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Abstract. In this paper we characterize all the possible sets of periods
of a periodic homeomorphism defined on compact connected pinched
surfaces with one or two branching points.

1. Introduction

A pinched surface S, here studied, is a compact set formed by one or two
vertices (points) and handles, where here a handle is homeomorphic to an
open cylinder, i.e. to the set (0, 1) × S

1, where (0, 1) is the open interval
of the real line and S1 is the circle. The boundaries of every handle are
vertices. Furthermore, the handles are pairwise disjoint, and the pinched
surfaces that we consider here will always be connected.

Let S be a pinched surface and let z ∈ S be a vertex. We consider a small
open neighborhood U (in S) of z. The number of connected components of
U \ {z} is called the valence of z and is denoted by Val(z). Observe that
this definition is independent of the choice of U if U is sufficiently small. A
vertex of valence 1 is called an endpoint of S and a vertex of valence larger
than 1 is called a branching point of S.

A continuous map f : S → S is called periodic if there exists a positive
integer n such that the iterate fn is the identity map, i.e. fn(x) = x for all
x ∈ S, or f = id.

Let f : S → S be a continuous map. A point z ∈ S such that f(z) = z
is called a fixed point, or a periodic point of period 1. The point z ∈ S is
periodic of period m > 1 if fm(z) = z and fk(z) 6= z for k = 1, . . . ,m − 1.
Of course, in the whole paper fm(x) denotes the m–th iterate of the point x
by the map f . We denote by Per(f) the set of periods of all periodic points
of f .

In this work our aim is to characterize the sets Per(f) when f : S → S

is a periodic homeomorphism of some classes of pinched surface S. The full
characterization of the sets Per(f) for every pinched surface looks as a very
hard problem.
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There are a lot of important works in this context. For example, in
[13] it was studied the fixed point sets of pointwise almost periodic home-
omorphism on the sphere S

2 in the orientation-reversing and orientation-
preserving cases, where a homeomorphism is called pointwise almost peri-
odic if the collection of orbit closures forms a decomposition of S2. With
a weaker condition, almost periodic, or a still weaker condition, weakly al-
most periodic, the fixed point set was studied in [14]. Also the sets of periods
of some diffeomorphisms have been studied, see for instance [6, 7] and the
references quoted there.

Dealing with homeomorphisms defined on graphs there are works in the
same direction. In [5] the authors characterized the sets of periods of home-
omorphisms defined on some classes of finite connected compact graphs.
Probably the first result on the set of periods of a homeomorphism of a
graph is due to Fuller [4]. See also Halpern [8] and Brown [2]. For other
results on the set of periods of continuous maps from a graph into itself
see for instance [1] or [12], and the references quoted there. For periodic
properties of homeomorphisms on dendrites or Sierpinski curve see [9] and
[10] respectively.

This paper is organized as follows. In section 2 we characterize the set
Per(f) when f is a periodic homeomorphism defined in a pinched surface
with a unique handle. When a pinched surface has more than one handle but
a unique branching point we obtain the set Per(f) in section 3. Sections 4
and 5 are dedicated to the case of pinched surfaces with two branching
points, and there we characterize the possible sets Per(f) for a periodic
homeomorphism defined in such surfaces.

2. A pinched surface with a unique handle

We start this section proving that there exist only two possibilities for a
pinched surface with a unique handle.

Proposition 1. Let S be a pinched surface with a unique handle. Then
S is either a 2-dimensional sphere S

2 (see Figure 1) or a pinched sphere
S/{PN , Ps} which is a sphere S

2 with two points identified (see Figures 2, 3
).

Proof. Let S be a pinched surface. By definition the handle of S is homeo-
morphic to an open cylinder (0, 1)×S

1, which is homeomorphic to the open
cylinder (−1, 1)× S

1. Identifying the boundaries {−1}× S
1 and {1} × S

1 to
the points (0, 0,−1) and (0, 0, 1) respectively, we obtain that S is homeomor-
phic to the sphere S2 = {(x, y, z) ∈ R

3 : ||(x, y, z)|| = 1}, which is a pinched
surface with unique handle and two vertices. If we identify the boundaries
{−1}×S

1 and {1}×S
1 to the same point, we obtain a pinched surface with

a unique handle and only one vertice. In this case the identification can be
done in two as we explain below.
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Figure 1. A 2–dimensional sphere S
2.

