CENTERS OF WEIGHT-HOMOGENEOUS POLYNOMIAL
VECTOR FIELDS ON THE PLANE
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ABSTRACT. We characterize all centers of a planar weight-homogeneous
polynomial vector fields. Moreover we classify all centers of a planar
weight-homogeneous polynomial vector fields of degrees 6 and 7.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

One of the main problems in the qualitative theory of real planar polyno-
mial differential systems is the center-focus problem. This problem consists
in distinguish when a singular point is either a focus or a center. The notion
of center and focus goes back to Poincaré [18]. A singular point p of system
(1) is a center if there is a neighborhood of p fulfilled of periodic orbits with
the unique exception of p. The period annulus of a center is the region ful-
filled by all the periodic orbits surrounding the center. We say that a center
located at the origin is global if its period annulus is R? \ {(0,0)}.

The center problem for planar polynomial vector fields has been inten-
sively studied. The center problem for linear type singular points, i.e., sin-
gular points with imaginary pure eigenvalues is the most studied. It started
with the study of the quadratic polynomial differential systems with linear
type singular points. The works of Dulac [5], Bautin [4], Zoladek [21], are
the principal ones for the quadratic case, see Schlomiuk [20] for an update of
this works. But the center-focus problem for polynomial differential systems
of degree larger than two remains open. However, for polynomial differen-
tial systems of degree larger than two, there are richer partial results on the
center problem, see for instance [8, 19, 22, 23].

The inability to go beyond in the study of centers for general polyno-
mial differential systems has motivated the study of particular cases as they
are the quasi-homogeneous or weight-homogeneous polynomial differential
systems.

Hence we consider the polynomial differential systems of the form

ZE:P(ZL‘,y), y:Q(xvy)7 (1)

where P,Q € R[z,y| are coprime and the origin is a singularity of system
(1). As usual, R[z, y] denotes the ring of polynomials in the variables z and
y with coefficients in R, and the dot denotes derivative with respect to an
independent variable ¢.
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We say that system (1) is weight-homogeneous if there exist s = (s1, $2) €
N2 and d € N such that for arbitrary A € R* = {A € R: A > 0} we have

Pz, N2y) = X HP(ay), QO a, A2y) = X HQ(x, y).

We call s = (s1,s2) the weight exponent of system (1) and d the weight
degree with respect to the weight exponent s. In the particular case that

= (1,1), systems (1) are exactly the homogeneous polynomial differential
systems of degree d. For a weight-homogeneous polynomial differential sys-
tem (1), a weight vector w = (51, S2,d) is minimal for system (1) if any
other weight vector (s1, s2,d) of system (1) satisfies §; < s1, §2 < so and
d<d. Clearly, each weight-homogeneous polynomial differential system has
a unique minimal weight vector.

Taking the weighted polar coordinates x = r®! cosf, y = 72 sin # system
(1) becomes

r"™F(0) . rm=1G(9)

7= , 0= , 2
s1.cos2 6 + s sin’ 0 $1 082 0 + s 8in? 6 2)

with
F(0) = P(cosf,sinf) cosf + Q(cosf,sin ) sin b,
G(0) = s1 Q(cosb,sinf) cos @ — sg P(cos,sinf) sin .
We note that s; cos? 0 + sosin?6 > 0 for all § € R because sq, s > 0. The
next well-known result characterizes when the weight-homogeneous polyno-

mial differential system (1) has a center at the origin of coordinates in terms
of trigonometric polynomials F'(6) and G(6), see [10] and [13].

Lemma 1. System (1) has a center (at the origin of coordinates) if and

only if G(6) has no real roots and f27r (o ; df = 0.

The first main result of this paper is to improve this characterization
giving the explicit characterization of all centers of the weight-homogeneous
polynomial differential systems.

Following [9] we first introduce a change of variables that transforms sys-
tem (1) into a system of separable variables. For a proof see [9].

