d = 7.

(b) System (1) satisfying conditions (c.2) has a center at the origin if one of
the following conditions hold:
(b.1) λ = C = A = F = (d− 3)B + (d+ 1)D̄ = 0,
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(b.2) λ = C = A = F = D − B̄ = 0,
(b.3) λ = C = D = A = 0, F = −B̄2/B with B ̸= 0 and d = 7,
(b.4) λ = C = D = A = 0, B = −F , Im(F ) = 0 and d = 7,
(b.5) λ = C = D = A = 0, B = e±iπ/3, Im(F ) = 0 and d = 7,
(b.6) λ = C = F = Im(D2A) = 3D + B̄ = 0 and d = 5,
(b.7) λ = C = B = D = F = 0 and d = 5.

The proof of statements (a) and (b) of Theorem 4 are given in sections 4 and 5,
respectively.

2. Proof of Theorem 3 (a)

Proof of statement (a.1). The conditions (a.1) written in real parameters are λ =
a5 = a9 = a10 = 2a4 − a8 = 2a3 + a7 = 0. In this case system (1) takes the form

(9) ż = iz + (zz̄)(d−5)/2(Bz4z̄ − 2B̄z2z̄3 + F z̄5).

Now we rescale system (9) by (zz̄)(d−5)/2 = |z|d−5 and system (9) becomes

(10) ż = iz|z|5−d +Bz4z̄ − 2B̄z2z̄3 + F z̄5 = i
∂H

∂z̄
,

where for d ≥ 5 odd with d ̸= 7 we have

H =
2

7− d
|z|7−d − i

2
Bz4z̄2 +

i

2
B̄z2z̄4 − i

6
F z̄6 +

i

6
F̄ z6,

and for d = 7 we have

H = log |z|2 − i

2
Bz4z̄2 +

i

2
B̄z2z̄4 − i

6
F z̄6 +

i

6
F̄ z6.

Note that the first integrals exp(H) for d = 7, and H for d ≥ 5 odd with d ̸= 7,
are real functions well defined at the origin. Therefore in this case the origin is a
Hamiltonian center. �

Proof of statement (a.2). The conditions (a.2) expressed in real parameters are λ =
a5 = a11 = a12 = 3a4−a8 = 3a3+a7 = 0. System (1) can be written into the form

ż = iz + (zz̄)(d−5)/2(Bz4z̄ − 3B̄z2z̄3 + Ezz̄4)

= iz + (zz̄)(d−3)/2(Bz3 − 3B̄z2 + Ez̄3).
(11)

If we rescale system (11) by |z|d−3 we get

ż = iz|z|3−d +Bz3 − 3B̄z2 + Ez̄3 = i
∂H

∂z̄
,

where for d = 5

H = log |z|2 − i(Bz3z̄ − B̄zz̄3)− i

4
(Ez̄4 − Ēz4),

and for d ≥ 7 odd we have

H =
2

5− d
|z|5−d − i(Bz3z̄ − B̄zz̄3)− i

4
(Ez̄4 − Ēz4).

Note that the first integrals exp(H) for d = 5 and H for d ≥ 7 odd are real
functions well defined at the origin. Therefore the origin is a center. �
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Proof of statement (a.3). The conditions (a.3) written in real parameters are λ =
a5 = (d − 3)a4 − (d + 1)a8 = (d − 3)a3 + (d + 1)a7 = a9 = a10 = a11 = a12 = 0.
Since in conditions (c.1) we have A = 0 and in conditions (c.2) we have E = 0, it
follows that case (a.3) is a subcase of (b.5). �
Proof of statement (a.4). The conditions of this case expressed in the real param-
eters are

p1 = a5 = 0,
p2 = a4a7 + a3a8 = 0,
p3 = a7a9a11 − a8a10a11 + a8a9a12 + a7a10a12 = 0,
p4 = a3a9a11 + a4a10a11 − a4a9a12 + a3a10a12 = 0,
p5 = a27a9 − a28a9 + 2a7a8a10 = 0,
p6 = a3a7a9 + a4a8a9 + 2a3a8a10 = 0,
p7 = a23a9 − a24a9 − 2a3a4a10 = 0,
p8 = a8a

