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Centers for the Kukles homogeneous systems with odd degree
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Abstract

For the polynomial differential system ẋ = −y, ẏ = x + Qn(x, y), where Qn(x, y) is a homoge-
neous polynomial of degree n there are the following two conjectures raised in 1999. (1) Is it
true that the previous system for n � 2 has a center at the origin if and only if its vector field
is symmetric about one of the coordinate axes? (2) Is it true that the origin is an isochronous
center of the previous system with the exception of the linear center only if the system has even
degree? We prove both conjectures for all n odd.

1. Introduction and statement of the main results

Kukles [10] in 1944 examined the conditions under which the origin for the differential system
of the form

ẋ = −y, ẏ = x + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy2 + a7y
3 (1)

is a center. For long time, it had been thought that the conditions given by Kukles were
necessary and sufficient conditions, but some new cases have been found, see [2, 4, 9]. In [4],
the center problem for the class of system (1) with a7 = 0 (reduced Kukles system) was resolved,
moreover it was shown that at most five limit cycles bifurcate from the origin. In [11], the center
problem for system (1) was solved in the case a2 = 0 and it was shown that at most six limit
cycles bifurcate from the origin, see also [12]. The first complete solution of the center-focus
problem for Kukles’ system (1) was obtained in [12]. In [14], the complete solution was also
given using the Cherkas’ method of passing to a Liénard equation, see also the works [13, 15].

System (1) is derived from a second-order differential equation and it has been used as a
test bed for future studies in the center problem, see [13]. In fact, the study of this family
exhibits properties and issues which are important in the problem of the full classification of
cubic systems with a center.

In this paper, we continue the characterization of the centers for a linear center where the ẏ
equation is perturbed by a homogeneous polynomial, that is, systems of the form

ẋ = −y, ẏ = x + Qn(x, y), (2)

where Qn(x, y) is a homogeneous polynomial of degree n, that is,

Qn(x, y) =
n∑

j=0

cjx
jyn−j , cj ∈ R. (3)

These systems are called Kukles homogeneous systems, see [7].
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