Starting with the sphere S2 and considering the south pole PS = (0, 0,−1)
and the north pole PN = (0, 0, 1) as the two vertices of our pinched surface
S with a unique handle we can identify PS and PN to the same point in the
following two different ways:

(a) by the interior of the sphere S
2: we call this object S0

(b) by outside of the sphere S
2: we call this object S1

More precisely, in the case (a) we consider the segment PSPN linking the
points PS and PN , that is, tPS + (1 − t)PN , with 0 ≤ t ≤ 1. Then, over
this segment we identify PS and PN to the same point J0 = (0, 0, 0) by the
interior of the sphere S2. In the case (b) we consider a circle in the yz-plane

centered at a point (0, d, 0) and radius r =
√
1 + d2, with d > 1. Points PS

and PN belong tho this circle and then, over this circle, we can identify PS

and PN to the same point J1 = (0, d + r, 0) by outside the sphere S
2.

In order to prove that there exist only two pinched surface with a unique
handle we shall prove that the last two objects obtained by identifying two
points of the sphere (S0 and S1) are homeomorphic each other. To prove this
we take a neighborhood U0 of J0 (an open sphere in R

3) and a neighborhood
U1 of J1 (an open sphere in R

3) and we observe that S0∩U0 and S1∩U1 are
homeomorphic to a cone. Moreover, we have that S0 ∩ (Uc

0 ) and S1 ∩ (Uc
1 )

are homeomorphic to an open cylinder. �

From now on we will always refer to a pinched sphere S/{PN , PS} as in
the Figure 3 for simplicity of understanding the results.

The proof of the next proposition follows immediately from the definition
of a homeomorphism.

Proposition 2. Let f : S → S be a periodic homeomorphism of a pinched
surface S. Let z be a vertex of valence k > 1. Then f(z) is a vertex of
valence k.

An important concept that we need is the topological equivalence between
functions, that is, given continuous functions f : S → S and f1 : S1 → S1, we
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Figure 2. Figure eight. Its rotation around the z–axis gen-
erates a pinched sphere S.
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Figure 3. A pinched sphere S topologically is a sphere S
2

with two points identified as in the figure. Also it is a pinched
flower surface with a unique handle.

say that f and f1 are topologically equivalent if there exists a homeomorphism
h : S → S1 such that (f1 ◦ h)(x) = (h ◦ f)(x), for all x ∈ S.

We say that S is a topological sphere if S is homeomorphic to S
2. In [3]

and [11] it was proved the following result.

Theorem 3. Every periodic map f of a topological sphere S into itself is
topologically equivalent to a continuous periodic map f1 : S

2 → S
2 such that

f1 is either the identity, or a rotation with respect an axis which pass through
the center of the sphere, or a reflection with respect to a plane passing for
the center of the sphere, or to a rotation followed by a reflection with the
axis of the rotation orthogonal to the plane of reflection.

In what follows we consider Rn the rotation with respect to the z–axis
by an angle 2π/n of the sphere S2, and when we consider a reflection it will
be a reflection with respect to the plane z = 0 of the sphere S

2 (see Figure
1). This will be the case when we consider a sphere S

2 with the points PS

and PN identified by the interior of the sphere S2, that is, a pinched sphere
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S/{PN , PS} with a unique handle and only one vertice (case (a) in the proof
of Proposition 1, see Figure 2).

When we are working with a pinched sphere S/{PN , PS} with the points
PS and PN identified by outside of the sphere S

2 (case (b) in the proof of
Proposition 1) we consider Rn the rotation by an angle 2π/n with respect
the curve γ given in Figure 3. In order to be more precisely curve γ is a
curve in the yz−plane obtained from segment PSPN by identifying PS and
PN to the same point J1 = (0, d+ r, 0) over the circle centered at the point

(0, d, 0) and radius r =
√
1 + d2 with d > 1 as in the proof of Proposition 1 .

Hence the rotation Rn around γ works as a rotation around the z−axis and
after that we identify the points PS and PN to the point J1 (see Figure 3).
When we consider a reflection it will be a reflection with respect to the plane
z = 0 of the pinched sphere S/{PN , PS}.

Our first result establishes a correspondence between periodic homeomor-
phisms on the sphere and homeomorphisms defined on a pinched sphere. But
for this we will consider a identification between S

2 and S/{PN , PS} given
by a map D : S2 → S/{PN , PS} satisfying the following conditions:

(i) D preserve the equator E (see Figures 2 and 3), i.e. D(E) = E;
(ii) D(PN ) = D(PS) = J , where J = J0 or J = J1 depending how the

points PS and PN are identified (by the interior or by outside the
sphere S

2);
(iii) D(S2 ∩ {z > 0} \ {PN}) = (S/{PN , Ps}) ∩ {z > 0} and

D(S2 ∩ {z < 0} \ {PS}) = (S/{PN , PS}) ∩ {z < 0}.
It is not difficult to see that D|S2\{PN ,PS} : S

2\{PN , PS} → (S/{PN , PS})\
{J} is a homeomorphism.