2
9a11 − 3a8a

2
10a11 + a7a

2
9a12 + 4a8a9a10a12 + a7a

2
10a12 = 0,

p9 = a4a
2
9a11 − 3a4a

2
10a11 − a3a

2
9a12 + 4a4a9a10a12 − a3a

2
10a12 = 0,

p10 = 3a27a8a11 − a38a11 − a37a12 + 3a7a
2
8a12 = 0,

p11 = 3a3a7a8a11 + a4a
2
8a11 − a3a

2
7a12 + 3a3a

2
8a12 = 0,

p12 = 3a23a8a11 − a24a8a11 − a23a7a12 − 3a3a4a8a12 = 0,
p13 = 3a23a4a11 − a34a11 + a33a12 − 3a3a

2
4a12 = 0,

p14 = a39a
2
11 − 3a9a

2
10a

2
11 + 6a29a10a11a12 − 2a310a11a12 − a39a

2
12 + 3a9a

2
10a

2
12 = 0.

We now rewrite each of the conditions pj for j = 1, . . . , 14 in terms of complex
parameters of system (1). We obtain that p1 = Re(C), p2 = Im(BD), p3 =
Re(DEF̄ ), p4 = Re(B̄EF̄ ), p5 = Re(D2Ē), p6 = Re(BD̄E), p7 = Re(B2E), where
to obtain p6 we have used the condition that p2 = 0. Moreover, using that p3 = 0 we
get p8 = Im(DĒ2F ), and using that p4 = 0 we get p9 = Im(DE2F̄ ). Furthermore,
p10 = Im(D3F̄ ), p11 = Im(D2B̄F̄ ), p12 = Im(B̄2DF̄ ), p13 = Im(B3F ) and p14 =
Re(E3F̄ 2), where in p11 we have used that p2 = 0. In summary we have the
conditions of statement (a.3). Therefore we have

C = −C̄,
B̄

B
=

D

D̄
,

D

D̄
= −

( ĒF

EF̄

)
,
(D
D̄

)2
= −

(E
Ē

)
,

D

D̄
=

E2F̄

Ē2F
,
(D
D̄

)3
=

F

F̄
,
(E
Ē

)3
= −

(F
F̄

)2
.

(12)

Now let θ1, θ2, θ3, θ4 be such that

eiθ1 = − B̄

B
, eiθ2 = −D̄

D
, eiθ3 = − Ē

E
, eiθ4 = − F̄

F
.

From conditions (12) we have that

(13) θ1 = −θ2(mod.2π), θ3 = 2θ2(mod.2π), θ4 = 3θ2(mod.2π).

Now taking γ = θ1/2 and using (13) we obtain

e2iγ = eiθ1 = − B̄

B
, e−2iγ = e−iθ1 = eiθ2 = −D̄

D
,

and

e−4iγ = e−2iθ1 = e2iθ2 = eθ3 = − Ē

E
, e−6iγ = e−3iθ1 = e3iθ2 = eθ4 = − F̄

F
.

Hence by Lemma 2 system (1) under the conditions of statement (a.3) is reversible
and consequently it has a center at the origin. �
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3. Proof of Theorem 3 (b)

Proof of statement (b.1). The conditions (b.1) written in real parameters are λ =
a5 = a4 − 3a8 = a3 + 3a7 = a11 = a12 = 0 for d = 5. System (1) under these
conditions becomes

ẋ = −y + a1x
5 − 2a7x

5 − 5a2x
4y − 8a8x

4y − 10a1x
3y2 + 8a7x

3y2

+ 10a2x
2y3 − 4a8x

2y3 + 5a1xy4 + 10a7xy
4 − a2y

5 + 4a8y
5,

ẏ = x+ a2x
5 + 4a8x

5 + 5a1x
4y − 10a7x

4y − 10a2x
3y2 − 4a8x

3y2

− 10a1x
2y3 − 8a7x

2y3 + 5a2xy
4 − 8a8xy

4 + a1y
5 + 2a7y

5.

