ON THE SET OF PERIODS OF THE GRAPH HOMEOMORPHISMS

MÁRCIO R.A. GOUVEIA ${ }^{1,2}$ AND JAUME LLIBRE ${ }^{1}$

Abstract

In this paper we characterize all possible sets of periods of homeomorphisms defined on some classes of finite connected compact graphs.

1. Introduction

Here a (topological graph) or simply a graph G is a compact set formed by a finite union of vertices (points) and edges, which are homeomorphic to a non-empty open interval of the real line, and are pairwise disjoint. The boundary of one edge is formed either by two vertices, or by a unique vertex. Moreover, the graphs that we consider here always are connected.

We identify a circle with the unit circle \mathbb{S}^{1} centered at the origin of the complex plane. A circuit (or loop) of a graph G is any subset of G homeomorphic to \mathbb{S}^{1}. A tree is a graph without circuits. The set of vertices of a graph G will be denoted by $V(G)$. Clearly $V(G)$ is finite.

Let G be a graph and $z \in G$. Then, we consider a small open neighborhood U (in G) of z such that $\mathrm{Cl}(U)$ is a tree. The number of connected components of $U \backslash\{z\}$ is called the valence of z and is denoted by $\operatorname{Val}(z)$. Observe that this definition is independent of the choice of U if it is sufficiently small, and that $\operatorname{Val}(z) \neq 2$ implies that $z \in V(G)$. A vertex of valence 1 is called an endpoint of G and a vertex of valence larger than 2 is called a branching point of G.

Let $f: G \rightarrow G$ be a continuous map. A point $z \in G$ such that $f(z)=z$ is called a fixed point or a periodic point of period 1 . The point $z \in G$ is periodic of period $m>1$ if $f^{m}(z)=z$ and $f^{k}(z) \neq z$ for $k=1, \ldots, m-1$. Of course, in the whole paper $f^{m}(z)$ denotes the m-th iterate of the point z by the map f. We denote by $\operatorname{Per}(f)$ the set of periods of all periodic points of f.

In this work our aim is to characterize the sets $\operatorname{Per}(f)$ when $f: G \rightarrow G$ is a homeomorphism of a given graph G. As we will see this objective is only reached for some classes of graphs, the full characterization for every graph looks as a very hard problem.

[^0]

Figure 1. A 5-flower graph.
Probably the first result on the set of periods of a homeomorphism of a graph is the following one due to Fuller [3]. See section 2 for the definition of independent oriented loops.

Theorem 1. Let G be a graph with c independent oriented loops and let $f: G \rightarrow G$ be a homeomorphism. Then, the following statements hold.
(a) If $c=0$ (i.e. G is a tree), then $1 \in \operatorname{Per}(f)$.
(b) If $c>1$, then $\operatorname{Per}(f) \cap\{1,2, \ldots, c\} \neq \emptyset$.

In fact Fuller does not provide Theorem 1, he provided a more general result that restricted to graphs becomes Theorem 1, see for details section 2.

The characterizations of the sets of periods for the homeomorphisms on a closed interval I or on the circle \mathbb{S}^{1} are well known for the mathematicians working in topological dynamics, see the next two theorems, but since it is not easy to find their proofs in the literature we provide a proof of these two theorems in section 3.

Theorem 2 (Interval Theorem). Let I be a non-degenerate closed interval (i.e. different from a point), and let $f: I \rightarrow I$ be a homeomorphism. Then

$$
\operatorname{Per}(f)= \begin{cases}\{1\} & \text { if } f \text { is increasing, } \\ \{1,2\} & \text { if } f \text { is decreasing } .\end{cases}
$$

As usual \mathbb{Q} and \mathbb{R} denote the sets of rational and real numbers respectively. See the definition of rotation number $\rho(f) \in \mathbb{R}$ for a homeomorphism f : $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ which preserves the orientation in section 3.
Theorem 3 (Circle Theorem). Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a homeomorphism.
(a) If f preserves the orientation, then

$$
\operatorname{Per}(f)= \begin{cases}\emptyset & \text { if } \rho(f) \notin \mathbb{Q} \\ \{n\} & \text { if } \rho(f)=\frac{k}{n} \text { with } \operatorname{gcd}(k, n)=1 .\end{cases}
$$

(b) If f reverses the orientation, then $\operatorname{Per}(f)$ is either $\{1\}$, or $\{1,2\}$.

Figure 2. The 8 -odd graph.

A p-flower graph is a graph with a unique branching point z and $p>1$ edges all having a unique endpoint, the point z, equal for all of them. So, this graph has p independent loops, each one is called a petal. See a 5 -flower graph in Figure 1.

Theorem 4 (p-Flower Theorem). Let $f: G \rightarrow G$ be a homeomorphism of a p-flower graph G with p petals $P_{1}, P_{2}, \ldots, P_{p}$.
(a) If $f\left(P_{l}\right)=P_{l}$ for $l=1,2, \ldots, p$, then $\operatorname{Per}(f)$ is either $\{1\}$, or $\{1,2\}$.
(b) If $f\left(P_{l}\right) \neq P_{l}$ for some $l \in\{1,2, \ldots, p\}$, then $\operatorname{Per}(f)$ is either $\{1\}$, or any subset of $\left\{1, n_{1}, n_{2}, \ldots, n_{s}, 2 n_{1}, 2 n_{2}, \ldots, 2 n_{s}\right\}$ containing the 1 , where $n_{1}, n_{2}, \ldots, n_{s}$ are arbitrary positive integers (non necessarily different) satisfying $1<n_{1}+n_{2}+\ldots+n_{s}=p$.
A graph with only one branching point z with valence $b>2$ and b edges having every edge the vertex z and another vertex different from z as endpoints always with valence 1 is called a b-odd graph. See an 8 -odd graph in Figure 2.