Proposition 4. The following statements hold.

(a) Given a periodic homeomorphism F : S2 → S
2 having, either fixed

points in PN and PS, or a 2−periodic orbit formed by PN and PS ,
there is a periodic homeomorphism f : S/{PN , PS} → S/{PN , Ps}
such that F |S2\{PN ,PS} = D−1 ◦ f ◦D|S2\{PN ,PS}.

(b) Given a periodic homeomorphism f : S/{PN , PS} → S/{PN , PS}
there is a periodic homeomorphism F : S2 → S

2 having, either fixed
points in PN and PS, or a 2−periodic orbit formed by PN and PS ,
such that f |S\{J1} = D ◦ F ◦D−1|S\{J1}.

Proof. We start proving statement (a). Consider a periodic homeomorphism
F : S2 → S

2 having PN and PS as fixed points, or as a 2–periodic orbit.
Then we define a periodic homeomorphism f : S/{PN , PS} → S/{PN , PS}
as follows. We identify S

2 \ {PN , PS} with S/{PN , PS} \ {J} using map D
defined above, and in S/{PN , PS} \ {J} we take f = D ◦ F ◦ D−1. We
complete the definition of f taking f(J) = J . This proves statement (a).

We shall prove statement (b). Let U be a neighborhood of the branching
point J . Given a periodic homeomorphism f : S/{PN , PS} → S/{PN , PS}
we define a periodic homeomorphism F : S2 → S

2 as follows. We identify
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S/{PN , PS} \ {J} with S
2 \ {PN , PS} using map D defined above, and in

S
2 \{PN , PS} we take F = D−1 ◦f ◦D. Since f : S/{PN , PS} → S/{PN , PS}

is a homeomorphism there are only two possibilities for the points in U , i.e.
either f(U ∩ {z > 0}) ⊂ U ∩ {z > 0}, or f(U ∩ {z > 0}) ⊂ U ∩ {z < 0}.
In the first case we complete the definition of F taking F (PN ) = PN and
F (PS) = PS ; and in the second case we take F (PN ) = PS and F (PS) = PN .
This completes the proof of statement (b). �

Theorem 5. Let S be a pinched surface with a unique handle and let f :
S → S be a periodic homeomorphism. Then, the following statements hold.

(a) If S is S
2, then Per(f) is

either {1} if f is topologically equivalent to the identity,
or {1, n} if f is topologically equivalent to a rotation Rn, and fn =
id,
or {1, 2} if f is topologically equivalent to a reflection, and f2 = id,
or {2, n, 2n} when n is odd, and {2, n} when n is even, if f is topo-
logically equivalent to a rotation Rn followed by a reflection, and
f2n = id.

(b) If S is a pinched sphere S/{PN , PS}, then Per(f) is
either {1} if f is topologically equivalent to the identity,
or {1, n} if f is topologically equivalent to a rotation Rn, and fn =
id,
or {1, 2} if f is topologically equivalent to a reflection, and f2 = id,
or {1, n, 2n} when n is odd, and {1, n} when n is even, if f is topo-
logically equivalent to a rotation Rn followed by a reflection, and
f2n = id.

Proof. Let S be a pinched surface with a unique handle and let f : S → S

be a periodic homeomorphism. Firstly, we assume that S is S
2. Hence,

using Theorem 3, the proof is quite straightforward. More precisely if f is
topologically equivalent to the identity, then Per(f) = {1}.

If f is topologically equivalent to a rotation Rn the vertices PN and PS

remain fixed by f while the other points are rotate by an angle 2π/n and
then these points are fixed by fn. Therefore, Per(f) = {1, n}. and fn = id.

When f is topologically equivalent to a reflection with respect to the plane
z = 0 we get that all the points of the equator E are fixed by f while the
others have period 2. Hence Per(f) = {1, 2}, and f2 = id.