(14)

System (14) has the invariant algebraic curve

f = 1 + 2(a2 + 4a8)x
4 + 8(a1 − 2a7)x

3y − 12a2x
2y2 − 8(a1 + 2a7)xy

3

+ 2(a2 − 4a8)y
4,

Moreover V = f
5/4
1 is an inverse integrating factor of system (14) which gives an

analytic first integral in a neighborhood of the origin. �

Proof of statement (b.2). The conditions (b.2) expressed in real parameters are λ =
a1 = a2 = a5 = (d−3)a4− (d+1)a8 = (d−3)a3+(d+1)a7 = a11 = a12 = 0. Since
in conditions (c.1) we have A = 0 and in conditions (c.2) we have E = 0, it is clear
that case (b.2) is a subcase of (a.3). �

Proof of statement (b.3). The conditions (b.3) written in real parameters are λ =
a5 = a2 = a1 = 2a4 − a8 = 2a3 + a7 = 0. System (1) can be written into the form

ż = iz + (zz̄)(d−5)/2(Bz4z̄ − 2B̄z2z̄3 + F z̄5).(15)

If we rescale system (15) by |z|d−5 we get

ż = iz|z|5−d +Bz4z̄ − 2B̄z2z̄3 + F z̄5 = i
∂H

∂z̄
,

where for d ≥ 5 odd with d ̸= 7 we have

H =
2

7− d
|z|7−d − i

2
(Bz4z̄2 − B̄z2z̄4)− i

6
(F z̄6 − F̄ z6),

and for d = 7 we have

H = log |z|2 − i

2
(Bz4z̄2 − B̄z2z̄4)− i

6
(F z̄6 − F̄ z6).

Note that the first integrals exp(H) for d = 7 and H for d ≥ 5 odd with d ̸= 7
are real functions well defined at the origin. Therefore the origin is a Hamiltonian
center. �
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Proof of statement (b.4). The conditions (b.4) in real parameters are a5 = a4 =
a3 = 0 and

(16)

s1 = 2a28 + a7a11 − a211 + a8a12 − a212 = 0,
s2 = 2a7a8 + a8a11 − a7a12 = 0,
s3 = 2a27 − a7a11 − a211 − a8a12 − a212 = 0,
s4 = a2a7 + a1a8 + a2a11 + a1a12 = 0,
s5 = a1a7 − a2a8 − a1a11 + a2a12 = 0,
s6 = 2a1a8a11 + a2a

2
11 − 2a2a8a12 + a2a

2
12 = 0,

s7 = a21a8 + a22a8 + 2a1a2a11 + a21a12 − a22a12 = 0,
s8 = 2a22a8a11 + 3a1a2a

2
11 + 2a1a2a8a12 + 2a21a11a12

−2a22a11a12 − a1a2a
2
12 = 0,

s9 = 3a21a2a
2
11 − a32a

2
11 + 2a31a11a12 − 6a1a

2
2a11a12 − 3a21a2a

2
12

+a32a
2
12 = 0.

If we sum the polynomials s1 + s3 we obtain a27 + a28 − (a211 + a212) = 0. Now we
introduce the reparametrization a11 = k1 sin t1, a12 = k1 cos t1, a7 = k2 sin t2 and
a8 = k2 cos t2. With this reparametrization s1 + s3 = (k2 − k1)(k2 + k1).

In the case k1 = k2 the conditions s1, s2 and s3 take the form

s1 = −s3 = k22(cos(t1 − t2) + cos(2t2)), s2 = k22(sin(t1 − t2) + sin(2t2)),

The case k2 = 0 implies a7 = a8 = a11 = a12 = 0 which is a subcase of (b.1). The
case sin(t1−t2)+sin 2t2 = 0 and sin(t1−t2)+sin(2t2) = 0 implies t1 = π+3t2+2kπ
or t1 = 3t2 − π + 2kπ with k ∈ Z. In both cases the conditions s4 and s5 become

s4 = 2k2 sin t2(−a2 cos(2t2) + a1 sin(2t2)),

s5 = −2k2 cos t2(a2 cos(2t2)− a1 sin(2t2)).