Theorem 5 (b-odd Theorem). Let $f: G \rightarrow G$ be a homeomorphism of a b-odd graph G with branching point z and edges $B_{1}, B_{2}, \ldots, B_{b}$. Then the set $\operatorname{Per}(f)$ is $\{1\}$ if $f(x)=x$ for all $x \in V(G)$, or $\left\{1, n_{1}, n_{2}, \ldots, n_{s}\right\}$ otherwise, where $n_{1}, n_{2}, \ldots, n_{s}$ are positive integers (non necessarily different) satisfying $1<n_{1}+n_{2}+\ldots+n_{s}=b$.

A graph with only two vertices z and w and $n>1$ edges having every edge the vertices z and w as endpoints is called an n-lips graph. See a 7 -lips graph in Figure 3.

Theorem 6 (n-lips Theorem). Let $f: G \rightarrow G$ be a homeomorphism of the n-lips graph G with vertices z and w, and let $e_{1}, e_{2}, \ldots, e_{n}$ be the edges of G. Then the set $\operatorname{Per}(f)$ is
(a) either $\{1\}$, if $f(z)=z$ and $f\left(e_{i}\right)=e_{i}$ for all $i=1,2, \ldots, n$;

Figure 3. The 7 -lips graph.
(b) or any subset of $\left\{1, n_{1}, n_{2}, \ldots, n_{s}\right\}$ including the 1 , if $f(z)=z$ and $f\left(e_{i}\right) \neq e_{i}$ for some $i \in\{1,2, \ldots, n\}$ (see the restrictions of the numbers n_{i} after all the statements);
(c) or $\{1,2\}$, if $f(z) \neq z$ and $f\left(e_{i}\right)=e_{i}$ for all $i=1,2, \ldots, n$;
(d) or any subset of $\left\{2, n_{1}, n_{2}, \ldots, n_{s}, 2 n_{1}, 2 n_{2}, \ldots, 2 n_{s}\right\}$ including the set $\left\{2, n_{1}, n_{2}, \ldots, n_{s}\right\}$, if $f(z) \neq z$ and $f\left(e_{i}\right) \neq e_{i}$ for some $i \in$ $\{1,2, \ldots, n\}$,
where $n_{1}, n_{2}, \ldots, n_{s}$ are non-negative integers (non necessarily different) satisfying $1<n_{1}+n_{2}+\ldots+n_{s}=n$. The periods $2 n_{i}$ for $i=1,2, \ldots, s$ only can appear if n_{i} is odd.

A graph with $p+b$ edges, where $p \geq 1$ of them are petals and the other $b \geq 1$ are not petals, having all the edges as endpoint a point z, is called a (p, b)-graph. In this case the point z has valence $2 p+b$, and it is called the main branching point of the (p, b)-graph. See a $(4,10)$-graph in Figure 4.

Theorem $7((p, b)$-graph Theorem). Let $f: G \rightarrow G$ be a homeomorphism of $a(p, b)$-graph G with p petals $P_{1}, P_{2}, \ldots, P_{p}$ and b edges B_{1}, B_{2}, \ldots, B_{b}, which are not petals. Let z be the main branching point of G. All the biggest subgraphs of G, which are n-lips for some n, are grouped as follows. Let $L_{j_{q}, 1}^{\eta_{q}}, L_{j_{q}, 2}^{\eta_{q}}, \ldots, L_{j_{q}, t_{q}}^{\eta_{q}}$ be all the η_{q}-lips subgraphs of G whose two vertices are the vertex z and another vertex w_{k} with $k=1, \ldots, t_{q}$, each vertex w_{k} has valence η_{q}, and $q=1,2, \ldots, \rho$ (see Figure 4). Then the set $\operatorname{Per}(f)$ is
(a) either $\{1\}$, or $\{1,2\}$, if $f\left(P_{l}\right)=P_{l}$ for all $l=1,2, \ldots, p$, and $f\left(B_{j}\right)=$ B_{j} for all $j=1,2, \ldots, b$;