If f is topologically equivalent to a rotation Rn followed by a reflection
with respect to the plane z = 0 then the points PN and PS have period
2, all the points in the equator E have period n and the other points have
period 2n when n is odd or period n when n is even. To see this we just
observe that after each reflection these points change hemisphere. Thus,
Per(f) = {2, n, 2n} if n is odd or Per(f) = {2, n} if n is even. This completes
the proof of statement (a).
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For statement (b) we use the same arguments as before. We just to take
into account that since S is a pinched sphere S/{PN , PS}, which can be ob-
tained from S

2 by identifying two points, there exist only two possibilities to
do this identification that preserve f as a homeomorphism. More precisely,
we can identify two fixed points, or two points of a periodic orbit of period
2.

In the first case we can assume, without loss of generality, that north
pole PN and south pole PS of sphere S2 are fixed points of a periodic home-
omorphism F : S

2 → S
2. Hence, using the identification given by map

D : S2 → S/{PN , PS} defined above, we conclude that F satisfy the hy-
potesis of item (a) and then Per(F ) can be all the possibilities listed in (a).
But since f : S/{PN , PS} → S/{PN , PS} is a periodic homeomorphism the
identified point J remains as a fixed point of f and his period is 1 which is
the same period of the points PN and PS for F . Thus Per(f) = Per(F ) and
we are done.

When we identify two points of a periodic orbit of period 2 we can have
two situations, that is, if this identification occurs in the unique periodic
orbit of period 2 of a periodic homeomorphism F : S2 → S

2 then, using
the identification D : S2 → S/{PN , PS}, this orbit becomes a fixed point of
f : S/{PN , PS} → S/{PN , PS} implying that 2 /∈ Per(f) and 1 ∈ Per(f).
But if there exist more than one periodic orbit of period 2 of F we get that
1, 2 ∈ Per(f) and then the set Per(f) remains the same as in statement (a).
So, statement (b) is proved. �

3. Flower surface

A flower surface is a surface with a unique branching point z and a finite
number of handles called here petals. There exist three different types of
closed petals (sphere, pinched sphere and pinched torus), consequently we
have three different types of flowers having the same kind of petals, that
is, a sphere flower when all the petals are spheres, a pinched sphere flower
when all the petals are pinched spheres and a pinched torus flower when
all the petals are pinched torus. See a pinched torus flower surface with 5
petals in Figure 4 and a sphere flower surface with 4 petals in Figure 5.

Lemma 6. Let f : S → S be a periodic homeomorphism of a sphere flower
surface with r petals denoted by S

2
1,S

2
2, . . . ,S

2
r. Suppose that f(S2i ) = S

2
i+1

for all i = 1, 2, . . . , r − 1 and f(S2r) = S
2
1. Then Per(f) is either {1, r}, or

{1, r, nr}, or {1, r, 2r}.
Proof. Considering z the unique branching point of the sphere flower surface
S with r petals, by Proposition 2, we have that f(z) = z, and then 1 ∈
Per(f). In particular f r(z) = z.

Furthermore, the hypotheses assure that f r|S2
i
: S2i → S

2
i is a periodic

homeomorphism of the sphere S
2
i . Thus, Per(f r) is one of the sets from

Theorem 5(a), except the set {2, n, 2n} because here we cannot have f r
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Figure 4. A pinched torus flower surface.

Figure 5. A sphere flower surface.

topologically equivalent to a rotation Rn followed by a reflection since if f r

were we would have f r(z) 6= z, which is a contradiction with f(z) = z.

When f r is topologically equivalent to the identity we get that Per(f r) =
{1}. Since the branching point z is a fixed point of f and the other points
are fixed only by f r, not of f , we conclude that the points x ∈ S

2
i different

from z are periodic of period r of f . Then Per(f) = {1, r}.
Assuming that f r is topologically equivalent to a rotation Rn, and (f r)n =

id, we get Per(f r) = {1, n}. There exist two fixed points of f r. One of these
two points is the branching point z and the other is a point w ∈ S

2
i different

from z. Since z is the unique fixed point of f we conclude that w is a periodic
point of period r to f . Furthermore, all the other points in S

2
i different from

z and w are rotated by a rotation Rn, and thus they have period r · n to f .
Then Per(f) = {1, r, rn}.

In the case that f r is topologically equivalent to a reflection, and (f r)2 =
id, we get Per(f r) = {1, 2}. Here the reflection is with respect to a topologi-
cal plane π containing the branching point z. Consequently we have that all
the points in the set π∩S

2
i are fixed by f r and the other points in S

2
i \π∩S

2
i

are periodic of period 2 by f r. Since the branching point z is the unique
fixed point of f we conclude that the points in π ∩ S

2
i different from z are
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periodic of period r for f and the points in S
2
i \π ∩S

2
i are periodic of period

2r for f . Thus Per(f) = {1, r, 2r}, and we are done. �

We have similar results for a pinched sphere flower and for a pinched torus
flower.