The annulation of these conditions implies a1 = a2 cot(2t2) and all the rest of
conditions s6, . . . , s9 are zero. Undoing the parametrization, substituting cos t2 →
a8/k2 and sin t2 → a7/k2 and k2 =

√
a27 + a28, system (1) takes the form

(17)

ẋ = −y +
(a7 − a8)(a7 + a8)(−a2a

2
7 + 4a27a8 − a2a

2
8)x

5

2a7a8(a27 + a28)

− (5a2a
2
7 − 16a27a8 + 5a2a

2
8 + 4a38)x

4y

a27 + a28

− (−5a2a
4
7 + 8a47a8 − 32a27a

3
8 + 5a2a

4
8)x

3y2

a7a8(a27 + a28)

+
2(5a2a

2
7 − 14a27a8 + 5a2a

2
8 + 6a38)x

2y3

a27 + a28

+
(−5a2a

4
7 + 12a47a8 − 28a27a

3
8 + 5a2a

4
8)xy

4

2a7a8(a27 + a28)

− (a2a
2
7 − 4a27a8 + a2a

2
8)y

5

a27 + a28
,
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ẏ = x+
(a2a

2
7 + 4a27a8 + a2a

2
8)x

5

a27 + a28

− (5a2a
4
7 + 12a47a8 − 28a27a

3
8 − 5a2a

4
8)x

4y

2a7a8(a27 + a28)

−2(5a2a
2
7 + 14a27a8 + 5a2a

2
8 − 6a38)x

3y2

a27 + a28

+
(5a2a

4
7 + 8a47a8 − 32a27a

3
8 − 5a2a

4
8)x

2y3

a7a8(a27 + a28)

+
(5a2a

2
7 + 16a27a8 + 5a2a

2
8 − 4a38)xy

4

a27 + a28

− (a7 − a8)(a7 + a8)(a2a
2
7 + 4a27a8 + a2a

2
8)y

5

2a7a8(a27 + a28)
.

This system has the invariant algebraic curve

f1 = 1 + 2a2x
4 − 4a2(a

2
7 − a28)

a7a8
x3y − 12a2x

2y2 +
4a2(a

2
7 − a28)

a7a8
xy3 + 2a2y

4,

However we have not been able to find any additional invariant algebraic curve and
only with the curve f1 is not possible to find any integrating factor or a first integral
for system (17). Hence we consider the initial differential equation (1) with λ = 0

ż = iz + (Az5 +Bz4z̄ + Cz3z̄2 +Dz2z̄3 + Ezz̄4 + F z̄5),

and its associated complex conjugated equation

˙̄z = −iz̄ + (Āz̄5 + B̄z̄4z + C̄z̄3z2 + D̄z̄2z3 + Ēz̄z4 + F̄ z5),

Both equations define a differential system in C2 with a complex saddle at the
origin that rewriting using the variables (x, y) and also applying the change of time
t → it becomes

ẋ = x− a40x
5 − a31x

4y − a22x
3y2 − a13x

2y3 − a04xy
4 − a15y

5,

ẏ = −y + b51x
5 + b40x

4y + b31x
3y2 + b22x

2y3 + b13xy
4 + b04y

5,

where a40 = iA, a31 = iB, a22 = iC, a13 = iD, a04 = iE, a15 = iF , and bij = āji.
Substituting these values in the system (17) we obtain

(18)

ẋ = x+
ia2(a7 − ia8)

2x5

2a7a8
+ (a8 − ia7)x

2y3 +
(ia7 − a8)

3y5

a27 + a28
,

ẏ = −y +
(a7 − ia8)

2x5

ia7 − a8
− (a8 + ia7)x

3y2 +
ia2(a7 + ia8)

2y5

2a7a8
.

System (18) has the invariant algebraic curve

f2 = 1 +
a2((a8 + ia7)x

2 + (ia7 − a8)y
2)((a7 − ia8)x

2 − (a7 − ia8)y
2)

2a7a8
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which is the transformation of the curve f1 to these new variables. Now we repa-
rameterize system (18) of the form

(19)

ẋ = x− a40x
5 +

b231x
2y3

b51
+

b331y
5

b251
,

ẏ = −y + b51x
5 + b31x

3y2 − a40b
2
31y

5

b251
.

where a40 = −ia2(a7−ia8)
2/(2a7a8), b31 = −i(a7−ia8), b51 = (a7−ia8)

2/(ia7−a8),
and the curve f2 takes the simple form

f2(x, y) = 1− a40x
4 +

a40b
2
31y

4

b251
.