Lemma 2. The change of variables
x=ul?2 oy = (uw)Y,  with inverse u = %2, v =1y /2%, (3)

and the rescaling of time given by w~(d=1/(s152)y=(s1-1=m)/s1 ith m € NU
{0}, transforms a quasi-homogeneous system (1) of weight (s1,s2,d) into a
polynomial differential system of the form

iL:’LLf(’U), 2'}29(1)), (4)
where we can choose m so that f and g are coprime.

One immediate consequence of Lemma 2 is that if system (4) has H (u,v)
as a first integral, then the quasi-homogeneous system (1) of weight (s1, s2, d)
has a first integral of the form H (z%2,y*' /z®2). On the other hand, if H(z,y)
is a first integral of the quasi-homogeneous system (1) of weight (s1, s2,d)
then H (u!/*2, (uv)'/*1) is a first integral of system (4).



WEIGHT-HOMOGENEOUS POLYNOMIALS 3

We say that a polynomial g(v) = Hle(v — o) is square-free with oy # «;
fori,j=1,...,k and i # j.
The following theorem is our main result. As usual Q™ denotes the set

of negative rational numbers. Let «; be the roots of the polynomial g(v).
Then we define v; = f(a;)/d().

Theorem 3. Consider the quasi-homogeneous system (1) of weight (s1, s2, d)
which can be transformed by the change of variables in Lemma 2 in system
(4). Then system (1) has a C* first integral if and only if the polynomial
g(v) is square-free, deg f < degg and v; € Q™ fori=1,2,... k.

Theorem 3 is proved in section 3.

Now we recall the following theorem proved in [16] that characterize s
when the differential system (1) with an isolated singular point at the origin
has a center at this point.

Theorem 4. Assume that system has an isolated singular point at the ori-
gin, then it is a center if and only if there exists a first integral of class C'*°
with an isolated minimum at the origin.

We will also use the following result (see [10] for a proof).

Lemma 5. Consider a weight homogeneous polynomial differential system.
If it has a singular point which is a center, then this singular point is at the
origin of coordinates.

Using Theorems 3 and 4 together with Lemma 5 we have the following
result.

Theorem 6. Consider the quasi-homogeneous system (1) of weight (s1, s2, d)
which can be transformed by the change of variables in Lemma 2 in system
(4). Then system (1) has a center if and only if the polynomial g(v) is
square-free, deg f < degg and v; € Q~ fori=1,2,... k.

It is clear that we only have to prove Theorem 3. To do it, we first recall
the following result given in [10].

Lemma 7. If the polynomial g(v) is square-free, deg f < degg and P(x,y)
has not x as a divisor, then 1 +v1 +v2 + -+ v = 0.

We recall that if we are looking for centers at the origin of system (1) we
always have that P does not have x as a divisor, and so Lemma 7 always
hold in our case.

To prove Theorem 3 we will first prove the following theorem con cerning
the existence of C'™° first integrals for system (4).

Theorem 8. System (4) has a C* first integral if and only if the polynomial
g(v) is square-free and v; € Q= fori=1,2,...,k.

The proofs of Theorems 6 and 8 are given in section 3.

Weight-homogeneous polynomial differential systems have also been stud-
ied intensively from the point of view of integrability by many authors, see
for instance [1, 9, 11, 12]. There are some works related with the study of
weight-homogeneous polynomial differential systems and their relation with
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the center-focus problem. In [3] the authors characterized all cubic weight-
homogeneous polynomial differential systems which have a center, and in
[14] the authors, characterized all weight-homogeneous polynomial differen-
tial systems of degrees 2, 3 and 4 which have a center. In [17] the authors
studied the center-focus problem for the weight-homogeneous polynomial
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differential systems with degree 5.

The second main result of this paper is to classify all centers of all weight-
homogeneous polynomial differential systems of degrees 6 and 7.