Lemma 7. Let f : S → S be a periodic homeomorphism of a pinched
torus flower surface S with r petals denoted by T1,T2, . . . ,Tr. Suppose that
f(Ti) = Ti+1 for all i = 1, 2, . . . , r − 1 and f(Tr) = T1. Then Per(f) is
either {1, r}, or {1, nr}, or {1, r, 2r}, or {1, nr, 2nr}.

Proof. Considering z the unique branching point of the r–flower S, by Propo-
sition 2, we have that f(z) = z, and then 1 ∈ Per(f).

The hypotheses assure that f r|Ti
: Ti → Ti is a periodic homeomorphism

of the pinched torus Ti. Thus Per(f
r) is one of the sets of Theorem 5(b).

When f r is topologically equivalent to the identity we have Per(f r) =
{1}. Since the branching point z is the unique fixed point of f the other
points in Ti different from z are periodic of period r for f , and then we get
Per(f) = {1, r}.

If f r is topologically equivalent to a rotation Rn, and (f r)n = id, we have
Per(f r) = {1, n}. The fact that the branching point z is the unique fixed
point of f implies that the other points in Ti different from z are periodic
of period n for f r and then, these points, are periodic of period nr for f .
Thus we get Per(f) = {1, nr}.

When f r is topologically equivalent to a reflection, and (f r)2 = id, we
have Per(f r) = {1, 2}. If the pinched torus flower surface has only one
handle, i.e. the pinched torus, the plane π of the reflection is the xy−plane
which contains the branching point J and equator E, see Figure 3. If the
pinched torus flower surface has more than one handle, the reflection is a
simultaneous reflection in each handle as it is defined in the pinched torus.
Hence the points x ∈ π ∩ Ti \ {z} are fixed by the f r, and then they are
periodic of period r for f . Furthermore, the other points x ∈ Ti \ π ∩ Ti

are periodic of period 2 for f r, and then they are periodic of period 2r to f .
Therefore, we conclude that Per(f) = {1, r, 2r}.

Considering f r topologically equivalent to a rotation Rn followed by a
reflection, and (f r)2n = id, we get Per(f r) = {1, n, 2n}. As in the previous
case, here the reflection is with respect to a topological plane π that contains
the branching point z and the rotation Rn is with respect to a curve γ as
in Figure 3. Therefore the branching point z remains as the unique fixed
point of f , the points in π ∩ Ti \ {z} are periodic of period n for f r, and
then they are periodic of period nr for f , the other points in Ti \ π ∩Ti are
periodic of period 2n for f r when n is odd, and periodic of period n for f r

when n is even, and then they are periodic of period 2nr of f when n is odd,
and periodic of period nr of f when n is even. Hence Per(f) = {1, nr, 2nr}
when n is odd and Per(f) = {1, nr} when n is even. �
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With the same arguments and considerations we prove a similar result for
a pinched sphere flower.

Lemma 8. Let f : S → S be a periodic homeomorphism of a pinched
sphere flower surface S with r petals denoted by S1,S2, . . . ,Sr. Suppose that
f(Si) = Si+1 for all i = 1, 2, . . . , r−1 and f(Sr) = S1. Then Per(f) is either
{1, r}, or {1, nr}, or {1, r, 2r}, or {1, nr, 2nr}.
Remark 1. We observe that in Lemmas 7 and 8 the iterate f r is a periodic
homeomorphism defined on a pinched torus T and on a pinched sphere S,
respectively. Then we can apply Proposition 4(b) for f r and we conclude
that for f r there exist a periodic homeomorphism F : S2 → S

2 such that
f r|T\{J} = D ◦F ◦D−1|S2\{PN ,PS}, and a periodic homeomorphism G : S2 →
S
2 such that f r|S\{J} = D ◦G ◦D−1|S2\{PN ,PS} respectively.

A consequence of these lemmas is the next result.

A mixed flower surface is a flower surface with a unique branching point z
and a finite number of handles of at least two types among sphere, pinched
sphere and pinched torus. See in Figure 6 a mixed flower surface with 5
petals where 2 of them are spheres and the other 3 are pinched torus.