Figure 4. A $(4,10)$-graph with $\rho=q=1, \eta_{q}=3$ and $t_{q}=2$.
(b) or $\left\{1, n_{1}, n_{2}, \ldots, n_{s}\right\} \bigcup\left(\bigcup_{q=1}^{\rho}\left(\bigcup_{i=1}^{v_{q}} r_{i, q} A_{i, q}\right)\right)$,
or $\left\{1,2, n_{1}, n_{2}, \ldots, n_{s}\right\} \bigcup\left(\bigcup_{q=1}^{\rho}\left(\bigcup_{i=1}^{v_{q}} r_{i, q} A_{i, q}\right)\right)$,
if $f\left(P_{l}\right)=P_{l}$ for all $l=1,2, \ldots, p$, and $f\left(B_{j}\right) \neq B_{j}$ for some $j \in$ $\{1,2, \ldots, b\}$ (see the restrictions on the numbers $n_{i}, q, r_{i, q}$ and v_{q} at the end of the statements);
(c) or $\{1\}$, or any subset of $\left\{1, k_{1}, k_{2}, \ldots, k_{u}, 2 k_{1}, 2 k_{2}, \ldots, 2 k_{u}\right\}$ containing the 1 , where $k_{1}, k_{2}, \ldots, k_{u}$ are arbitrary positive integers (non necessarily different) satisfying $1<k_{1}+k_{2}+\ldots+k_{u}=p$, if $f\left(P_{l}\right) \neq P_{l}$ for some $l \in\{1,2, \ldots, p\}$, and $f\left(B_{j}\right)=B_{j}$ for all $j=1,2, \ldots, b ;$
(d) or any subset of
$\left\{1, n_{1}, \ldots, n_{s}, k_{1}, k_{2}, \ldots, k_{u}, 2 k_{1}, 2 k_{2}, \ldots, 2 k_{u}\right\} \bigcup\left(\bigcup_{q=1}^{\rho}\left(\bigcup_{i=1}^{v_{q}} r_{i, q} A_{i, q}\right)\right)$,
including all the elements of this set except perhaps some of the elements of the set $\left\{k_{1}, k_{2}, \ldots, k_{u}, 2 k_{1}, 2 k_{2}, \ldots, 2 k_{u}\right\}$, if $f\left(P_{l}\right) \neq P_{l}$ for some $l \in\{1,2, \ldots, p\}$, and $f\left(B_{j}\right) \neq B_{j}$ for some $j \in\{1,2, \ldots, b\}$;
where $n_{1}, n_{2}, \ldots, n_{s}, r_{i, q}$ for $i=1,2, \ldots, v_{q}$ and $q=1,2, \ldots, \rho$, and k_{1}, k_{2}, \ldots, k_{u} are positive integers (non necessarily different) satisfying

$$
1<n_{1}+n_{2}+\ldots+n_{s}+\sum_{q=1}^{\rho} \sum_{i=1}^{v_{q}} \eta_{q} r_{i, q}=b
$$

$r_{1, q}+r_{2, q}+\ldots+r_{v_{q}, q}=t_{q}$ and $1<k_{1}+k_{2}+\ldots+k_{u}=p$, and $A_{i, q}$ is one of the sets of statements (a) and (b) of Theorem 6, for all $i=1,2, \ldots, v_{q}$ and $q=1, \ldots, \rho$.

Theorems 4, 5, 6 and 7 are proved in section 4 .

2. Homology of a graph and Fuller's result

We can consider the fundamental group of a graph G, see for instance [10] for more details on the fundamental group. The elements of the fundamental group are oriented loops of G. We assume that the fundamental group of G has c independent oriented loops γ_{i} for $i=1, \ldots, c$, and let $f: G \rightarrow G$ be a continuous map. Then, the homology groups of G are $H_{0}(X, \mathbb{Q})=\mathbb{Q}$ and $H_{1}(X, \mathbb{Q})=\bigoplus_{i=1}^{c} \mathbb{Q}$, and the actions $f_{* k}: H_{k}(X, \mathbb{Q}) \rightarrow H_{k}(X, \mathbb{Q})$ for $k=0,1$ induced by f on these homology groups are $f_{* 0}=(1)$ (because G is connected) and $f_{* 1}=A$, where A is a $c \times c$ matrix with integer entries. The element $a_{i j}$ of the matrix A is the number of times that the loop γ_{i} covers the loop γ_{j} taking into account the orientation of the covering. Therefore, the Betti's numbers of G are $B_{0}(G)=\operatorname{dim}_{\mathbb{Q}} H_{0}(X, \mathbb{Q})=1$ and $B_{1}(G)=$ $\operatorname{dim}_{\mathbb{Q}} H_{1}(X, \mathbb{Q})=c$. For more details of the homology of G see $[10,8,11]$.

Fuller in [3] proved the following result; see also Halpern [4] and Brown [2].
Theorem 8 (Fuller's Theorem). Let f be a homeomorphism of a compact polyhedron X into itself. If the Euler characteristic of X is not zero, then f has a periodic point with period not greater than the maximum of $\sum_{k \text { odd }} B_{k}(X)$
and $\sum_{k \text { even }} B_{k}(X)$, where $B_{k}(X)$ denotes the $k-$ th Betti number of X.
Applying the Fuller's theorem to a graph G it follows Theorem 1.
For other results on the set of a continuous map from a graph into itself see for instance [1] or [6], and the references quoted there.

3. An interval and a circle

First we state a general result for the set of periods of a homeomorphism of a graph.

Proposition 9. Let $f: G \rightarrow G$ be a homeomorphism of a graph G non homeomorphic to a circle. Then, the following statements hold.
(a) Let z be a vertex of valence k. Then $f(z)$ is a vertex of valence k if $k \neq 2$.
(b) $\operatorname{Per}(f) \neq \emptyset$.

Proof. Statement (a) follows immediately from the definition of a homeomorphism. Since a graph non-homeomorphic to a circle has a vertex with valence different from 2, statement (b) follows easily from statement (a) because a graph has finitely many vertices.

From now on we shall investigate the possible sets $\operatorname{Per}(f)$ for the homeomorphisms $f: G \rightarrow G$ of different graphs G. We shall start with the easiest graphs, as an interval and a circle, and we shall finish with more complicated graphs. The results on the set of periods for the homeomorphisms of an interval and of a circle play a main role in the study of the set of periods of the homeomorphisms of other graphs.

