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a b s t r a c t

In this work, we are interested in crossing limit cycles surrounding only one
equilibrium point or a sliding segment. The studied systems are piecewise cubic
polynomial defined in two zones separated by a straight line. In this class, we get
at least 24 crossing limit cycles, all of them in only one nest, bifurcating from a
cubic polynomial center. The computations use a parallelization algorithm.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Andronov, in [1], started the study of piecewise linear systems. In last years, this subject has been widely
studied, since many problems of engineering, physics, and biology can be modeled by such systems, see [2,3].
Most of usual models propose piecewise differential systems defined in two half planes separated by a straight
line. Recently, the study of the number of limit cycles have received a special attention, see for example [4–6].
In particular, it can be considered as a generalization of the 16th-Hilbert problem, see more details on this
classical problem in [7].

In this paper, we are interested in the study of isolated periodic orbits, the so-called limit cycles, for
piecewise differential equations of the form{

(x′, y′) = (P +(x, y, λ), Q+(x, y, λ)), when y > 0,
(x′, y′) = (P −(x, y, λ), Q−(x, y, λ)), when y < 0,

(1)

where P ±(x, y, λ) and Q±(x, y, λ) are polynomials of degree n in (x, y) and λ ∈ RK , where K is the total
number of parameters. It is not restrictive to consider the straight line Σ = {y = 0}, it divides the real
plane in two half-planes Σ± = {(x, y) : ±y > 0}, and the trajectories on Σ are defined following the
Filippov convention, see [3]. We will consider only limit cycles of crossing type, that is, when both vector
fields point out in the same direction in the intersection points with the discontinuity line Σ . We can define
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