Theorem 9. Let f : S → S be a periodic homeomorphism of a mixed flower
surface S with r petals denoted by P1, P2, . . . , Pr. Then the set Per(f) is⋃s

l=1 Per(f |Cl), where Cl = {Pi1 , Pi2 , . . ., Pirl
} is an invariant set by f

formed by rl petals such that f(Pik) = Pik+1
, for k = 1, 2, . . . , rl − 1 and

f(Pirl
) = Pi1 , for l = 1, 2, . . . , s, with the positive integers rl satisfying

r1+ r2+ . . .+ rs = r, and each set Per(f |Cl) is a set as in the Lemma either
6, or 7 or 8 if the set Cl is either a sphere flower, or a pinched torus flower,
or a pinched sphere flower, respectively.

Proof. First we note that different types of pinched manifolds are not home-
omorphic each other. Then there exist invariant sets Cl = {Pi1 , Pi2 , . . .,
Pirl

} by f formed by rl petals of the same type such that f(Pik) = Pik+1
,

for k = 1, 2, . . . , rl−1 and f(Pirl
) = Pi1 , for l = 1, 2, . . . , s, with the positive

integers rl satisfying r1 + r2 + . . .+ rs = r, and each set Per(f |Cl) is a set as
in the Lemma either 6, or 7 or 8 if the set Cl is either a sphere flower, or a
pinched torus flower, or a pinched sphere flower, respectively. �

4. r–Lips Surface

A pinched surface with only two vertices z and w and r > 1 handles
having every handle the vertices z and w as endpoints is called an r–lips
surface. Note that in an r–lips surface each closed handle is a topological
sphere S

2. See a 4–lips surface in Figure 7.

Lemma 10. Let f : S → S be a periodic homeomorphism of an r–lips
surface S with vertices z and w, and let S21,S

2
2, . . . ,S

2
r be the handles of S
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Figure 6. A mixed flower surface.

z w

Figure 7. A 4–lips surface.

such that f(S2i ) = S
2
i+1, for i = 1, 2, . . . , r− 1, and f(S2r) = S

2
1. Then the set

Per(f) is

(a) either {1, r}, or {1, rn}, or {1, r, 2r} if f(z) = z;
(b) or {2, r}, or {2, rn}, or {2, r, 2r} if f(z) = w and r is even;
(c) or {2, 2r}, or {2, 2rn}, or {2, 2r, 4r} if f(z) = w and r is odd.

Proof. By Proposition 2 we can have f(z) = z or f(z) = w. Initially we
assume that f(z) = z, and then f(w) = w, and consequently we get 1 ∈
Per(f).

The hypotheses imply that f r|
S2i

: S2i → S
2
i is a periodic homeomorphism

of the sphere S
2
i , with the branching points z and w as fixed points. Thus,

Per(f r) is one of the sets from Theorem 5(a), except the sets {2, n, 2n} and

{2, n} because here we cannot have f r topologically equivalent to a rotation
Rn followed by a reflection since if f r were we would have f r(z) 6= z, which
is a contradiction with f(z) = z.

When f r is topologically equivalent to the identity we get that Per(f r) =
{1}. Since the branching points z and w are fixed points of f and the other
points in S

2
i are fixed points only of f r, not of f , we conclude that the

points x ∈ S
2
i different from z and w are periodic of period r of f . Then

Per(f) = {1, r}.
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If f r is topologically equivalent to a rotation Rn we have Per(f r) = {1, n}.
Since the branching points z and w are the unique fixed points of f we obtain
that the other points in S

2
i are rotated by the rotation Rn and thus they are

periodic of period n of f r, that is, they are periodic of period rn of f . Then
Per(f) = {1, rn}.

When f r is topologically equivalent to a reflection we get Per(f r) = {1, 2}.
The reflection is with respect to a topological plane π in S

2
i that contains

the branching points z and w. Consequently we get that the points in π∩S
2
i

are fixed by f r and the other points in S
2
i \ π ∩ S

2
i are periodic of period 2

of f r. Since the unique fixed points of f are the branching points z and w
we conclude that the points in π ∩ S

2
i different from z and w are periodic of

period r of f , and the points in S
2
i \ π ∩ S

2
i are periodic of period 2r of f .

Thus we get Per(f) = {1, r, 2r}, and statement (a) is proved.

Considering the case f(z) = w and r even and doing the same analysis as
before we obtain the same sets Per(f) as before just changing the period 1
by period 2 because here the branching points z and w are periodic of period
2 of f , that is, either Per(f) = {2, r} when f r is topologically equivalent
to the identity, or Per(f) = {2, rn} when f r is topologically equivalent to a
rotation Rn, or Per(f) = {2, r, 2r} when f r is topologically equivalent to a
reflection. Thus statement (b) is proved.