Proof of Theorem 2 (Interval Theorem). Without loss of generality, we can suppose that $I=[0,1]$. Hence, if $f:[0,1] \rightarrow[0,1]$ is an orientation preserving homeomorphism (i.e. monotone increasing), by Proposition 9(a) we have $f(0)=0$ and $f(1)=1$. Moreover, we claim that any orbit of f, i.e. for all $x \in[0,1]$ we have that $\left\{x, f(x), f^{2}(x), \ldots\right\}$, tends to a fixed point.

Firstly, we remark that if $f:[0,1] \rightarrow[0,1]$ is an increasing homeomorphism, then besides the fixed points 0 and 1 , there can exist other fixed points into the interval $I=[0,1]$. We restrict f to a subinterval formed by two consecutive fixed points, i.e. $[y, z]$ such that either $f(x)>$ x for all $x \in(y, z)$ or $f(x)<x$ for all $x \in(y, z)$. If $f(x)>x$ then any orbit $\left\{x, f(x), f^{2}(x), \ldots\right\}$ tends to the fixed point z, and if $f(x)<x$ then any orbit $\left\{x, f(x), f^{2}(x), \ldots\right\}$ tends to the fixed point y. More precisely, we take $x \in(y, z)$ and first we consider the case that $f(x)>x$. Then, $f^{2}(x)=f(f(x))>f(x)$, because $\left.f\right|_{(y, z)}$ is monotone increasing. By induction we get $f^{n}(x)=f\left(f^{n-1}(x)\right)>f^{n-1}(x)$. Hence, the sequence $\left\{f^{n}(x)\right\}_{n=0}^{\infty}$ is monotone increasing and upper bounded by z, so it converges to $\sup \left\{f^{n}(x)\right.$, for $\left.n=0,1, \ldots\right\}=z$. Therefore, the ω-limit set of the orbit of $x \in(y, z)$ is the fixed point z.

Similarly, if $f(x)<x$, then the sequence $\left\{f^{n}(x)\right\}_{n=0}^{\infty}$ is decreasing and lower bounded by y, and it converges to the fixed point y of f. Hence, the claim is proved.

If $f:[0,1] \rightarrow[0,1]$ is an orientation reversing homeomorphism (i.e. monotone decreasing), then by Proposition $9(\mathrm{a})$ we get $f(0)=1$ and $f(1)=0$. So, $2 \in \operatorname{Per}(f)$. By the Bolzano's Theorem also called the Intermediate Value Theorem, we get that $1 \in \operatorname{Per}(f)$. On the other hand, the second iterate f^{2} is an orientation preserving homeomorphism, so from the first part we obtain $\operatorname{Per}\left(f^{2}\right)=\{1\}$. Therefore, $\operatorname{Per}(f)=\{1,2\}$.

For studying the set of periods of the homeomorphisms of the circle we need to introduce an important dynamical invariant called the rotation number, it was firstly introduced by Poincaré [9] in 1885.

For studying the dynamics of a continuous map $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ it is helpful to lift the map to the straight line \mathbb{R}. For a such f we call a map $F: \mathbb{R} \rightarrow \mathbb{R}$ a lifting of f if $\pi \circ F=f \circ \pi$, where $\pi: \mathbb{R} \rightarrow \mathbb{S}^{1}$ is given by $\pi(x)=\exp (2 \pi i x)=$ $\cos (2 \pi x)+\sin (2 \pi x) i$. The degree of the map f is by definition the integer $F(1)-F(0)$, for more details see [1].

There are always infinitely many different liftings for a continuous map $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$. Indeed, one may easily prove that any two liftings of f differ by an integer, that is, if F_{1} and F_{2} are liftings, then there exists $k \in \mathbb{Z}$ such that $F_{1}(x)=F_{2}(x)+k$.

Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a homeomorphism. If f is orientation preserving, then its degree is 1 and, if f is orientation reversing, its degree is -1 . Moreover, the lifting of a homeomorphism of the circle is a homeomorphism on the straight line.

For studying the set of periods of the orientation preserving homeomorphisms we introduce the rotation number, which is a number between 0 and 1 that roughly speaking measures the average amount of points which are rotated by an iteration of a continuous map $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ of degree 1 . Before defining the rotation number, we introduce a preliminary concept.

Let F be a lifting of an orientation-preserving homeomorphism $f: \mathbb{S}^{1} \rightarrow$ \mathbb{S}^{1} of degree 1 . For $x \in \mathbb{S}^{1}$ we define

$$
\rho_{0}(F, x)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{n} .
$$

This limit exists and does not depend upon the choice of x. For this reason we can put $\rho_{0}(F)$ instead of $\rho_{0}(F, x)$. The rotation number of $f, \rho(f)$, is the fractional part of $\rho_{0}(F)$ for any lifting F of f. That is, $\rho(f)$ is the unique number in $[0,1)$ such that $\rho_{0}(F)-\rho(f)$ is an integer. For more details about the rotation number see $[7,5,1]$. We note that in $[1]$ the rotation number is essentially defined as $\rho_{0}(F)$, instead of its fractional part.

Proof of Theorem 3 (Circle Theorem). Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a homeomorphism and assume that it preserves the orientation. Poincaré [9] proved that the rotation number of an orientation preserving homeomorphism is irrational if and only if it has no periodic points, see also [1]. So, for proving statement (a) we only need to prove the equality $\operatorname{Per}(f)=\{n\}$ when $\rho(f)=k / n$ with $\operatorname{gcd}(k, n)=1$, and this is proved for instance in [5, 1]. So, the proof of statement (a) is completed.