Theorem 9. Every planar real weight-homogeneous polynomial differential
system of degree 6 which is not homogeneous can be written as one of the

following 20 systems:

1) &= ao,(gy6 + a174:1:y4 + (12,2.7523/2 + a3 oz

2)

10)

11)

12)

§ = bosy® + bizzy’ + ba1a’y
Minimum weight vector of the
i = aoey® + az237%y> + aq oz’
j = byazy® + by 123y
Minimum weight vector of the

T = a0,6y6 + (1570905

g =bazly

Minimum weight vector of the
& = ag,ey°

§ = bs oz

Minimum weight vector of the

i = aoey® + a1 37y + ag oz’

i = boay* + brazy
Minimum weight vector of the

i = aggy°

§ = bypx?

Minimum weight vector of the
i = aggy°

§ = bsox?

Minimum weight vector of the
i = agy°

y = baox?

Minimum weight vector of the
& = ap ey’

y=biox

Minimum weight vector of the

T = a1,5xy5 + a273x2y3 + a371x3

3

system: (2,1,5)

system: (3,2,10)

system: (6,5,25)

system: (7,6,30)

system: (3,1,4)

system: (7,5,24)

system: (7,4,18)

system: (7,3,12)

system: (7,2,6)
Yy

¥y = boeyS + by axy* + bo2x?y? + b3 o2®

Minimum weight vector of the
i = a1 57y° + a3 223y?

= bo,ey® + ba sy’ + bygat
Minimum weight vector of the

T = a1,5a:y5 + a570x5

system: (2,1,6)

system: (3,2,11)
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§ = boey® + baz'y

Minimum weight vector of the system: (5,4,21)
13) & = a1,5xy5

4 = bo,6y° + bs 02”

Minimum weight vector of the system: (6,5,26)
14) T = a1,5xy5 + a272:z2y2

i = bo,cy°® + b zzy® + byo2

Minimum weight vector of the system: (3,1,6)
15) T = a175a:y5 + a470x4

J = bo6y°® + bz 12’y

Minimum weight vector of the system: (5,3,16)

16) T = a1,5xy5 + a370x3

i = boey® + bo1x%y

Minimum weight vector of the system: (5,2,11)
17) T = a1,5xy5 + CL27033‘2

= bo6y® + brazy

Minimum weight vector of the system: (5,1,6)
18) & = a1,5$y5

§ = bo6y° + b o

Minimum weight vector of the system: (6,1,6)
19) & = a2,4x2y4

i = by sy + bs 0z”

Minimum weight vector of the system: (5,4,22)
20) & = a076y6 + a1 0T

Y =boy
Minimum weight vector of the system: (6,1,1)

Theorem 10. Every planar real weight-homogeneous polynomial differential
system of degree T which is not homogeneous can be written as one of the
following 23 systems:

21) & = ao7y” + a1 52y’ + ag 3wy’ + az 12’y
= boey° + brazy* + by pa?y?® + bz ox®
Minimum weight vector of the system: (2,1,6)
22) & = ao7y” + azzriy?
i = by ax®y* + bs o
Minimum weight vector of the system: (4, 3,18)

23) @ = agry’ + aeox®

= bs 2%y
Minimum weight vector of the system: (7,6,36)

24) @ = ag 7y’
§ = b ot
Minimum weight vector of the system: (8,7,42)

25) & = a077y7 + a570m5

= by1z'y
Minimum weight vector of the system: (7,5,29)
26) © = a0,7y7 + a173xy3
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J = boay" + biox
Minimum weight vector of the system: (4,1,4)

27) @ = agry’ + asox?

y =bz12%y
Minimum weight vector of the system: (7,4,22)

28) & = a0,7y7
y = b470$4
Minimum weight vector of the system: (8,5,28)

29) @ = agry’ + asox®

y = ba1z?y

Minimum weight vector of the system: (7,3,15)
30) T = a0,7y7 + a2701‘2

y=bizy

Minimum weight vector of the system: (7,2,8)

31) &= a7y’
§ = by oz
Minimum weight vector of the system: (8,3,14)

32) &= alygxyﬁ + a274a:2y4 + a372x3y2 + a470x4

g ="bo7y" +b157y° + bazx?y® + b3 127y

Minimum weight vector of the system: (2,1,7)
33) @ = a167Y° + as37%y> + a5 02°

J=bogy” + boax?y + by1aty

Minimum weight vector of the system: (3,2,13)

34) @ = a167Y° + agox®

= bo7y" + bs12%y

Minimum weight vector of the system: (6,5,31)
35) & = a1,6$y6

i = bo7y" + beox"

Minimum weight vector of the system: (7,6,37)

36) @ = a162y° + az37%y® + azoz?