If f(z) = w and r is odd, we have that f2r|
S2i

: S2i → S2i is a periodic

homeomorphism with fixed points z and w. Using the arguments done to
prove statement (a) we obtain that either Per(f) = {2, 2r} when f2r is
topologically equivalent to the identity, or Per(f) = {2, 2rn} when f2r is
topologically equivalent to a rotation Rn or Per(f) = {2, 2r, 4r} when f2r is
topologically equivalent to a reflection. Thus statement (c) is proved. �

Theorem 11 (r–lips Theorem). Let f : S → S be a periodic homeomor-
phism of an r–lips surface S with vertices z and w, and let S21,S

2
2, . . . ,S

2
r be

the handles of S. Then the set Per(f) is

(a)
⋃r

l=1 Per(f |S2l ) if f(z) = z and f(S2i ) = S
2
i for all i = 1, 2, . . . , r,

where Per(f |S2
l
) is one of the sets from Theorem 5(a);

(b)
⋃s

l=1 Per(f |Cl) if f(z) = z and f(S2i ) 6= S
2
i for some i = 1, 2, . . . , r,

where Cl = {S2i1 , S2i2, . . ., S2irl} is an invariant set by f formed by rl

petals such that f(S2ik) = S
2
ik+1

, for k = 1, 2, . . . , rl − 1 and f(S2irl
) =

S
2
i1
, for l = 1, 2, . . . , s, with the positive integers rl satisfying r1+r2+

. . . + rs = r, where Per(f |Cl) is one of the sets from Lemma 10(a);
(c)

⋃r
l=1 Per(f |S2l ) if f(z) 6= z and f(S2i ) = S

2
i for all i = 1, 2, . . . , r,

where Per(f |S2
l
) is one of the sets from Theorem 5(a), except the

sets {1} and {1, n} with n 6= 2;
(d)

⋃s
l=1 Per(f |Cl) if f(z) 6= z and f(S2i ) 6= S

2
i for some i = 1, 2, . . . , r,

where Cl = {S2i1 , S2i2, . . ., S2irl} is an invariant set by f formed by rl

petals such that f(S2ik) = S
2
ik+1

, for k = 1, 2, . . . , rl − 1 and f(S2irl
) =
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S
2
i1
, for l = 1, 2, . . . , s, with the positive integers rl satisfying r1+r2+

. . .+rs = r, where Per(f |Cl) is one of the sets from Lemma 10(b)-(c).

Proof. By Proposition 2 we have either f(z) = z (and consequently f(w) =
w), or f(z) = w (and consequently f(w) = z).

If f(z) = z and f(S2i ) = S
2
i for all i = 1, 2, . . . , r, then statement (a)

follows from Theorem 5(a).

In the case f(z) = z and f(S2i ) 6= S
2
i for some i = 1, 2, . . . , r, since each

handle S
2
i must be applied in other handle S

2
j , there exist invariant sets Cl

= {S2i1 , S2i2 , . . ., S2irl} by f formed by rl petals such that f(S2ik) = S
2
ik+1

, for

k = 1, 2, . . . , rl − 1 and f(S2irl
) = S

2
i1
, with the positive integers rl satisfying

r1 + r2 + . . . + rs = r. Applying Lemma 10(a) in each invariant set Cl
statement (b) follows.

Assuming f(z) = w we get that f2(z) = z, and then 2 ∈ Per(f). If
f(S2i ) = S

2
i for all i = 1, 2, . . . , r we have that f |

S2i
: S2i → S

2
i is a periodic

homeomorphism with the branching point z as a periodic point of period 2.
Thus f |

S2i
cannot be topologically equivalent to the identity, or to a rotation

Rn with n 6= 2, and then, Per(f |S2i ) is one of the sets from Theorem 5(a),

except the sets {1} and {1, n} with n 6= 2. Hence statement (c) is proved.