Let b31 = r1e
iϕ1 and b51 = r2e

iϕ2 where r1 and r2 are the moduli and ϕ1 and ϕ2

are the arguments, respectively.

We are going to prove that system (19) has an integrable saddle at the origin

and consequently system (??) has a real center. Note that f
1/2
2 has two roots. We

fix one of them and we call if h0(x, y). Now we consider the following change of
variables given by

(20) u = u(x, y) = k2y/f
1
4
2 (x, y), v = v = (x, y) = k1x/f

1
4
2 (x, y),

where k1 = −i
√
r2/r1e

i(ϕ2−ϕ1)/2, k2 = i
√
r1/r2e

i(ϕ1−ϕ2)/2 and we take for both u
and v the same fourth root of f2(x, y), that we call h1(x, y), such that h2

1(x, y) =
h0(x, y). The inverse change is given by

x = x(u, v) =

√
r2e

iϕ2/2k2v

H1(u, v)
, y = y(u, v) =

√
r2e

iϕ2/2k1u

H1(u, v)
,

where H1(u, v) = h1(x(u, v), y(u, v)) and

H4
1 = b251k

4
2(k

4
1 + a40u

4)− a40b
2
31k

4
1v

4.

Let

g2(u, v) = f2(x(u, v), y(u, v)) =
r22e

2iϕ2

H4
1

=
r22e

2iϕ2

H2
0

,

where H0(u, v) = h0(x(u, v), y(u, v)). Then

xy = uv
r2e

iϕ2

H2
1

= uv
r2e

iϕ2

H0
= uvg2(u, v)

1/2.

In these variables (u, v) system (19) becomes

du

dt
= −X (u, v)g2(u, v),

dv

dt
= −Y(u, v)g2(u, v).

where X (u, v) and Y(u, v) is exactly the same system (19) in the variables (u, v)
that is

X (u, v) = u− a40u
5 +

b231u
2v3

b51
+

b331v
5

b251
,

Y(u, v) = −v + b51u
5 + b31u

3v2 − a40b
2
31v

5

b251
.
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Suppose that the origin of system (19) is not integrable, then there exists a
formal power series F (x, y) = xy + h.o.t, such that

dF (x, y)

dt

∣∣∣∣
(18)

=
∂F (x, y)

∂x
X (x, y) +

∂F (x, y)

∂y
Y(x, y)

= λm(xy)4m+1 + h.o.t.,

(21)

where h.o.t. indicates higher order terms, m is a positive integer and λm ̸= 0 is the
focus quantity. Using the inverse change of (20) we define the function G as

G(u, v) = F (x(u, v), y(u, v)) = uv + h.o.t.,

then we have that

dG(u, v)/dt = −g2(u, v)

[
∂G(u, v)

∂u
X (u, v) +

∂G(u, v)

∂v
Y(u, v)

]
.

Doing the change of variables (20) the previous expression becomes

− f2(x, y)

[
∂F (x, y)

∂x
X (x, y) +

∂F (x, y)

∂y
Y(x, y)

]
+ h.o.t.

= −(1 + h.o.t.)[λm(xy)4m+1 + h.o.t.]

= −λm(xy)4m+1 + h.o.t.
∣∣
(20)

= −λm(uv)4m+1 + h.o.t..

(22)

From (21) and (22) we have that λm = 0. This implies that system (19) is integrable
and therefore it has a complex center at the origin.

In the case k1 = −k2 the conditions s1, s2 and s3 take the form

s1 = −s3 = k22(− cos(t1 − t2) + cos(2t2)), s2 = k22(− sin(t1 − t2) + sin(2t2)).