J=boy” + brazy® + bo1z’y

Minimum weight vector of the system: (3,1,7)
37) &= al,gxy("

= bozy" + bs oz’

Minimum weight vector of the system: (7,5,31)
38) T = a176:cy6

i = bory” + baoz

Minimum weight vector of the system: (7,4,25)
39) @ = ay gxy"

i = bory” + bs oz

Minimum weight vector of the system: (7,3,19)
40) T = a176xy6 + a270x2

= bory’ +brazy

Minimum weight vector of the system: (6,1,7)
41) i@ = ay gy
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g =bozy" + ba o’

Minimum weight vector of the system: (7,2,13)
42) i = ay gry"

g =bozy" +biox

Minimum weight vector of the system: (7,1,7)
43) T = (1(),73/7 + a1 0T

Y =boy
Minimum weight vector of the system: (7,1,1)

Theorems 9 and 10 are proved in section 4.

The third and fourth main results present a complete characterization of
planar real weight-homogeneous polynomial differential system with degrees
6 and 7 which are not homogeneous polynomials differential systems having
a center at the origin. They are proved in section 5.

Theorem 11. Real planar weight-homogeneous polynomial differential sys-
tems of degree 6 which are not homogeneous have no center at the origin.

Theorem 12. The unique planar real weight-homogeneous polynomial dif-
ferential systems of degree 7 which are not homogeneous having a center
are

System 21) with

2 3
as,1 + az23r; + aisr; + ao,7r; +

aszi — 25272 + 2(12737’1‘ — 461747'1‘ + 3@1757"1-2 — 6b0767’i2 + 4(10777’?

)

where the r;’s are the four complex simple roots of the polynomial
2[)3’0 —as1v+ 2[)2,21) — a2731)2 + 2b1,4’l)2 — a1,5v3 + 2b0761)3 — a077v4.

System 22) with

3a3,3 + 4bo 4 3ag 3 + 4ba 4
€ Q, and
V/(Bazs — 4b3,4) + 48a0,7b5,0 V/(3as 3 — 4by,4)2 + 48a 7bs 0

fO’I“ (3&373 — 4[)274)2 + 480,0,7()5’0 7é 0; or with 3&3’3 + 4[)274 = b5’0 =0.

System 26) with a3 5 — 8a 3bo.4 + 16b3 4 + 16ag,7b1,0 < 0.

We recall that Theorems 11 and 12 solve the center focus problem for
weight-homogeneous polynomial differential system with-degrees 6 and 7
that are not homogeneous. The case of homogeneous polynomials remain
open in the sense that are not known the specific families of centers. However
their characterization is well-known, see for instance Proposition 3 in [15].

2. PRELIMINARY RESULTS

Suppose that the polynomial differential system (1) has its linear part of
nilpotent form, that is, its Jacobian matrix is a nilpotent matrix. If the
origin is a center is called a nilpotent center. In this case using suitable
coordinates system (1) can be written as

a'c:y—i—P2(H?,y)7 y:QQ(x7y)7 (5)
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where P> and Q2 are polynomials of degree at least 2. The next theorem
proved in [2] solves the monodromy problem for nilpotent singular points.

Theorem 13. Consider system (5) and assume that the origin is an isolated
singularity. Define the functions

fla) = Qa(, Flx)) = az® + O(2*T),
¢(‘T) = le(y + PQ({E, y)7 QZ(x7 y))|y=F(x) - blﬂ + O(Z‘ﬁ+1),

wherea # 0, « > 2,b# 0 and > 1, or ¢(x) = 0 and the function y = F(x)
is the solution of y + Pa(x,y) = 0 passing through the origin. The origin
of system (5) is a focus or a center if and only if a is negative, o is an
odd number (a« = 2n — 1), and one of the following three conditions holds:
B>n—1; B=n—1 and b>+ 4an; or ¢(x) = 0.

