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SIMULTANEITY OF CENTERS IN Zq-EQUIVARIANT

SYSTEMS

JAUME GINÉ1, JAUME LLIBRE2 AND CLAUDIA VALLS3

Abstract. We study the simultaneous existence of centers for two fam-
ilies of planar Zq-equivariant systems. First we give a short review about
Zq-equivariant systems. Next we present necessary and sufficient con-
ditions for simultaneous existence of centers for a Z2-equivariant cubic
system and for a Z2-equivariant quintic system.

1. Introduction

The second part of Hilbert’s 16th problem deals with the existence of
a uniform upper bound on the number of limit cycles H(n) of a planar
polynomial differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

in function of n where n = max(degP, degQ), see for instance [17, 26]. It is
well-known that linear polynomial systems have no limit cycles, thenH(1) =
0 and for n ≥ 2 the problem remains open. Only lower bounds are known
and our objective is to improve these lower bounds. An efficient method
is to perturb symmetric Hamiltonian systems. The symmetric Hamiltonian
systems are Hamiltonian systems with certain symmetries that allow the
existence of a great number of centers whose perturbations give a large
number of limit cycles.

A generalization of these symmetric Hamiltonian systems are the Zq-
equivariant systems defined below using a cyclic group Zq. In this paper
we give a survey of the results obtained respect to the local and global
bifurcations of limit cycles previously analyzing the center problem for such
systems. The Zq-symmetry allows that analyzing the limit cycles which can
bifurcate from one center we are analyzing simultaneously this problem for
q centers. Some new particular cases are studied in detail.

LetG be a compact Lie group of transformations acting on Rn. A function
H : Rn → R is a G-equivariant function if for all g ∈ G and for all x we
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have that H(gx) = gH(x). Given a G-equivariant map ϕ, the vector field
dx/dt = ϕ(x) is called a G-equivariant vector field.

Given an integer q a group Zq is a Zq cyclic group if it is generated by
a planar counter-clockwise rotation of angle 2π/q around a point p that we
can translate to the origin. For instance a Z2-equivariant vector field in the
plane is a vector field whose phase portrait is unchanged after a rotation
of angle π around the origin. Its characterization is very straightforward in
complex variables. Doing the change of variables z = x+ iy and z̄ = x− iy,
system (1) takes the form

(2) ż = F (z, z̄), ˙̄z = F̄ (z, z̄).

where F (z, z̄) = P (x, y) + iQ(x, y) with x = (z + z̄)/2 and y = (z − z̄)/(2i).

The following result characterizes a Zq-equivariant complex vector field
and it is proved in [33], see also [26, 31].

Theorem 1. The vector field (2) is a Zq-equivariant complex vector field if
and only if the complex function F (z, z̄) has the form

F (z, z̄) =
∑
ℓ=1

gℓ(|z|2)z̄ℓq−1 +
∑
ℓ=0

hℓ(|z|2)zℓq+1,

where gℓ and hℓ are polynomials in |z|2 with complex coefficients. Moreover
system (2) is Hamiltonian if and only if ∂F/∂z + ∂F̄/∂z̄ = 0.

For obtaining some particular Zq-equivariant complex vector field it is
necessary to fix the degree of the system n and the value of q which appears
in statement of Theorem 1. As q increases more restrictions have the system
because it is invariant under a rotation of smaller angle. In [26] are given the
Z5-equivariant complex vector field of degree 5. However in this classification
there are some mistakes. For instance for q = 4 appears a term A5z̄

5 that
cannot appear attending to the form of F (z, z̄). The mistake is also repeated
in [31].

Several authors have studied the Zq-equivariant systems in order to clas-
sify their centers and to compute the bifurcations of limit cycles under con-
venient perturbations. For instance in [26] a method was given to control the
parameters in order to obtain as much as possible limit cycles. The method
was applied to Zq-equivariant perturbed polynomial Hamiltonian systems of
degree n = 5 for q = 2 to 6 and with the help of numerical analysis it was
proved that at least 24 limit cycles can bifurcate for such systems, [4, 26].
In fact the cases q = 2 and q = 3 were studied separately in [5, 27] where at
least 15 and 23 limit cycles were founded respectively.