Suppose that f reverses the orientation. Since continuous maps of degree -1 have fixed points, see for instance [1], we have that $1 \in \operatorname{Per}(f)$. So, there exists a point $x \in \mathbb{S}^{1}$ such that $f(x)=x$. Then $f^{2}(x)=x$ and, as f^{2} is a homeomorphism that preserves the orientation, by statement (a) we get $\operatorname{Per}\left(f^{2}\right)=\{1\}$ and, consequently, $\operatorname{Per}(f) \subseteq\{1,2\}$.

If we consider now the circle as the interval $[0,1]$ with both endpoints identified, the map $f:[0,1] \rightarrow[0,1]$ defined by $f(x)=1-x$ is such that f^{2} is the identity. So, for this orientation reversing homeomorphism we have that
$\operatorname{Per}(f)=\{1,2\}$. Now, there are monotone decreasing maps $g:[0,1] \rightarrow[0,1]$ such that $g(0)=1, g(1)=0$ and $\operatorname{Per}(g)=\{1\}$. For example, consider a decreasing map $g:[0,1] \rightarrow[0,1]$ such that $g(0)=1, g(1)=0, g\left(x_{0}\right)=x_{0}>$ $1 / 2, g(x)>\frac{x_{0}-1}{x_{0}} \cdot x+1$ for all $x \in\left[0, x_{0}\right]$ and $g(x)=\frac{x_{0}}{x_{0}-1} \cdot(x-1)$ for all $x \in\left[x_{0}, 1\right]$, where x_{0} is a fixed point of g into the interval $\left(\frac{1}{2}, 1\right)$. From the definition of g we get that $g(x)>1-x$ for all $x \in(0,1)$ and that these maps are orientation reversing homeomorphism such that $\operatorname{Per}(f)=\{1\}$. This completes the proof of statement (b).

4. A p-FLOWER GRAPH, A b-ODD GRAPH, AN n-LIPS GRAPH AND A (p, b)-GRAPH

In these section we shall prove Theorems $4,5,6$ and 7.
Proof of Theorem 4 (p-Flower Theorem). Let G be a p-flower graph with the branching point z and p petals $P_{1}, P_{2}, \ldots, P_{p}$. If $f: G \rightarrow G$ is a homeomorphism, by Proposition 9 (a) we have that $f(z)=z$. Then, $1 \in \operatorname{Per}(f)$.

Assume that $f\left(P_{l}\right)=P_{l}$ for all $l=1,2, \ldots, p$. Then, $\left.f\right|_{P_{l}}: P_{l} \rightarrow P_{l}$ is a homeomorphism of the topological circle P_{l} with a fixed point z. So, from Theorem 3 it follows that $\operatorname{Per}(f)=\{1\}$ or $\operatorname{Per}(f)=\{1,2\}$, and statement (a) is proved.

Suppose that $f\left(P_{l}\right) \neq P_{l}$ for some $l \in\{1,2, \ldots, p\}$. Since every petal must be applied to another petal by f, there exist n_{1} petals $P_{k_{1}}, P_{k_{2}}, \ldots, P_{k_{n_{1}}}$ such that $f\left(P_{k_{i}}\right)=P_{k_{i+1}}$, for all $i=1,2, \ldots, n_{1}-1$, and $f\left(P_{k_{n_{1}}}\right)=P_{k_{1}}$, where $1<n_{1} \leq p$. Therefore, the iterate $f^{n_{1}}$ is a homeomorphism of the topological circle $P_{k_{1}}$ having a fixed point. Thus, $\operatorname{Per}\left(f^{n_{1}}\right)$ is $\{1\}$ or $\{1,2\}$. Therefore, either $1 \in \operatorname{Per}(f)$, or $\left\{1, n_{1}\right\} \subset \operatorname{Per}(f)$, or $\left\{1,2 n_{1}\right\} \subset \operatorname{Per}(f)$, or $\left\{1, n_{1}, 2 n_{1}\right\} \subset \operatorname{Per}(f)$.

Furthermore, if $n_{1}<p$, there can exist other n_{2} petals $P_{l_{1}}, P_{l_{2}}, \ldots, P_{l_{n_{2}}}$ with similar property and satisfying $1 \leq n_{2} \leq p-n_{1}$, implying that either $1 \in \operatorname{Per}(f)$, or $\left\{1, n_{2}\right\} \subset \operatorname{Per}(f)$, or $\left\{1,2 n_{2}\right\} \subset \operatorname{Per}(f)$, or $\left\{1, n_{2}, 2 n_{2}\right\} \subset$ $\operatorname{Per}(f)$.

In short, repeating these arguments, there can exist $n_{1}, n_{2}, \ldots, n_{s}$ positive integers with the above properties such that either $1 \in \operatorname{Per}(f)$, or $\left\{1, n_{i}\right\} \subset$ $\operatorname{Per}(f)$, or $\left\{1,2 n_{i}\right\} \subset \operatorname{Per}(f)$, or $\left\{1, n_{i}, 2 n_{i}\right\} \subset \operatorname{Per}(f)$, for all $i=1,2, \ldots, s$, and satisfying $1<n_{1}+n_{2}+\ldots+n_{s}=p$. Reordering the numbers n_{i} if necessary, statement (b) follows.

Proof of Theorem 5 (b-odd Theorem). Let G be a b-odd graph with branching point z and edges $B_{1}, B_{2}, \ldots, B_{b}$. If $f: G \rightarrow G$ is a homeomorphism, by Proposition $9(\mathrm{a})$ we have that $f(z)=z$. Then, $1 \in \operatorname{Per}(f)$.