3. PROOFS OF THEOREMS 6 AND 8

We first prove Theorem 8 and later the main Theorem 6.

Proof of Theorem 8. We separate the proof in two cases: the case deg f <
deg g and deg f > degg.

Case 1: deg f < degg. It is easy to see that an inverse integrating factor of
system (4) is V(u,v) = ug(v) and that system (4) admits a first integral of
the form o)
H(u,v) = ulel sy v = uth(v). (6)
Imposing that H is a first integral of system (4) we obtain that the func-
tion h(v) satisfies the following differential equation

W) ) -
h(v) — g(v)’

We assume now that V(u,v) = ug(v) is not square-free. Using an affine
transformation of the form v — v + a with a € C if it is necessary, we
can assume that v is a multiple factor of V' (u,v) with multiplicity p > 1.
Therefore we have that V (u,v) = ug(u) = uvtr(v) with r(0) # 0. After this
affine transformation we know that f(0) # 0 because f and g are coprime.
Now we develop the right-hand side of (7) in simple fractions of v, that is,

O o )

glv)  wr + pmr—l * + v + r(v)
where a(v) and a; (v) are polynomials with deg a1 (v) < degr(v) and ¢; € C,
fori=1,2,..., u. Equating both expressions, we get that ¢, = f(0)/r(0) #
0. Moreover as deg f < degg we know that ap(v) = 0. Therefore equation
(7) becomes

+ Oéo(v),

' (v)  cu  cu a . a1(v)
h(v) on e T r(v)’

with ¢, # 0. Now if we integrate this expression we get

c 1
h(v) = C exp [1_“/“}#_1} :

exp [/ <;’;‘i Fo+ %1 + O;fé?) dv} :




WEIGHT-HOMOGENEOUS POLYNOMIALS 9

where C' is a constant of integration. The first exponential factor cannot be
simplified with any part of the second exponential factor. Thus, the first
integral (6) cannot be a C*° first integral to have a center at the origin.

Now we assume that V(u,v) = ug(v) is square-free, i.e., that g(v) is
square-free. We will prove that H(u,v) = u~1p(v) where

p(v) = (v =) (v —ag)” - (v —Iphay)™,
with v; = f(a;)/g(;) is a first integral. Indeed, we have
OH OH

uf (@)% +9(0) 5, = u~f@)e() + g0)¢(v) = 0.

To see that this last expression is identically zero is equivalent to see that
o(v)/p(v) = f(v)/g(v). Recalling the expression of ¢(v) we have

pv) _ m Y2
o(v) v—a1  v—ay v — Qg

Taking common denominator and recalling that g(v) = c¢(v—ay)(v—ag) - - - (v—
ay;) we obtain

Now substituting the values of 7; = f(«a;)/d(a;) and taking into account
that

we obtain
k

. k
SO(U) _ chf(az) H ’U‘_ Q; _ f('l}) (8)

p()  g(v) = S 9)
Since deg f < deg g, the expression in the sum is the Lagrange polynomial
which interpolates the k points («;, f(a;)) fori = 1,2, ..., k. Therefore, this
polynomial is f(v) and we conclude that the expression (8) is identically
satisfied. Therefore, we obtain that
P(v) = o — ar)™ (v — ag)™ -+ (v — )™

Then as H(u,v) = u"¢(v) we take H(u,v) = up ' (v) that must be a C®
function, so we must have that v, € Q.