In [6, 11, 23, 27, 34, 43, 47] the Z2-equivariant systems have been studied.
In particular the centers, isochronous centers and local critical periods of Z2-
equivariant cubic systems have been studied in [6, 11, 27, 34, 43]. In fact the
study of bifurcation of limit cycles of the Z2-equivariant cubic systems has
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given rise to the highest lower bound of limit cycles for the cubic systems, see
[35] and references therein. The center problem and the bifurcation of limit
cycles for Z2-equivariant quintic systems have been studied in [23, 34, 43].
Finally the study of Z2-equivariant Liénard systems has been started in [47].

The limit cycles of the Z3-equivariant near-Hamiltonian systems have
been studied in [38, 37]. In [12, 13, 41, 44, 45, 48] the Z4-equivariant systems
have been studied were the most analyzed are the Z4-equivariant quintic
systems. However the Z4-equivariant cubic systems were treated in [12], and
the small limit cycles of the Z4-equivariant near-Hamiltonian systems have
been studied in [45]. Finally the study of Z6-equivariant quintic systems has
been started in [2, 28], and the bifurcations of limit cycles in a Z8-equivariant
planar vector field of degree 7 has been considered in [32].

Recently the limit cycles for Z2n-equivariant systems without infinite sin-
gular point have been discussed in [24]. In several papers are classified the
phase portraits of some Zq-equivariant systems but we do not describe here
these works because the phase portraits are not the objective of the present
paper.

Other interesting systems are the Z2-symmetric systems.

A system (1) is Z2-symmetric (with respect to the origin) if it is invariant
under the involution (x, y) → (−x,−y), that is, P (−x,−y) = −P (x, y) and
Q(−x,−y) = −Q(x, y).

Recently the center problem have been solved for such Z2-symmetric sys-
tems, see [1]. The bifurcation of limit cycles for the Z2-symmetric cubic
systems have been studied in [30] and for the Z2-symmetric Liénard sys-
tems in [46]. The first natural question that arises is what is the relation
between Zq-equivariant systems and Z2-symmetric systems. Our first result
is:

Proposition 2. Any Z2-symmetric is a Z2-equivariant system.

However there are Zq-equivariant systems with q ̸= 2 that are not Z2-
symmetric system. For instance system

ẋ = −y(A0 − 4A3x
3 + 4A3xy

2), ẏ = A0x+A3x
4 − 6A3x

2y2 +A3y
4.

is a Z4-equivariant system but is not a Z2-symmetric system.

An important application of the Zq-equivariant systems is to obtain lower
bounds for the Hilbert numbers H(n). It was known that H(n) ≥ k1n

2 for
some constant k1, see for instance [3, 21, 39]. In [8] it was shown that H(n)
grows at least as k2n

2 log n from perturbing some Zq-equivariant systems.
Some small improvements to this bound have been given in [29, 19, 20, 49]
improving the values of the constant k2. In fact in [36] it was conjectured
that H(n) is O(n3) as n → ∞.
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In this paper we study the number of simultaneous centers in planar
differential systems. Up to know the simultaneity of centers was investigated
only for very few particular families. For instance the existence of two
simultaneous centers was studied in [22, 25] for quadratic systems, and in
[9, 7] for some particular cubic systems. The simultaneity of centers in
planar differential systems is an important goal because perturbations of
such systems gives a great number of bifurcations of limit cycles, see [3, 15,
40].

Recently in [34, 43] have been studied the Z2-equivariant cubic systems
of the form

(3) ẋ = X1(x, y) +X3(x, y), ẏ = Y1(x, y) + Y3(x, y),

where Xi and Yi are homogeneous polynomials of degree i having to weak
centers or focus at the points (−1, 0) and (1, 0). In this work we give nec-
essary and sufficient conditions to have a center and an isochronous center
at these singular points. Note that when we have a center at one of the sin-
gular points then automatically we have a center at the other one because
the system is Z2-symmetric. Moreover in [43] it was given the necessary and
sufficient conditions in order that such centers be isochronous centers. In
the present paper we will study the conditions in order to have more centers
in system (3). More specifically we will give the condition to have a center at
the origin and two more centers in the arbitrary points (a, b) and (−a,−b).
We will see that these three more centers appear simultaneously.