If f fixes the other vertices, that is, $f(x)=x$ for all $x \in \mathrm{~V}(G)$, from Theorem 2, we get that $\operatorname{Per}(f)=\{1\}$. Otherwise, since the image of an edge by the homeomorphism f is another edge, there exist n_{1} edges $B_{k_{1}}, B_{k_{2}}, \ldots, B_{k_{n_{1}}}$ such that $f\left(B_{k_{i}}\right)=B_{k_{i+1}}$, for all $i=1,2, \ldots, n_{1}-1$, and
$f\left(B_{k_{n_{1}}}\right)=B_{k_{1}}$, where $1<n_{1} \leq b$. Therefore, the iterate $f^{n_{1}}$ is a homeomorphism of the topological interval $B_{k_{1}}$ having two fixed points, that is, the branching point z and the other vertex of $B_{k_{1}}$. Thus, $\operatorname{Per}\left(f^{n_{1}}\right)=\{1\}$. Hence, $\left\{1, n_{1}\right\} \subset \operatorname{Per}(f)$ because the vertices of $B_{k_{i}}$ different from z form a periodic orbit of period n_{1}.

Furthermore, if $n_{1}<b$, there exist other n_{2} edges $B_{l_{1}}, B_{l_{2}}, \ldots, B_{l_{n_{2}}}$ with similar property satisfying $1 \leq n_{2} \leq b-n_{1}$, implying that $n_{2} \in \operatorname{Per}(f)$.

In short, repeating these arguments there can exist $n_{1}, n_{2}, \ldots, n_{s}$ positive integers with the above properties such that $n_{i} \in \operatorname{Per}(f)$, for all $i=1,2, \ldots, s$, and satisfying $1<n_{1}+n_{2}+\ldots+n_{s}=b$. Reordering the numbers n_{i} if necessary, it follows the result.

Proof of Theorem 6 (n-lips Theorem). Let G be an n-lips graph with vertices z and w, and let e_{i} be the edges of G for $i=1,2, \ldots, n$. If $f: G \rightarrow G$ is a homeomorphism and $f(z)=z$, by Proposition 9(a) we have that $f(w)=w$ and then $1 \in \operatorname{Per}(f)$. But if $f(z) \neq z$ the Proposition 9(a) assures that $f(z)=w$ and $f(w)=z$ and hence $2 \in \operatorname{Per}(f)$.

Assume that $f(z)=z$ and $f\left(e_{i}\right)=e_{i}$ for all $i=1,2, \ldots, n$. Then, for each $i=1,2, \ldots, n,\left.f\right|_{e_{i}}: e_{i} \rightarrow e_{i}$ is an increasing homeomorphism. So, by Theorem 2, follows that $\operatorname{Per}(f)=\{1\}$. So, statement (a) is proved.

Now assume that $f(z)=z$ and $f\left(e_{i}\right) \neq e_{i}$ for some $i \in\{1,2, \ldots, n\}$. Since the image of the edge e_{i} by the homeomorphism f is another edge, there exist n_{1} edges $e_{k_{1}}, e_{k_{2}}, \ldots, e_{k_{n_{1}}}$ such that $f\left(e_{k_{i}}\right)=e_{k_{i+1}}$, for all $i=1,2, \ldots, n_{1}-1$, and $f\left(e_{k_{n_{1}}}\right)=e_{1}$, where $1<n_{1} \leq n$. Therefore, the iterate $f^{n_{1}}$ is an increasing homeomorphism of the topological interval $e_{k_{1}}$ having a fixed point. Thus, by Theorem $2 \operatorname{Per}\left(f^{n_{1}} \mid e_{k_{1}}\right)=\{1\}$. Hence, $\operatorname{Per}(f)$ contains either $\{1\}$ or $\left\{1, n_{1}\right\}$.

Furthermore, if $n_{1}<n$, there exist other n_{2} edges $e_{l_{1}}, e_{l_{2}}, \ldots, e_{l_{n_{2}}}$ with similar property satisfying $1 \leq n_{2} \leq n-n_{1}$, implying that $\operatorname{Per}(f)$ contains either $\{1\}$, or $\left\{1, n_{1}\right\}$, or $\left\{1, n_{2}\right\}$, or $\left\{1, n_{1}, n_{2}\right\}$.

In short repeating these arguments there can exist $n_{1}, n_{2}, \ldots, n_{s}$ nonnegative integers with the above properties such that $1 \in \operatorname{Per}(f)$ and eventually $n_{i} \in \operatorname{Per}(f)$, for all $i=1,2, \ldots, s$, and satisfying $1<n_{1}+n_{2}+\ldots+n_{s}=$ n. Reordering the numbers n_{i} if necessary, statement (b) follows.

Suppose that $f(z) \neq z$ and $f\left(e_{i}\right)=e_{i}$ for all $i=1,2, \ldots, n$. Then, for each $i=1,2, \ldots, n,\left.f\right|_{e_{i}}: e_{i} \rightarrow e_{i}$ is a decreasing homeomorphism. So, by Theorem 2, follows that $\operatorname{Per}(f)=\{1,2\}$. So, statement (c) is proved.