Case 2: deg f > degg. Again we have that system (4) admits a first integral
of the form (6). Then we get that equation (7) holds. Since deg f > degyg
we consider the Euclidean divisions of f(v) and g(v), so we have

f(v) = q(v)g(v) +¥(v),
where 1 (v) cannot be zero taking into account that f and g are coprime
and deg1 < degg. Hence equation (7) becomes

W) )
) 1O gy

= (9)

Integrating (9) we obtain
h(v) = Ce‘ﬂ”)ef%dv,
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where C'is a constant of integration and ¢'(v) = ¢(v), which is a polynomial.
Therefore the first factor is a C'*°*° function and for the second factor we apply
the results in Case 1 with ¢ replaced by f. This concludes the proof of the
theorem. O

Proof of Theorem 8. We have already pointed out that in order to prove
Theorem 6 it is enough to prove Theorem 3 with the assumption that 1 +
v+ 72+ -+ 7% = 0. Assume that system (1) has a C° first integral
H = H(z,y). By well-known results we have that it is a first integral which
is a quasi-homogeneous function of weight exponents (s1,s2) and weight-
degree d that we can take d = sysom with m € N. Let 23/ be a monomial
with a nonzero coefficient of H. By quasi-homogeneity we have s1i+s9j = m
which implies that s1i + s9j = s152m, that is soj = s1(sem — ). As s1 and
s9 are coprime, we deduce that j is a multiple of s, that is j = s1j with
7 € NU{0}. Moreover the change of variables described in Lemma 2 implies
that H(u'/*2, (uv)/*1) is a first integral of system (4), and by homogeneity
we have

H(u1/52, (uv)l/sl) = H(ozsl,a”vl/sl) = oﬁl”mH(l,vl/sl) = umH(l,vl/Sl).

As H(xz,y) is a C* function, and all the monomials 'y’ satisfy that j is a
multiple of s; we have that h(v) = H(1,v'/*1) is also a C* function in v.
Therefore we have that u™h(v) is a C* first integral of system (4). In view
of Theorem 8 we have that g(v) is square-free and v; € Q= fori =1,2,... k.

Conversely if we assume that g(v) is square-free, v; € Q™ fori =1,2,...,k
we have that system (4) has a C* first integral. As «; € Q~ there exists
N,ni,ng,...,ng such that v; = —n; /N for i = 1,2,..., k. Note that by the
proof of Theorem 8, we can write the first integral as

H(u,v) = u e (v — )™ /N (v — ) /N,
where A =0 if deg f < degg, and A =1 if deg f > degg. So
I:[(u, ’U) = uN@_N)‘g(U)(U — Oél)nl . (’U _ Oék)nk

is a C* function of system (4). Recall that 1 + 3 + -9, = 0, and so

N —ny —--- —ng = 0. Undoing the change of variables in Lemma 2 we get
~ s _ G151 /759 R ni s1 Nk
H(I‘SQ,ZsQ):.%'SQNC NAG(y*1/z2) gycTZ_al 352 _ak>
= go2a(N=ni—mni) o= NAGW*L [2°2) (st _ o) p92) P (951 — o527k,

So in order that H to be a O function we must have A\ = 0. This concludes
the proof. O

4. PROOFS OF THEOREMS 9 AND 10

We note that from the definition of weight-homogeneous planar polyno-
mial differential systems of weight degree d, the exponents of u and v of
any monomial x%y" of P and @ are such that they satisfy, respectively, the
relations

S1u+ sov =581 +d, S1u+ Sov = so +d.
We can always assume that s; > so, otherwise we exchange the coordinates
x and y. Additionally, we only consider the cases in which P and @ are
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coprime, since otherwise they can be treated as weight-homogeneous with
lower degree.

We also use the following lemma (see [10] for a proof).

Lemma 14. Given a quasi-homogeneous system of weight (s1,2,d), we
can suppose without restriction that s; and sy are coprime.

Using this, and Proposition 10 in [6] if a system is weight-homogeneous
but not homogeneous of degree n with the weight vector (s1, s2,d) and d > 1,
then the system has the minimal vector

N <t+k: k 1+(p—1)t+(n—1)k¢>’

w = b )
s s s
witht € {1,2,...,p}, wherep € {0,1,...,n—1}and k € {1,...,n—p—t+1}
satisfying
_ (t+k)(d-1) o k(d—1)
T -Dt+m—-Dk" T p—1t+ -1k’

and s = ged(t, k). Using this and again [6] we get that the weight-homogeneous
but not homogeneous polynomial differential systems of degree n with weight
vector (s1,s2,d) can be written in the form