In [43] it is also characterized the existence of two centers and isochronous
centers at the points (−1, 0) and (1, 0) for the Z2-equivariant quintic system
of the form

(4) ẋ = X1(x, y) +X5(x, y), ẏ = Y1(x, y) + Y5(x, y),

where Xi and Yi are homogeneous polynomials of degree i. However in [43]
only a particular case is studied. because the general case is computationally
unfeasible. The particular case studied has x = 0 as an invariant straight
line which implies that the origin can not be a center. In the present paper
we study the existence of more centers for such systems studying also the
simultaneity in its appearance. As before we will give the condition to have
a center at the origin and two more centers in the arbitrary points (a, b) and
(−a,−b).

2. Definitions and preliminary results

In this section we introduce some definitions and preliminary results which
will be used along the work.

By a linear change of coordinates and a time rescaling system (1) with a
weak focus can be written into the form

(5) ẋ = −y +X(x, y) = P (x, y), ẏ = x+ Y (x, y) = Q(x, y),
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where X and Y are polynomials without constant and linear terms. We
denote by X = P∂/∂x+Q∂/∂y the corresponding vector field associate to
system (5). A first integral of system (5) is a nonconstant functionH defined
in a neighborhood of the origin which is constant along the trajectories, i.e.,

Ḣ = XH = P
∂H

∂x
+Q

∂H

∂y
= 0.

A function R not identically zero is an integrating factor of system (5) if

∂(RP )

∂x
+

∂(RQ)

∂y
= 0.

A first integral H associated to this integrating factor R is given by

H(x, y) =

∫
RPdy + f(x),

where this H must satisfy ∂H/∂x = −RQ. A function V not identically
zero is an inverse integrating factor of system (5) if it satisfies

(6) P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+

∂Q

∂y

)
V.

This function V defines the integrating factor R = 1/V where it does not
vanish. The next results characterize when system (5) has a center at the
origin, see for instance [17].

Theorem 3. System (5) has a center at the origin if and only if there exists
a local analytic first integral of the form H(x, y) = x2 + y2 +F (x, y) defined
in a neighborhood of the origin, where F starts with terms of order higher
than 2.

The next theorem is known as Reeb’s criterium for the classical center
problem, see [16, 42].

Theorem 4. Let p be a focus or a center of system (5). Then p is a center
if and only if there is a nonzero analytic integrating factor V defined in a
neighborhood p with V (p) ̸= 0.

For system (5) it is possible to construct a formal first integral of the form

H(x, y) = x2 + y2 + · · · , such that Ḣ = XH =
∑∞

i=1 Vi(x
2 + y2)2i, where

the Vi are polynomials in the parameters of system (5) called the Poincaré-
Liapunov constants. These constants are the obstructions to the existence
of a first integral for system (5). Hence if system (5) has a first integral then
all the Vi = 0 for all i ≥ 1. Consequently the simultaneous vanishing of all
the Poincaré-Liapunov constants provides the necessary conditions to have
a center at the origin of system (5). We define the ideal generate by these
constants by B = ⟨V1, V2, . . .⟩ ⊂ C[λ] where λ are the parameters of system
(5). This ideal is called the Bautin ideal, and the affine variety V (B) is the
center variety of system (5).
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The Hilbert basis theorem assures the existence of a positive value k such
that B = Bk = ⟨V1, V2, . . . Vk⟩. In fact we always have that V (B) ⊂ V (Bk).
The opposite inclusion is satisfied if any point of each component of the
irreducible decomposition of V (Bk) corresponds to a system having a center
at the origin. To find the irreducible component of V (Bk) we use the routine
minAssGTZ [10] of the computer algebra system Singular [18].

Finally we recall some results of the Darboux theory of integrability for
polynomials differential systems, see [17] or Chapter 8 of [14] and references
therein for more details. An invariant algebraic curve f(x, y) = 0 of system
(5) is given by a polynomial f(x, y) satisfying

P
∂f

∂x
+Q

∂f

∂y
= Kf,

where K is called the cofactor of the invariant algebraic curve, which is
a polynomial of degree at most n − 1. A Darboux first integral of system
(5) is a first integral of the form H = fα1

1 · · · fαk
k where fi are invariant

algebraic curves of system (5) and αi ∈ C. A Darboux integrating factor

of system (5) is an integrating factor of the form R = fβ1
1 · · · fβk

k where
and βi ∈ C. Assume that the cofactors of invariant curves f1, f2, . . . , fk
are K1,K2, . . . ,Kk, then if there exist αi ∈ C for i = 1, . . . , k such that∑k

i=1 αiKi = 0 then H = fα1
1 · · · fαk

k is a Darboux first integral of system

(5). Moreover if there exist βi ∈ C for i = 1, . . . , k, satisfying
∑k

i=1 αiKi +

∂P/∂x + ∂Q/∂y = 0, then R = fβ1
1 · · · fβk

k is a Darboux integrating factor
of system (5).

A time-reversible system is a system which has a line through the origin
such that this line is a symmetry axis of the phase portrait. More specifically,
if this line is given by the straight line through the origin with slope tan(α/2),
then after a rotation of α/2 the system is invariant under the symmetry
(x, y, t) → (x,−y,−t). If we know that a singular point on this line is a
center or a focus, the presence of this time-reversible symmetry prevents
this singularity to be a focus, consequently it must to be a center.

3. Simultaneity of centers for a Z2-equivariant cubic system

In [34] it was studied what is called the bi-center problem for a Z2-equiva-
riant cubic system of the form (3) and it was found the necessary and suffi-
cient conditions for existence of two centers at the points (−1, 0) and (1, 0).
Imposing that system (3) has a focus-center singular point at such singular
points then it takes the form

(7)

ẋ = −(c21 + 1)y + c21x
2y + c12xy

2 + c03y
3,

ẏ = −1

2
x− d01y +

1

2
x3 + d01x

2y + d12xy
2 + d03y

3,
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where ci,j and di,j are real parameters. In Theorem 7 of [34] are given
eleven different families of centers that provide the center variety of system
(7). In what follows the existence of more centers for such system and the
simultaneity in their appearance is studied. First we impose the existence
of a singular point at (a, b) with ab ̸= 0 arbitrary, and after that this point
be a focus-center singular point with purely eigenvalues and we get

b3c03 + ab2c12 − b(1 + c21) + a2bc21 = 0,

−a

2
+

a3

2
+ bd01 − a2bd01 + b3d03 + ab2d12 = 0,

b2c12 + 2abc21 = 0, d01 − a2d01 + 3b2d03 + 2abd12 = 0,

3b2c03 + 2abc12 − c21 + a2c21 = 0, −3

2
+

3a2

2
− 2abd01 + b2d12 = 0.

(8)

The unique real solution of this algebraic system of equations gives the
following result.

Theorem 5. System (7) with the additional pair of focus-center singular
point (a, b) and (−a,−b) becomes

(9)
ẋ =

y

2
− 3x2y

2
+

3axy2

b
− (1 + 3a2)y3

2b2
.

ẏ = −x

2
+

x3

2
− 3(−1 + a2)xy2

2b2
+

a(−1 + a2)y3

b3
.

Moreover system (9) has five singular points of focus-center type that simul-
taneously become centers if a2 + b2 − 1 = 0.

Proof. The solution of system (8) is

d03 =
a(−1 + a2)

b3
, c03 = −1 + 3a2

2b2
, c12 =

3a

b
,

c21 = −3

2
, d01 = 0, d12 = −3(−1 + a2)

2b2
.

Introducing these values in system (7) we obtain (9). System (9) has the
finite singular points (0, 0), (−1, 0), (1, 0), (1+a)/2, b/2), (−(1+a)/2,−b/2),
((a − 1)/2, b/2), (−(a − 1)/2,−b/2), (−a,−b) and (a, b). It is easy to see
that the singular points (0, 0), (−1, 0), (1, 0), (−a,−b) and (a, b) are focus-
centers singular points. The first two because system (7) already had them.
As we have impose (a, b) as focus-center singular point by the symmetry we
obtain that (−a,−b) it is too. The surprise is that the origin becomes also
a focus-center singular point. Finally if a2 + b2 − 1 = 0 then the system
is Hamiltonian and all these singular points become centers because system
(9) has a polynomial first integral and this happens simultaneously. �
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4. Simultaneity of centers for a Z2-equivariant quintic system

Recently in [43] it was studied the bi-center problem for a Z2-equivariant
quintic system of the form (4) and it was found the necessary and sufficient
conditions for the existence of two centers at the points (−1, 0) and (1, 0).
Imposing that system (4) has a focus-center singular point at such singular
points then it takes the form
(10)

ẋ = −(1 + c41)y + c41x
4y + c32x

3y2 + c23x
2y3 + c14xy

4 + c05y
5,

ẏ = −x

4
+

x5

4
+ d01y − d01x

4y + d32x
3y2 + d23x

2y3 + d14xy
4 + d05y

5,

where ci,j and di,j are real parameters. In Theorem 4.2 of [43] are given
four different families of centers that provide the center variety of system
(7) but only in the particular case c41 = −1 and c05 = 0. Under these
last conditions the origin cannot be a center because the line x = 0 is an
invariant straight line of system (10). In the following the existence of more
centers for the general system (10) and the simultaneity in their appearance
is studied. First we impose the existence of a singular point at (a, b) with
ab ̸= 0 arbitrary with the condition that this point be a focus-center singular
point and we obtain

b5c05 + ab4c14 + a2b3c23 + a3b2c32 − b(1 + c41) + a4bc41 = 0,

−a

4
+

a5

4
+ bd01 − a4bd01 + b5d05 + ab4d14 + a2b3d23 + a3b2d32 = 0,

b4c14 + 2ab3c23 + 3a2b2c32 + 4a3bc41 = 0,

d01 − a4d01 + 5b4d05 + 4ab3d14 + 3a2b2d23 + 2a3bd32 = 0,

5b4c05 + 4ab3c14 + 3a2b2c23 + 2a3bc32 − c41 + a4c41 = 0,

−5

4
+

5a4

4
− 4a3bd01 + b4d14 + 2ab3d23 + 3a2b2d32 = 0.

(11)

The unique real solution of this algebraic system of equations is

d05 =− a− a5 + 4ab4d14 + 2a2b3d23
6b5

, c41 = −5

4
, d01 = 0,

c05 =− 3 + 5a4 + 8ab3c14 + 4a2b2c23
12b4

, c32 = −−5a3 + b3c14 + 2ab2c23
3a2b

,

d32 =− −5 + 5a4 + 4b4d14 + 8ab3d23
12a2b2

.

However we do not introduce all these values in system (10) because we must
to compute the Poincaré-Liapunov constants or focal values in the point
(1, 0) and with these substitutions the computations become harder to be
computed. Hence we only impose the condition c41 = −5/4 and d01 = 0.
To compute the focal values at the point (1, 0) we first move this point to
the origin applying the transformation u = x − 1 and v = y. Computing
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these focal values and doing the decomposition of the ideal generated by the
Poincaré-Liapunov constants we can establish the following theorem.

Theorem 6. System (10) with c41 = −5/4 and d01 = 0 has a center at the
points (−1, 0) and (1, 0) if and only if one of the following conditions holds:

(a) d05 = d23 = c14 = c32 = 0,
(b) c32 − d23 = c14 − d05 = 2d32 + 1 = 4c05 + 1 = 4c23 − 4d14 + 3 = 0,
(c) c32 + d23 = c23 + 2d14 = c14 + 5d05 = 2d32 − 5 = 0,
(d) c14 + d23 + 2d05 = c23 − c05 + d32 − d14 + 1 = c32 + 3d05 = 2d32d05 −

d23−2d05 = c05d23+d23d14−c05d05+3d14d05−d23−4d05 = 2c05d32+
2d32d14 + 2c23 − 5c05 − d14 = 0.

Proof. We computed the first eight nonzero focal values using the method
described in Section 2. Their expressions are extremely long and we only
write here the first two.
V1 = 2c32 − 3d23 − 2c32d32,

V2 = 96c14 − 34c32 + 144c23c32 − 40c332 − 120d05 − 160c32d14 + 291d23

− 36c23d23 + 60c232d23 − 48c14d32 + 410c32d32 − 104c23c32d32 + 40c332d32

− 240d23d32 − 536c32d
2
32 + 492d23d

2
32 + 328c32d

3
32.

Next we compute the irreducible decomposition of the variety V (B8) =
V (⟨V1, V2, V3, V4, V5, V6, V17, V8⟩) of these Poincaré-Liapunov constants us-
ing the routine minAssGTZ of the computer algebra system Singular over
the field of the rational numbers and we obtain the families given in the
statement of the theorem. Now we prove the sufficiency.