From − sin(t1 − t2)+ sin(2t2) = 0 we obtain t1 = π− t2 and substituting this value
we have s1 = −s3 = k22 cos(2t2) which implies t2 = π/4 + kπ with k ∈ Z. The
annulation of rest of conditions s4, . . . , s9 implies a1 = 0. Hence is a particular
case of previous one with t2 = π/4 + kπ with k ∈ Z, i.e. we get system (17) with
a27 = a28. �
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Proof of statement (b.5). The conditions (b.5) expressed in real parameters are

q1 = a5 = 0,

q2 = a4a7 + a3a8 = 0,

q3 = a1a7a11 + a2a8a11− a2a7a12 + a1a8a12 = 0,

q4 = a1a3a11 − a2a4a11 − a2a3a12 − a1a4a12 = 0,

q5 = a1a
2
7 − 2a2a7a8 − a1a

2
8 = 0,

q6 = a1a3a7 − 2a2a3a8 + a1a4a8 = 0,

q7 = a1a
2
3 + 2a2a3a4 − a1a

2
4 = 0,

q8 = 3a27a8a11 − a38a11 − a37a12 + 3a7a
2
8a12 = 0,

q9 = 3a3a7a8a11 + a4a
2
8a11 − a3a

2
7a12 + 3a3a

2
8a12 = 0,

q10 = 3a23a8a11 − a24a8a11 − a23a7a12 − 3a3a4a8a12 = 0,

q11 = a21a8a11− 3a22a8a11 + a21a7a12 + a22a7a12 − 4a1a2a8a12 = 0,

q12 = 3a23a4a11 − a34a11 + a33 ∗ a12 − 3a3a
2
4a12 = 0,

q13 = a21a4a11 − 3a22a4a11 − a21a3a12 − a22a3a12 − 4a1a2a4a12 = 0,

q14 = a31a
2
11 − 3a1a

2
2a

2
11 − 6a21a2a11a12 + 2a32a11a12 − a31a

2
12 + 3a1a

2
2a

2
12 = 0.

We now rewrite each of the conditions qj for j = 1, . . . , 14 in terms of com-
plex parameters of system (1). We obtain that q1 = Re(C), q2 = Im(BD),
q3 = Re(DĀF̄ ), q4 = Re(B̄ĀF̄ ), q5 = Re(D2A), q6 = Re(BD̄Ā), q7 = Re(B2Ā),
where to obtain q6 we have used the condition that q2 = 0. Moreover we have that
q8 = Im(D3F̄ ) and q9 = Im(D2B̄F̄ ). Furthermore q10 = Im(B̄2DF̄ ). Now using
q3 = 0 we get q11 = Im(DA2F ) and q12 = Im(B3F ). Finally using q4 = 0 we get
q13 = Im(DĀ2F̄ ), and using q2 = 0 we have q14 = Re(Ā3F̄ 2). In summary, we have
the conditions of statement (b.5). Therefore we have

C = −C̄,
B̄

B
=

D

D̄
,

D

D̄
= −

(AF

ĀF̄

)
,
(D
D̄

)2
= −

( Ā
A

)
,

D

D̄
=

Ā2F̄

A2F
,
(D
D̄

)3
=

F

F̄
,
( Ā
A

)3
= −

(F
F̄

)2
.

(23)

Now let θ1, θ2, θ3, θ4 be such that

eiθ1 = − B̄

B
, eiθ2 = −D̄

D
, eiθ3 = −A

Ā
, eiθ4 = − F̄

F
.

From conditions (23) we have that

(24) θ1 = −θ2(mod(2π)), θ3 = 2θ2(mod(2π)), θ4 = 3θ2(mod(2π)).

Now taking γ = θ1/2 and using (24) we have

e2iγ = eiθ1 = − B̄

B
, e−2iγ = e−iθ1 = eiθ2 = −D̄

D

and

e−4iγ = e−2iθ1 = e2iθ2 = eθ3 = −A

Ā
, e−6iγ = e−3iθ1 = e3iθ2 = eθ4 = − F̄

F
.

Hence by Lemma 2 system (1) under the conditions of statement (b.5) is reversible
and consequently has a center at the origin. �
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4. Proof of Theorem 4 (a)

Proof of statement (a.1). The conditions (a.1) written in real parameters are λ =
a5 = a9 = a10 = a11 = a12 = (d − 3)a4 − (d + 1)a8 = (d − 3)a3 + (d + 1)a7 = 0.
Then system (1) can be written as

(25) ż = iz + (zz̄)(d−5)/2
(
Bz4z̄ − d− 3

d+ 1
B̄z2z̄3

)
.