In the case that $f(z) \neq z$ and $f\left(e_{i}\right) \neq e_{i}$ for some $i=1,2, \ldots, n$ we use the same argument that in statement (b) and we obtain a positive integer n_{1} such that the iterate $f^{n_{1}}$ is a homeomorphism of some topological interval e_{m}, where $m \in\{1,2, \ldots, n\}$. But here, we note that if n_{1} is odd, then $f^{n_{1}}$ is a decreasing homeomorphism implying that $\operatorname{Per}(f)$ contains either $\left\{2, n_{1}\right\}$ or
$\left\{2, n_{1}, 2 n_{1}\right\}$. And if n_{1} is even, then $f^{n_{1}}$ is an increasing homeomorphism implying that either $2 \in \operatorname{Per}(f)$ or $\left\{2, n_{1}\right\} \subset \operatorname{Per}(f)$. Hence, repeating the argument used in statement (b) we conclude that there can exist $n_{1}, n_{2}, \ldots, n_{s}$ non-negative integers such that either $n_{i} \in \operatorname{Per}(f)$, or $\left\{n_{i}, 2 n_{i}\right\} \subset \operatorname{Per}(f)$ for all $i=1,2, \ldots, s$, and satisfying $1<n_{1}+n_{2}+\ldots+n_{s}=n$. Of course, the case $\left\{n_{i}, 2 n_{i}\right\} \subset \operatorname{Per}(f)$ only can occur if n_{i} is odd. So, statement (d) follows.

Consider a branching point z with valence k. This valence can be decomposed as $k=2 p+b$, where $p+b>0, p \geq 0$ is the number of all petals with endpoint z and $b \geq 0$ is the number of edges which are not petals with endpoint z. In this case we shall say that the branching point z is of type (p, b). Then every vertex of a graph has a type (p, b). For example, an endpoint is a vertex of valence $k=1$, and hence, it is of the type $(0,1)$. Now we can improve Proposition 9(a) as follows.

Proposition 10. Let $f: G \rightarrow G$ be a homeomorphism of a graph G non homeomorphic to a circle. If z is a vertex of type (p, b), then $f(z)$ is a vertex of type (p, b).

Proof. It follows immediately from the definition of a homeomorphism.
Proof of Theorem $7((p, b)$-graph Theorem $)$. Let G be a (p, b)-graph with the main branching point z, p petals $P_{1}, P_{2}, \ldots, P_{p}$, and b edges $B_{1}, B_{2} \ldots, B_{b}$ which are not petals. Assume that $L_{j_{q}, 1}^{\eta_{q}}, L_{j_{q}, 2}^{\eta_{q}}, \ldots, L_{j_{q}, t_{q}}^{\eta_{q}}$ are the η_{q}-lips for $q=1,2, \ldots, \rho$ contained into the (p, b)-graph described in the statement of the theorem. If $f: G \rightarrow G$ is a homeomorphism, by Proposition 10 we have that $f(z)=z$. Then $1 \in \operatorname{Per}(f)$.

Assume that $f\left(P_{l}\right)=P_{l}$ for all $l=1,2, \ldots, p$, and $f\left(B_{j}\right)=B_{j}$ for all $j=$ $1,2, \ldots, b$. Then, for each $l=1,2, \ldots, p,\left.f\right|_{P_{l}}: P_{l} \rightarrow P_{l}$ is a homeomorphism of the topological circle P_{l} with the fixed point z, and, for each $j=1,2, \ldots, b$, $\left.f\right|_{B_{j}}: B_{j} \rightarrow B_{j}$ is a homeomorphism of the topological interval B_{j} with the fixed endpoint z. So, from Theorems 2 and 3 it follows that either $\operatorname{Per}(f)=\{1\}$, or $\operatorname{Per}(f)=\{1,2\}$, and statement (a) is proved.

Suppose that $f\left(P_{l}\right)=P_{l}$ for all $l=1,2, \ldots, p$, and $f\left(B_{j}\right) \neq B_{j}$ for some $j \in\{1,2, \ldots, b\}$. For the p petals we apply Theorem 3 and we obtain that either $\{1\} \subset \operatorname{Per}(f)$, or $\{1,2\} \subset \operatorname{Per}(f)$. Since every edge which is not a petal must be applied to another edge which is not a petal by f, we apply Theorem 5 to the n-odd subgraph of G formed by all the edges which are not petals and are not contained into the $\eta_{q}-\operatorname{lips} L_{j_{q}, k}^{\eta_{q}}$, for $q=1,2, \ldots, \rho$ and $k=1,2, \ldots, t_{q}$. We conclude that there exist $n_{1}, n_{2}, \ldots, n_{s}$ positive integers such that $n_{i} \in \operatorname{Per}(f)$, for all $i=1,2, \ldots, s$, and satisfying $1<$ $n_{1}+n_{2}+\ldots+n_{s} \leq b$. Furthermore, if $f\left(B_{j}\right) \neq B_{j}$ for some edge B_{j} of some $\eta_{q}-\operatorname{lips} L_{j_{q}, k}^{\eta_{q}}$, for $q=1,2, \ldots, \rho$ and $k=1,2, \ldots, t_{q}$, since every η_{q}-lips must be applied into another η_{q}-lips by f there can exist $r_{1, q} \leq t_{q}$ η_{q}-lips' forming a cycle, i.e. there are $L_{j_{q}, m_{1}}^{\eta_{q}}, L_{j_{q}, m_{2}}^{\eta_{q}}, \ldots, L_{j_{q}, m_{r_{1, q}}}^{\eta_{q}}$ such that
$f\left(L_{j_{q}, m_{i}}^{\eta_{q}}\right)=L_{j_{q}, m_{i+1}}^{\eta_{q}}$ for all $i=1,2, \ldots, r_{1, q}-1$ and $f\left(L_{j_{q}, m_{r 1, q}}^{\eta_{q}}\right)=L_{j_{q}, m_{1}}^{\eta_{q}}$. Thus, the iterate $f^{r_{1, q}}$ is a homeomorphism from the $\eta_{q}-$ lips $L_{j_{q}, m_{1}}^{\eta_{q}}$ into itself. Since the branching point z is fixed by f we get that $\operatorname{Per}\left(\left.f^{r_{1, q}}\right|_{L_{j_{q}, m_{1}}^{\eta_{q}}}\right)$ is a set $A_{1, q}$ as one of the sets of statements (a) and (b) of Theorem 6. Therefore we get that the set $r_{1, q} A_{1, q} \subset \operatorname{Per}(f)$.