Assume f(z) = w and f(S2i ) 6= S
2
i for some i = 1, 2, . . . , r. Since each

handle S
2
i must be applied in other handle S

2
j , there exist invariant sets Cl

= {S2i1 , S2i2 , . . ., S2irl} by f formed by rl petals such that f(S2ik) = S
2
ik+1

, for

k = 1, 2, . . . , rl − 1 and f(S2irl
) = S

2
i1
, with the positive integers rl satisfying

r1 + r2 + . . . + rs = r. Applying Lemma 10(b), (c) in each invariant set Cl
statement (d) follows. �

5. r–Lips with Flower Surface and Surfaces

In what follows we denote by Fz a mixed flower or just a flower with
branching point z, and we denote by Fw ∪ S ∪ Fz a pinched surface with
only 2 branching points (the points z and w) formed by an r–lips surface
S, a mixed flower (or just flower) Fz with branching point z and a mixed
flower (or just flower) Fw with branching point w. In the case that a such
surface is formed by only an r–lips surface S and a unique mixed flower (or
just flower) Fz we denote it by S ∪ Fz or Fz ∪ S. Note that each handle
in the r–lips S is not a petal in Fz (respectively in Fw) because Fz has a
unique branching point z and each handle in the r–lips has two branching
points (z and w). We call the surface Fw ∪ S ∪ Fz by r–lips with flower
surfaces, and the surface S ∪Fz or Fz ∪S by r–lips with flower surface. See
a 4–lips with flower surfaces in Figure 8.

For a mixed flower or a flower Fz we define the card(Fz) = (a, b, c) where
a is the number of closed handles in Fz which are spheres, b is the number of
closed handles in Fz which are pinched torus, and c is the number of closed
handles in Fz which are pinched spheres.
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Figure 8. A 4–lips with flower surfaces.

Let A be a subset of positive integers, we denote by 2 · A the following
set {2a : a ∈ A}.
Theorem 12 (r-Lips with Flower Surfaces Theorem). Let M = Fz∪S∪Fw

be an r–lips with flower surfaces. Let f : M → M be a periodic homeomor-
phism. Then the set Per(f) is

(a) Per(f |Fz)∪Per(f |S)∪Per(f |Fw) if card(Fz) 6= card(Fw) or if card(Fz) =
card(Fw) and f(z) = z, where Per(f |Fz) (respectively Per(f |Fw)) is
one of the sets from Theorem 9 if Fz is a mixed flower, or one of
the sets from Lemmas 6, 7 or 8 if Fz is a flower, similar definitions
for Per(f |Fw), and Per(f |S) is one of the sets from Theorem 11.

(b) Per(f |S)∪ 2 ·Per(f2|Fz)∪ 2 ·Per(f2|Fw) if card(Fz) = card(Fw) and
f(z) 6= z, where Per(fS) is one of the sets from Theorem 11(c)-(d),
Per(f2|Fz) (respectively Per(f2|Fw)) is one of the sets from Theo-
rem 9.

Proof. If card(Fz) 6= card(Fw) we get from Proposition 2 that f(z) = z and
f(w) = w. In this case we obtain that Fz, Fw and S are invariant by f .
If card(Fz) = card(Fw) and f(z) = z the sets Fz, Fw and S remain also
invariant by f . Thus, applying Theorem 9 if Fz (respectively for Fw) is a
mixed flower, or Lemmas 6, 7 or 8 if Fz (respectively for Fw) is a flower,
and Theorem 11 for S it follows statement (a).

When card(Fz) = card(Fw) and f(z) 6= z we obtain from Proposition 2
that f(z) = w, f(w) = z. Then f2(z) = z and f2(w) = w. This conclusion
together the fact that each petal is applied by f in other petal of the same
type imply that the mixed flowers Fz and Fw are invariant by f2 and the
r–lips S is invariant by f . Thus Per(f |S) is given by one of the period sets
of statement (c) or (d) of Theorem 11, Per(f2|Fz ) and Per(f2|Fw) are given
by one of the period sets of Theorem 9.

Taking into account that a periodic point x ∈ Fz (respectively for Fw)
with period n for f2 is a periodic point of period 2n for f we conclude that
Per(f) = Per(f |S)∪ 2 ·Per(f2|Fz )∪ 2 ·Per(f2|Fw). This completes the proof
of statement (b). �

From Theorem 12 it follows immediately the next result.
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Corollary 13. Let M = Fz ∪ S be an r–lips with flower surface. Let f :
M → M be a periodic homeomorphism. Then the set Per(f) = Per(f |Fz )∪
Per(f |S) being Per(f |Fz) and Per(f |S) as in statement (a) of Theorem 12.

Acknowledgments

The first author is partially supported by CAPES/DGU grant number
BEX 12566/12-8, by a PROCAD-CAPES grant 88881.068462/2014-01 and
by a FAPESP grants 2013/13344-0 and 2013/24541-0. The second au-
thor is partially supported by a MINECO’s grants MTM2013-40998-P, and
MTM2016-77278-P (FEDER) and an AGAUR grant number 2014SGR-568.

References
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