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1. Introduction and statement of the main results

We consider the discrete dynamical system (M, f) where M is a topological space and f : M — M be a continuous map.
A point x is called fixed if f(x) =x, and periodic of period k if f¥(x) =x and fi(x) # x if 0 <i <k. By Per(f) we denote the
set of periods of all the periodic points of f.

If x e M the set {x, f(x), f2(x),..., f(x),...} is called the orbit of the point x. