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CHIELLINI HAMILTONIAN LIÉNARD DIFFERENTIAL

SYSTEMS

JAUME GINÉ1, JAUME LLIBRE2 AND CLAUDIA VALLS3

Abstract. We characterize the centers of the Chiellini Hamiltonian
Liénard second-order differential equations x′ = y, y′ = −f(x)y − g(x)
where g(x) = f(x)(k − α(1 + α)

∫
f(x)dx) with α, k ∈ R. Moreover we

study the phase portraits in the Poincaré disk of these systems when
f(x) is linear.

1. Introduction

In the study of differential equations, a Liénard equation in R is a second–
order differential equation of the form

x′′ + f(x)x′ + g(x) = 0,

named in honor of the French physicist Alfred-Marie Liénard [13], who dur-
ing the development of radio and vacuum tube technology, introduced such
equations to model oscillating circuits. These equations have been studied
intensively, thus now in MathSciNet are more than 1480 articles which ap-
pear the keywords “Liénard” and “equation”, some of these recent papers
are for instance [2, 6, 7, 10, 12, 14] and the references quoted therein.

Here we deal with Liénard second–order differential equations

x′′ + f(x)x′ + g(x) = 0,

where f and g are polynomials, or equivalently with first–order differential
system of equations

(1) ẋ = y, ẏ = −f(x)y − g(x),

in R
2. In 1931 Chiellini [3] proved that system (1) is integrable if the func-

tions f(x) and g(x) satisfy the condition

(2)
d

dx

(

g(x)

f(x)

)

= sf(x),

where s is a constant. This condition is now known as the Chiellini condition.

Recently Ghose Choudhury and Guha in [9] studied when the Liénard
systems (1) satisfying Chiellini condition admit a Hamiltonian formulation
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and they proved that this holds if in (2) we have s = −α(1+α) with α ∈ R.
More precisely, if

(3) g(x) = f(x)

(

k − α(1 + α)

∫

f(x)dx

)

,

where k ∈ R, then the Liénard systems (1) satisfying (3) admit an integrat-
ing factor R(x, y) such that the differential system

ẋ = R(x, y)y = −∂H

∂y
, ẏ = R(x, y)(−f(x)y − g(x)) =

∂H

∂x
,

is Hamiltonian with the Hamiltonian function

H =



























(

α(y(1 + α)f(x) + g(x))

(1 + 2α)f(x)

)α (

y − g(x)

αf(x)

)1+α

if α /∈ {−1,−1/2, 0},

ey+F (x)(k + y)−k if α ∈ {−1, 0},

e
4(F (x)+4k)
F (x)+4k+2y (F (x) + 4k + 2y)4 if α = −1/2,

where F (x) =

∫

f(x)dx. Note that H is a Darboux first integral, for more

details on Darboux integrability see Chapter 8 of [5]. We remark that the
first integrals H are not given in [9].

First we are interested in the center problem for the Liénard systems (1)
satisfying (3) and we get the next result.

Theorem 1. The singular point (x0, 0) of system (1) is a center if it satisfies

the conditions (3), g(x0) = 0 and g′(x0) > 0.

Theorem 1 is proved in section 2

Now we consider system (1) satisfying condition (3) in the case in which
f(x) is linear that is, f(x) = ax+ b with a, b ∈ R, a 6= 0. The second main
result is concerned with the phase portraits in the Poincaré disk of these
systems, i.e.

(4) ẋ = y, ẏ = −1

2
(b+ ax)(2k + 2y − 2α(1 + α)bx− α(1 + α)ax2),

with a 6= 0 and α2(α+1)2+k2 6= 0 (otherwise g(x) ≡ 0). See Chapter 5 in [5]
for the definition and results concerning the Poincaré disk and the Poincaré
compactification and see Chapter 1 in [5] for the definition of topologically
equivalence.

The second main result in the paper is the following.

Theorem 2. The phase portraits of system (4) in the Poincaré disk are

topologically equivalent to the following:

Figure 1 if α(α + 1) = 0 and ak > 0;

Figure 2 if α(α + 1) = 0 and ak < 0;
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Figure 3 if α(α + 1) > 0 and α(α + 1)(α(α + 1)b2 + 2ak) ≤ 0;

Figure 4 if α(α + 1) > 0 and α(α + 1)(α(α + 1)b2 + 2ak) > 0;

Figure 5 if α(α + 1) < 0 and α(α + 1)(α(α + 1)b2 + 2ak) < 0;

Figure 6 if 0 > α(α+1) ≥ −1/4 and α(α+1)(α(α+1)b2+2ak) = 0;

Figure 7 if α(α + 1) < 0 and α(α + 1)(α(α + 1)b2 + 2ak) > 0.

Theorem 3 is proved in section 3.

2. Proof of Theorem 1

The singular point (x0, 0) of system (1) with the translation x = X + x0
pass to the origin of coordinates. Indeed, system (1) becomes

(5) Ẋ = y, ẏ = −f(X + x0)y − g(X + x0) = −f̄(X)y − ḡ(X),

with ḡ(0) = 0 and ḡ′(0) > 0.

In order to prove Theorem 1 for system (5) we first recall that this system
can be transformed by the change of variables y = Y − F̄ (x) into

(6) ẋ = Y − F̄ (x), Ẏ = −ḡ(x),

where F̄ (x) =

∫

f̄(x)dx.

We recall the following result proved in [8], see also [4, 11].

Theorem 3. Consider the differential system

(7) ẋ = ϕ(y)− F (x), ẏ = −g(x).
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where all the involved functions are analytic and satisfy

ϕ(y) = y2m−1 +O(y2m), F (x) = ajx
j +O(xj+1), and

G(x) =

∫

g(x)dx =
x2ℓ

2ℓ
+O(x2ℓ+1),

with m, j and ℓ nonzero positive integers. Consider F (ξ(u)) = fju
j +

O(uj+1), where ξ(u) is defined as the inverse function of

u = x
2ℓ

√

2ℓ
G(x)

x2ℓ
,

and assume that j > ℓ(2m−1)/m. Then it has a center at the origin if there

exist analytic functions β, γ, and h satisfying α(0) = 0, γ(x) = cxℓ+O(xℓ+1)
with c 6= 0, and such that

F (x) = β(h(x)), G(x) = γ(h(x)).

Now we are going to apply Theorem 3 to our system (6). In this case
m = ℓ = 1 and j = 2, because

0 < ḡ′(0) = f̄ ′(0)(k − α(1 + α)F̄ (0)),

and so f̄ ′(0) 6= 0. Now

G(x) =

∫

ḡ(x)dx =

∫

[

f̄(x)
(

k − α(1 + α)

∫

f̄(x)dx
)]

dx

= k

∫

f̄(x)dx− α(1 + α)

∫

F̄ (x)f̄(x)dx = kF̄ (x)− α(1 + α)
1

2
F̄ 2(x).

Hence applying Theorem 3 with β(x) = x, h(x) = F (x) and γ(x) = kx −
α(1 + α)x2/2, we have that Theorem 1 is proved.

3. Proof of Theorem 3

The finite singular points of system (4) are

p1 = (−b/a, 0), p2,3 =
(

− (α(1 + α)b±
√

α(1 + α)(α(1 + α)b2 + 2ak)

α(1 + α)a
, 0
)

.

Note that p2,3 only exist when α(1+α) 6= 0 and α(1+α)(α(1+α)b2+2ak) >
0, because when α(1 + α) 6= 0 and α(1 + α)(α(1 + α)b2 + 2ak) = 0, then
p1 = p2 = p3.

First we study the finite singular point p1. The eigenvalues of the Jacobian
matrix at p1 are

±
√

−α(1 + α)b2 − 2ak√
2

.

If α(1 +α) = 0 then p1 is a saddle if ak < 0 and a center if ak > 0. Now we
assume that α(1+α) 6= 0. So, p1 is a center if α(1+α)b2+2ak > 0, a saddle
if α(1+α)b2 +2ak < 0 and it is nilpotent if α(1+α)b2 +2ak = 0 (note that
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in this last case, that is, when k = −α(1 + α)b2/(2a)) the Jacobian matrix
at p1 is

(

0 1
0 0

)

.

Now we take k = −α(1+α)b2/(2a) and we introduce the change of variables
X = x+ b/a, Y = y. With this change of variables system (4) becomes

X ′ = Y, Y ′ = −aXY +
1

2
α(1 + α)a2X3.

Applying Theorem 3.5 in [5] and taking into account that α(1 + α) ≥ −1/4
(because α(1+α) has a unique minimum at α = −1/2 with value −1/4) we
get that p1 is a saddle if α(1 + α) > 0 and the union of one hyperbolic and
one elliptic sector if α(1 + α) ∈ [−1/4, 0).

Now we study the finite singular points p2,3. In order that they exist we
must have α(1+α) 6= 0 and α(1+α)(α(1+α)b2+2ak) > 0. The eigenvalues
of the Jacobian matrix at p2 are

−
√
α√

1 + α

√

α(1 + α)b2 + 2ak,

√

α(1 + α)b2 + 2ak
√

α
1+α

,

and the eigenvalues of the Jacobian matrix at p3 are

√
α√

1 + α

√

α(1 + α)b2 + 2ak, −
√

α(1 + α)b2 + 2ak
√

α
1+α

.

Hence, p2 and p3 are both saddles if α(1+α) > 0 and α(1+α)b2+2ak > 0 and
they are both nodes (p2 being unstable and p3 being stable) if α(1 +α) < 0
and α(1 + α)b2 + 2ak < 0. In short we have the following finite singular
points:

(i) two nodes (p2 unstable and p3 stable) and a saddle (p1) if α(1 +
α)b2 + 2ak < 0 and α(1 + α) < 0;

(ii) two saddles (p2 and p3) and one center (p1) if α(1 + α)b2 + 2ak > 0
and α(1 + α) > 0;

(iii) one saddle p1 if either α(1+α) = 0 and ak < 0, or α(1+α) > 0 and
α(1 + α)b2 + 2ak ≤ 0;

(iv) one center p1 if either α(1+α) = 0 and ak > 0, or α(1+α) < 0 and
α(1 + α)b2 + 2ak > 0;

(v) one singular point formed by one hyperbolic and one elliptic sector
if α(1 + α) ∈ [−1/4, 0) and α(1 + α)b2 + 2ak = 0.
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Now we compute the infinite singular points in the local chart U1 (see
again Chapter 5 in [5] for its definition). We have

u̇ =
1

2
α(1 + α)a2 +

3

2
α(1 + α)abv − auv + (α(1 + α)b2 − ak)v2 − buv2

− bkv3 − u2v2,

v̇ = −uv3.

(8)

Note that there are no infinite singular points on the local chart U1 if α(1+
α)a2 6= 0.

In the case α(1+α) = 0 then system (8), after simplifying by the common
factor v, we have

u̇ = −(au+ akv + buv + bkv2 + u2v), v̇ = −uv2.

The unique infinite singular point is (u, v) = (0, 0). In this case the Jacobian
matrix at this point is

(

−a −ak
0 0

)

and so the point is semi-hyperbolic with eigenvalues −a, 0. Applying The-
orem 2.19 in [5] we get that it is a saddle if ak > 0, and a node if ak < 0,
stable if a > 0 and otherwise it is unstable.