Doing the change of variables

(26) w = ξz, where ξ =
(Bd+1

B̄d−3

)1/(4(d−1)

,

system (25) becomes

ẇ = iw + (ww̄)(d−5)/2
(
w4w̄ − d− 3

d+ 1
w2w̄3

)
.

In polar coordinates this differential equation writes

ṙ =
4rd

d+ 1
cos(2θ), θ̇ = 1 +

2(d− 1)

d+ 1
rd−1 sin(2θ).

Therefore we have the following associated equation for the trajectories

dr

dθ
=

4rd cos(2θ)

d+ 1 + 2(d− 1)rd−1 sin(2θ)
with r(0) = r0.

Now integrating it and taking into account that r(θ) ≥ 0 for any θ we get

(27) r(θ)1−d =
−2(d− 1) sin(2θ) +

√
(d+ 1)2r2−2d

0 + 4(d− 1)2 sin2(2θ)

d+ 1
.

Note that √
(d+ 1)2r2−2d

0 + 4(d− 1)2 sin2(2θ) > |2(d− 1) sin(2θ)|,

and thus r(θ) given in (27) is positive. Therefore introducing (27) into (7) we have
that ∫ 2π

0

dθ

θ̇
=

∫ 2π

0

(
1− 2(d− 1) sin(2θ)√

4(d− 1)2 sin2(2θ) + (d+ 1)2r2−2d
0

)
dθ = 2π,

because the function 2(d− 1) sin(2θ)/
√
4(d− 1)2 sin2(2θ) + (d+ 1)2r2−2d

0 is odd in

θ. �

Proof of statement (a.2). The conditions (a.2) expressed in real parameters are λ =
a5 = a9 = a10 = a11 = a12 = a3 − a7 = a4 + a8 = 0. Then system (1) becomes

(28) ż = iz + (zz̄)(d−5)/2
(
Bz4z̄ + B̄z2z̄3

)
.

We do the change of variables (26), and in these new variables system (25) becomes

ẇ = iw + (ww̄)(d−5)/2
(
w4w̄ + w2w̄3

)
.

This system in polar coordinates writes

ṙ = 2rd cos 2θ, θ̇ = 1,

which is clearly isochronous. �
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Proof of statement (a.3). The conditions (a.3) written in real parameters are λ =
a5 = a7 = a8 = a9 = 0, a11 = −(a33−3a3a

2
4)/(a

2
3+a24), a12 = (3a23a4−a34)/(a

2
3+a24)

and d = 7. Therefore system (1) becomes

(29) ż = iz + (zz̄)z̄(z4 − z̄4).

In polar coordinates equation (29) has the form

(30) ṙ = r7(cos(2θ)− cos(6θ)), θ̇ = 1 + r6(sin(2θ) + sin(6θ)).

Note that system (30) has the invariant (in the sense that dI/dt is zero on the
solutions of system (30))

I = I(t, r, θ) = 6θ + 4r6 cos3(2θ)− 6t.

Using this invariant we can express the time in function of the variables (r, θ, I) as
follows

t = θ +
2

3
r6 cos3(2θ)− I

6
.

Let r(θ) be a solution of system (30) sufficiently close to the origin. Since the origin
is a center, we get that r(2π) = r(0) in a certain neighborhood of the origin. Thus

T = t(2π)− t(0) =

[
2π +

2

3
r(2π)6 − I

6

]
−
[
2

3
r(0)6 − I

6

]
= 2π.

See [6] where as far as we know for first time it was used the invariants to determine
isochronicity. �

Proof of statement (a.4). The conditions (a.4) expressed in real parameters are λ =
a4 = a5 = a7 = a8 = a9 = a10 = a12 = 0, a3 = −a11 and d = 7. So system (1)
becomes

(31) ż = iz + (zz̄)(−Fz4z̄ + F z̄5), with F = F̄ .

Doing the change of variables

(32) w = ξz, where ξ =
( 1

F

)1/6
,

system (33) becomes

ẇ = iw + (ww̄)w̄(−w4 + w̄4).

In polar coordinates it has the form

ṙ = r7(− cos(2θ) + cos(6θ)), θ̇ = 1− r6(sin(2θ) + sin(6θ)).

Note that this system has an invariant of the form

I = I(t, r, θ) = −6θ − 4r6 cos3(2θ) + 6t.