Case (a). Under condition (a) of Theorem 6 system (10) with c41 = −5/4,
and d01 = 0 and with the point (1, 0) at the origin of coordinates takes the
form

u̇ = −v + 5uv − 15u2v

2
+ 5u3v − 5u4v

4
+ c23v

3(1− 2u+ u2) + c05v
5,

v̇ = u− 5u2

2
+

5u3

2
− 5u4

4
+

u5

4
− d32v

2(1− 3u+ 3u2 − u3)− d14v
4(1− u).

This system is invariant by the symmetry (u, v, t) → (u,−v,−t), hence it is
a time-reversible system and it has a center at the points (1, 0) and (−1, 0).

Case (b). System (10) with c41 = −5/4 and d01 = 0 under the conditions
of statement (b) of Theorem 6 and with the point (1, 0) at the origin of
coordinates takes the form

(12)

u̇ =
1

4
v [−4 + 20u− 30u2 + 20u3 − 5u4 + 4d23(u− 1)3v

+(4d14 − 3)(u− 1)2v2 + 4d05(u− 1)v3 − v4],

v̇ =
1

4
(u− 2)(u− 1)u(2 + (u− 2)u)− 1

2
(u− 1)3v2

+d23(u− 1)2v3 + d14(u− 1)v4 + d05v
5.
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System (12) has an inverse integrating factor of the form V = (1 − 2u +
u2+v2)3, hence by Reeb’s theorem, see [42], system (12) has a center at the
points (1, 0) and (−1, 0). However if we go back to the origin the inverse
integrating factor takes the form V = (x2 + y2)3 and the Reeb’s theorem
cannot be applied to this point.

Case (c). Under the conditions of statement (c) of Theorem 6 system
(10) with c41 = −5/4, d01 = 0, and with the point (1, 0) at the origin of
coordinates takes the form

(13)

u̇ =
1

4
v [−4 + 20u− 30u2 + 20u3 − 5u4 − 4d23(u− 1)3v

−8d14(u− 1)2v2 − 20d05(u− 1)v3 + 4c05v
4],

v̇ =
1

4
(u− 2)(u− 1)u(2 + (−2 + u)u) +

5

2
(u− 1)3v2

+d23(u− 1)2v3 + d14(u− 1)v4 + d05v
5.

System (14) is Hamiltonian and then it has a center at the singular points
(1, 0) and (−1, 0).

Case (d). Under the conditions of statement (c) of Theorem 6 system
(10) with c41 = −5/4, d01 = 0, and with the point (1, 0) at the origin of
coordinates takes the form

u̇ =
1

4
v [−4 + 20u− 30u2 + 20u3 − 5u4 − 12d05(u− 1)3v + 4c23(u− 1)2v2

−8d05d32(u− 1)v3 − (1− c23 − d32 − 2c23d32 − 2d232)v
4],

v̇ =
1

4
[(u− 2)(u− 1)u(2 + (u− 2)u) + 4d32(u− 1)3v2

+8d05(d32 − 1)(u− 1)2v3

−((1 + d32)(2d32 − 5) + c23(2d32 − 3))(u− 1)v4 + 4d05v
5].

This system has an inverse integrating factor of the form V = (1−2u+u2+

v2)5/2−d32 , hence by Reeb’s theorem system (12) has a center at the points
(1, 0) and (−1, 0). However if we go back to the origin the inverse integrating

factor takes the form V = (x2 + y2)5/2−d32 and the Reeb’s theorem cannot
be applied at (0, 0). �

Now we study if the families of centers given in Theorem 6 having also
center at the origin of coordinates.

Theorem 7. Any system (10) with c41 = −5/4 and d01 = 0 satisfying
conditions one of the conditions (a), (b) and (d) of Theorem 6 has always
a center at the origin of coordinates. Moreover satisfying condition (b) of
Theorem 6 has a center at the origin if and only if 3d05 + d23 = 0.
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Proof. For the case (a) the system (10) takes the form

ẋ =
y

4
− 5x4y

4
+ c23x

2y3 + c05y
5,

ẏ = −x

4
+

x5

4
+ d32x

3y2 + d14xy
4.