Now we study the origin in the local chart U2 (see again Chapter 5 in [5]
for its definition). We have

u̇ = v2 + au2v + buv2 − 1

2
α(1 + α)a2u4 − 3

2
α(1 + α)abu3v,

− (α(1 + α)b2 − ak)u2v2 + bkuv3

v̇ = auv2 + bv3 − 1

2
α(1 + α)a2u3v − 3

2
α(1 + α)abu2v2

− (α(1 + α)b2 − ak)uv3 + bkv4.

The origin of the local chart U2 is a singular point. The Jacobian matrix at
the origin is the 2 × 2 zero matrix and so the origin of U2 is linearly zero.
We need to apply blow-up techniques to study it, see for instance [1]. Doing
so, we get the following:

• if α(1 + α) < 0 the origin of the local chart U2 is the union of three
hyperbolic and one elliptic sectors. Its local phase portrait on the
local chart U2 is topologically equivalent to the one of Figure 8 if
a > 0, and to the one of Figure 9 if a < 0;

• if α(1 + α) > 0 the origin of the local chart U2 is the union of
two elliptic sectors separated by parabolic sectors. Its local phase
portrait on the local chart U2 is topologically equivalent to the one
of Figure 10;
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• if α(1 + α) = 0 the origin of the local chart U2 is the union of
one hyperbolic and one elliptic sectors separated by two parabolic
sectors. Its local phase portrait on the local chart U2 is topologically
equivalent to the one of Figure 11.

8 9 10 11

Taking into account the local phase portraits at the finite and infinite
singular points we get the following cases:

• if α(α + 1) = 0 and ak > 0, there is a unique finite singular point
which is a center, the origin of the local chart U1 is a saddle and
the origin of the local chart U2 is the union of one hyperbolic and
one elliptic sectors separated by two parabolic sectors see Figure 11.
Gluing this information together we get the phase portrait of Figure
1.

• if α(α + 1) = 0 and ak < 0, there is a unique finite singular point
which is a saddle, the origin of the local chart U1 is a node and the
origin of the local chart U2 is the union of one hyperbolic and one
elliptic sectors separated by two parabolic sector as see Figure 11.
Gluing this information together we get the phase portrait of Figure
2.

• if α(α+1) > 0 and α(α+1)(α(α+1)b2+2ak) ≤ 0, there is a unique
finite singular point which is a saddle, no infinite singular points in
the local chart U1 and the origin of U2 is the union of two elliptic
sector separated by two parabolic sectors see Figure 10. Gluing this
information together we get the phase portrait of Figure 3.

• if α(α + 1) > 0 and α(α + 1)(α(α + 1)b2 + 2ak) > 0, there are
three finite singular points which are two saddles and one center, no
infinite singular points in the local chart U1 and the origin of U2 is
the union of two elliptic sectors separated by two parabolic sectors
see Figure 10. Gluing this information together we get the phase
portrait of Figure 4.

• if α(α + 1) < 0 and α(α + 1)(α(α + 1)b2 + 2ak) < 0, there are
three finite singular points which are two nodes and one saddle, no
infinite singular points in the local chart U1 and the origin of U2 is
the union of three hyperbolic and one elliptic sectors as in Figures
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8 and 9. Gluing this information together we get the phase portrait
of Figure 5.

• if 0 > α(α+1) ≥ −1/4 and α(α+1)(α(α+1)b2+2ak) = 0, there is a
unique finite singular point which is the union of one hyperbolic and
one elliptic sectors separated by two parabolic sectors, no infinite
singular points in the local chart U1, and the origin of U2 is the
union of three hyperbolic and one elliptic sectors as in Figures 8
and 9. Gluing this information together we get the phase portrait
of Figure 6.

• if α(α+1) < 0 and α(α+1)(α(α+1)b2+2ak) > 0, there is a unique
finite singular point which is a center, no infinite singular points
in the local chart U1, and the origin of U2 is the union of three
hyperbolic and one elliptic sectors as in Figures 8 and 9. Gluing this
information together we get the phase portrait of Figure 7.
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