Furthermore, if $r_{1, q}<t_{q}$ there exist others $r_{2, q} \eta_{q}-$ lips' $^{\prime} L_{j_{q}, a_{1}}^{\eta_{q}}, L_{j_{q}, a_{2}}^{\eta_{q}}, \ldots$, $L_{j_{q}, a_{2, q}}^{\eta_{q}}$ with similar property satisfying $1 \leq r_{1, q}+r_{2, q} \leq t_{q}$, implying that $\operatorname{Per}\left(\left.f^{r_{2, q}}\right|_{L_{j q, a_{1}}^{\eta_{q}}}\right)$ is a set $A_{2, q}$ as one of the sets of statements (a) or (b) of Theorem 6. Therefore we have that $r_{2, q} A_{2, q} \subset \operatorname{Per}(f)$.

In short, repeating these arguments there can exist $r_{1, q}, r_{2, q}, \ldots, r_{v_{q}, q}$ positive integers and $A_{1, q}, A_{2, q}, \ldots, A_{v_{q}, q}$ sets being as one of the sets of statements (a) or (b) of Theorem 6 such that

$$
\bigcup_{q=1}^{\rho}\left(\bigcup_{i=1}^{v_{q}} r_{i, q} A_{i, q}\right) \subset \operatorname{Per}(f)
$$

with $r_{1, q}+r_{2, q}+\ldots+r_{v_{q}, q}=t_{q}$ and

$$
n_{1}+n_{2}+\ldots+n_{s}+\sum_{q=1}^{\rho} \sum_{i=1}^{v_{q}} \eta_{q} r_{i, q}=b
$$

Reordering the numbers n_{j} and $r_{i, q}$ if necessary, statement (b) follows.
When $f\left(P_{l}\right) \neq P_{l}$ for some $l \in\{1,2, \ldots, p\}$, and $f\left(B_{j}\right)=B_{j}$ for all $j=1,2, \ldots, b$, by applying Theorem 5 to the b edges which are not petals we get that $1 \in \operatorname{Per}(f)$. Then, by using the fact that every petal must be applied to another petal by f, we apply statement (b) of Theorem 4 to the p petals and we obtain statement (c).

In the case that $f\left(P_{l}\right) \neq P_{l}$ for some $l \in\{1,2, \ldots, p\}$, and $f\left(B_{j}\right) \neq B_{j}$ for some $j \in\{1,2, \ldots, b\}$, we apply statement (b) of Theorem 4 to the p petals, and Theorems 5 and statements (a) and (b) of Theorem 6 to the other b edges which are not petals, using the same arguments than in the proof of statements (b) and (c) we get statement (d).

Acknowledgments

The first author is partially supported by CAPES/DGU grant number BEX 12566/12-8. The second author is partially supported by a MINECO/ FEDER grant number MTM2008-03437, by a AGAUR grant number 2009 SGR 410, by ICREA Academia and by FP7-PEOPLE-2012-IRSES 316338 and 318999. Both authors are partially supported by the project PHB 2009-$0025-\mathrm{PC}$.

References

[1] L. Alsedá, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Second Edition, World Scientific, Singapore, 2001.
[2] R.F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Company, Glenview, IL, 1971.
[3] F. B. Fuller, The existence of periodic points, Ann. of Math. 57 (1953), 229-230.
[4] B. Halpern, Fixed points for iterates, Pacific J. of Math. 25 (1968), 255-275.
[5] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, 1995.
[6] J. Llibre, Periodic point free continuous self-maps on graphs and surfaces, Topology and its Applications 159 (2012), 2228-2231.
[7] W. de Melo and S. van Strien, One-dimensional Dynamics, Springer, Berlin, 1993.
[8] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
[9] H. Poincaré, Sur les courbes définies par les équations differéntielles, J. de Mathématiques, série 4, 1 (1885), 167-244.
[10] E.H. Spanier, Algebraic Topology, McGraw-Hill Book Company, New York, 1966.
[11] J. W. Vicks, Homology Theory: An Introduction to Algebraic Topology, SpringerVerlag, New York, 1994; Academic Press, New York, 1973.
${ }^{1}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat
${ }^{2}$ Departamento de Matemática, IBILCE-Unesp, Rua C. Colombo, 2265, CEP 15054-000 S. J. Rio Preto, São Paulo, Brazil

E-mail address: maralves@ibilce.unesp.br

[^0]: 2010 Mathematics Subject Classification. 37E25, 37B40.
 Key words and phrases. homeomorphisms, topological graph, periods, periodic points.