Using this invariant we can prove the isochronicity in this case as in the previous
one. �

Proof of statement (a.5). The conditions (a.5) written in real parameters are λ =

a5 = a7 = a8 = a9 = a10 = a12 = 0, a3 = a11/2, a4 = ±
√
3a11/2 and d = 7. Then

system (1) becomes

(33) ż = iz + (zz̄)(e±iπ/3Fz4z̄ + F z̄5), with F = F̄ .

Doing the change of variables (32) system (33) becomes

ẇ = iw + (ww̄)w̄
(
e±iπ/3w4 + w̄4

)
.
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In polar coordinates it writes

ṙ = r7
(1
2
cos(2θ) + cos(6θ)∓

√
3

2
sin(2θ)

)
,

θ̇ = 1 + r6
(
±

√
3

2
cos(2θ) +

1

2
sin(2θ)− sin(6θ)

)
.

Note that this system has the invariant

I = I(t, r, θ) = −6θ + 4r6 cos3(2(±π/3− θ)) + 6t.

Using this invariant we can prove the isochronicity as before. �

5. Proof of Theorem 4 (b)

Since in conditions (c.1) we have A = 0 and in conditions (c.2) we have E = 0
it follows that the conditions (b.1), (b.2), (b.3), (b.4) and (b.5) are the same than
(a.1), (a.2), (a.3), (a.4) and (a.5), respectively.

Proof of statement (b.6). The conditions (b.6) expressed in real parameters are λ =
a5 = a11 = a12 = a4 − 3a8 = a3 + 3a7 = 0, a2a

2
7 + 2a1a7a8 − a2a

2
9 = 0 and d = 5.

Hence system (1) becomes

(34) ż = iz +Az5 +Bz4z̄ − 1

3
B̄z2z̄3, with Im(D2A) = 0.

Doing the change of variables (26) with d = 5 system (34) becomes

(35) ẇ = iw + a1w
5 + w4w̄ − 1

3
w2w̄3,

This system in polar coordinates takes the form

ṙ =
r5

3
(2 cos(2θ) + 3a1 cos(4θ)),

θ̇ = 1 +
4

3
r4 sin(2θ) + a1r

4 sin(4θ).

(36)

Following [7] system (41) has the first integral

H =
r8

1 + 2r4Q(θ)
, where Q(θ) =

4

3
sin(2θ) + a1 sin(4θ).

From H(r, θ) = K, being K an arbitrary real constant different from zero, we can
express

(37) r4 =
Q(θ)±

√
Q(θ)2 +K

K
.

From the differential equation θ̇ = 1 + r4Q(θ) and using (37) we get

T =

∫ 2π

0

(
1± Q(θ)√

Q(θ) +K

)
dθ = 2π ±

∫ 2π

0

Q(θ)√
Q(θ) +K

dθ = 2π,

where to see that the last integral is zero we do the change of variables φ = −θ and
we use the periodicity of Q(θ). �



CENTERS AND ISOCHRONOUS CENTERS 17

Proof of statement (b.7). The conditions (b.7) expressed in real parameters are λ =
a3 = a4 = a5 = a7 = a8 = a11 = a12 = 0 and d = 5. Therefore system (1) becomes

(38) ż = iz +Az5.

Doing the change of variables

(39) w = ξz, where ξ =
( i

A

)1/4
,

system (38) becomes

(40) ẇ = iw + iw5.

This system in polar coordinates takes the form

ṙ = −r5 sin(4θ),

θ̇ = 1 + r4 cos(4θ).
(41)

and in cartesian coordinates becomes

ẋ = −y + y(−5x4 + 10x2y2 − y4),

ẏ = x+ x(x4 − 10x2y2 + 5y4).

This system has the transversal commuting system

ẋ = x+ x(x4 − 10x2y2 + 5y4),

ẏ = y + y(5x4 − 10x2y2 + y4).

Applying Theorem 1 (see also [7]), system (41) has an isochronous center at the
origin. �
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[7] J. Chavarriga, J. Giné, I.A. Garćıa, Isochronous centers of a linear center perturbed by
fifth degree homogeneous polynomials, J. Comput. Appl. Math. 126 (2000), no. 1-2, 351–368.
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