Xtk = X2+ XI5 XD
D

where
D={se{l,...,n—p}\{t}, kst =ks, ks € {1,....,n—s—p+1}},

and

Xn = (ap,n—pxpynfa bp—17n—p+1xpynip+l>
is the homogeneous part of degree n with coefficients not simultaneously
vanishing and
XPh = <ap+k,n7tfpfk$p+kyn_t_p_k7 prrkfl,nftfp*kJrlprrk_lyn_t_p_k+l> :
Moreover, in order that X, to be weight-homogeneous but not homoge-
neous of degree n we must have X}, not identically zero and at least one of
the other elements not identically vanishing.

Using all these previous results, we can prove that with degree 6 we have
the 20 families of systems given in Theorem 9 and with degree 7 we have the
20 families of systems given in Theorem 10. In fact in [7] the authors have
implemented the algorithm of [10] for computing the weigh-homogeneous
polynomial differential systems of an arbitrary degree, we have checked the
systems of Theorems 9 and 10 using such implementation.

5. PROOFS OF THEOREMS 11 AND 12

In view of Lemma 5 it is only necessary to look for centers at the origin
of coordinates.
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Proof of Theorem 11. By Theorem 9 there are 20 families of weight-homogeneous
polynomials but not homogeneous with the minimal vector w = (s, s2,6)
with s; > so. We can check that systems 1,2, 3,5, 20 have the invariant line
y = 0, whereas systems 10,11,12,13,14,15,16,17, 18,19 have the invariant
line x = 0. So their origin cannot be a center. It remains to study sys-
tems 6-9. Note that system 6 has the first integral H = byoz®/5 — ao¢y” /7,
system 7 has the first integral H = bgox?/4 — ag gy’ /7, for system 8 a first
integral is H = bg2®/3 — agey’/7, and system 9 has the first integral is
H = bygz?/2 — a076y7 /7. Therefore any system 6-9 cannot have a center at
the origin because the curves H = h near the origin are not closed. This
completes the proof of Theorem 11. O

Proof of Theorem 12. By Theorem 10 there are 23 families of weight-ho-
mogeneous polynomials but not homogeneous with the minimal vector w =
(s1,82,7) with s1 > s92. We can check that systems 23, 25, 27, 29, 30, 32, 33, 34,
43 have the invariant line y = 0, whereas systems 35, 36, 37, 38, 39, 40, 41, 42
have the invariant line x = 0. So their origin cannot be a center. Sys-
tem 24 has the first integral H = bgoz” /7 — a077y8/8, system 28 has the
first integral H = byox®/5 — ag7y®/8, and for system 31 a first integral is
H = byx3/3 — ap7y®/8. So, clearly systems 24, 28 and 31 cannot have a
center at the origin.

In short we are left with studying systems 21, 22 and 26.
Lemma 15. System 21) has a center at the origin if and only if

2 3
a3,1 + a23T; + a1,57; + Ao, 77y
asl — 262’2 + 2a2,3r¢ — 4[)1’47“1' + 3(11’57“1'2 — 6()0,67"1-2 + 4a0,7r

5 €QT,

i

where the r;’s are the four simple roots of the polynomial 2b3o — az1v +
2b272U — a2’31}2 + 2b1,4’02 — (11,5’03 + 2b0767j3 — a077v4.

Proof. Following [9] we first do the change of variables u = z and v = 32/
and the rescaling of time which transforms a quasi-homogeneous system 21)
into a polynomial system of the form (4) which admits a first integral of the
form (6), where the function h(v) satisfies the differential equation (7). We
assume now that V' (u,v) = ug(v) is not square-free. Recalling the proof of
Theorem 8 we obtain that the first integral (6) cannot be a C'™ first integral
to have a center at the origin, and the same happens for the transformed
first integral in the original variables (z,y) of system 21).