Therefore is also time-reversible and consequently has a center at (0, 0).

For the case (b) although the system has an inverse integrating factor
given by V = (x2 + y2)3 we have that V (0, 0) = 0 and the Reeb’s theorem
cannot be applied at the origin. In fact if we construct the first integral
associated to this inverse integrating factor we obtain a first integral which
is not analytic at the origin. Moreover computing the first focal value at the
origin we obtain V4 = 3d05 + d23. If we vanish this constant we get the first
integral

H(x, y) = (x2 + y2) e

1 + 8x2y2 + 16d05xy
3 + (5− 4d14)y

4

2(x2 + y2)2 .

or, the first integral

G(x, y) = logH2(x, y)

= log

(
(x2 + y2)2 e

1+8x2y2+16d05xy
3+(5−4d14)y

4

(x2+y2)2

)
=

1 + P (x, y) + (x2 + y2)2 log(x2 + y2)2

(x2 + y2)2
,

where

P (x, y) = 8x2y2 + 16d05xy
3 + (5− 4d14)y

4.

Then the first integral

F (x, y) =
1

G(x, y)

is well defined at the origin. So the origin is a center.

The case (c) is Hamiltonian and consequently all its focus-center singular
points are centers because in this case system (10) has a polynomial first
integral.

Finally the case (d) also has the inverse integrating factor V = (x2 +

y2)5/2−d32 with V (0, 0) = 0, and the Reeb’s theorem cannot also be applied
at the origin. But the associated first integral to V is

H(x, y) = (x2 + y2)−(3/2)+d32f,

where f = 1+2d32+3x4−2d32x
4+4(3+d32−2d232)x

2y2+4d05(3−4(d32−
1)d32)xy

3 − (2d32 − 3)(1 − c23 − d32 − 2c23d32 − 2d232)y
4. Hence this first

integral or its inverse is always analytic at the origin. Therefore the origin
of system (10) is a center. �
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The next result gives when the families of centers given in Theorem 6
have a center at the singular point (a, b).

Theorem 8. Any system (10) with c41 = −5/4 and d01 = 0 satisfying
conditions one of the conditions (a), (b), (c) or (d) of Theorem 6 has the
additional centers at the singular point (a, b) and (−a,−b) with ab ̸= 0 if,
and only if, for case (a) −1 + a4 + 5a2b2 = 0, for cases (b), (c) and (d)
always.

Proof. We take system (10) and impose the conditions of statement (a).
Next we impose that the system has the singular point (a, b) and system
(10) becomes

(14)
ẋ =

y

4
− 5x4y

4
+

5a2x2y3

2b2
− (1 + 5a4)y5

4b4
,

v̇ = −x

4
+

x5

4
− (a4 − 1)x3y2

2a2b2
− (1− a4)xy4

4b4
.

The next step is to move the point (a, b) to the origin applying the transfor-
mation u = x− a and v = y− b, and compute the focal values at this point.
The first two non–zero focal values are

V1 =
a

2b3
(1 + 2a4 + 2a2b2)(−1 + a4 + 5a2b2)

and

V2 =− 1

96ab7
(1 + 2a4 + 2a2b2)(−1 + a4 + 5a2b2)(

164a4 − 424a8 + 164a12− 247a2b2 + 64a6b2

+ 2220a10b2 + 141b4 + 1736a4b4 + 7020a8b4 + 6500a6b6
)
.

Then we have that the unique common factor of V1 and V2 with real roots
is −1 + a4 + 5a2b2, which are b = ±

√
1− a4/(

√
5a).

For the cases (b) and (d) we have that V = (x2 + y2)3 and V = (x2 +

y2)5/2−d32 are inverse integrating factors respectively. Therefore at the point
(a, b) with ab ̸= 0 we have the inverse integrating factor V = ((u+a)2+(v+

b)2)3 and V = ((u+a)2+(v+b)2)5/2−d32 both with V (0, 0) ̸= 0 respectively.
Consequently applying Reeb’s theorem, see [42], in both cases we have a
center at the points (a, b).

Finally, the case (c) is Hamiltonian and any focus-center singular point
must be a center. �
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Pais 1049-001, Lisboa, Portugal

E-mail address: cvalls@math.ist.utl.pt