Now we assume that V(u,v) = ug(v) is square-free, i.e., that g(v) is
square-free. Using the change of variables (u,v) we arrive to a first integral
of th e form

H(z,y) = (y° = @)™ (y? — rox) 2 (y° — r32) (4 — rax)™,
where 7; are the four complex simple roots of the polynomial g(v) = 2b39 —
as,1v + 2b2721) — a2,3v2 + 2()174112 — 01751}3 + 2b0y61)3 — a0,7v4 and

as1 +ag3sr; + 011,57“1'2 + ao,ﬂ“;?’
asyl — 2b272 + 2a2,3n- — 4b1’47'i + 3@1’57'7;2 — 6b0767“i2 + 4a0,7r?’

)
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where the denominator is in fact —¢’(r;). Hence the condition for having
a C™ first integral defined at the origin, and thus to have a center at the
origin is \; € Q. O

Lemma 16. System 22) has a center at the origin if and only if one of the
following conditions holds:

< 1 for

. 3 4b . 3 4b
(1) a3 3+ - 2,4 c Q; with a3z 3+ - 2,4
\/(3a3,3—4b2,4) +48a0,7bs,0 \/(3a3,3—4b2,4) +48a0,7bs,0

(3@373 — 4b2,4)2 + 48&077[)5,0 #0;
(i) 3ass +4baa = bs0 = 0.

Proof. System 22) has the first integral

A1
H(xz,y) = << —3agz + 4bya + \/(3a3,3 — 4b9 4)? + 48ap 7bs 0 >x3 - 6a0,7y4)

A2
. ((303,3 —4ba 4 + \/(3a3,3 — 4by 4)? + 48a 7b5 o >563 + 6ao,7y4) ;

where A\; = 1+ 303544024 and Ao = 1— 3a3,3+4b2,4
V/(3az 3—4bs,4)2+48a0,7bs,0 /(3as.5 by 4)2+48a0 7bs.0

when (3as,3—4b2,4)*+48a0,7b50 # 0. Therefore applying Theorem 4 in order
to have a C*° first integral we obtain the condition

3az 3 + 4b2 4 3as,s + 4ba 4
v/ (3az3 — 4b2,4)? + 48a0,7b5,0 V/(3as s — 4by 4)% + 48ag,7bs,0
For the case (3az3 — 4b274)2 + 48ag,7b50 = 0 as ap,y # 0 because other-

wise system 22) has the invariant curve = 0 we take bsg = —(3a33 —
4by 4)?/(48ap 7), and a first integral is

€ Q, with <1

(3a3,3+4by 4)a°
- 3_ 3 4
H(z,y) = e s~ t2a0%46a0,19% (305 30 — 4by 42 + 6a0 7y"),

which is analytic if and only if 3a3 3 + 4ba 4 = 0. O
Lemma 17. System 26) has a center at the origin if and only if a%73 —

8&173190’4 + 16()(2]’4 + 16a077b170 < 0.

Proof. We can consider that by g # 0 because if by g = 0, then system 26) has
the invariant curve y = 0 and it cannot have a center at the origin. Hence
system 26) has a nilpotent singular point at the origin and we interchange
x <> y to put system 26) into its classical form and we obtain

& =biroy+boar’,  §=aprz’ +aizr’y. (10)
Now we do the rescaling y = Y /b1 9, and system (10) takes the form
& =y+boar!,  §=aorbioz’ +aiza’y, (11)

rewriting Y by y. Now we apply Theorem 13 and we obtain that the solution
is given by y = F(z) = —bp 4z and

f(a:) = —(a173b0,4 — a0,7bl70)x7 + O(:cg),
o(z) = (a1,3 + 4b0,4)$3 + O(x4).
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Therefore we have a = —(a1,3boa — ao,7b1,0) with a =7, b = (a1,3 + 4bo 4)
with § = 3. Here we have « = 2-4—1and 8 =n—1=4—1 = 3. Hence the
condition b — 4an is a%S —8a1,3bp 4+ 161)(2)74 +16ag,7b1,0 < 0 is the condition
in order that system (11) has a focus or a center.

In this case the origin is a center of (11) and also of (10), because the
system above is reversible, i.e. it is invariant by the symmetry (x,y,t) —
(—z,y,—t). O

This completes the proof of the theorem. O
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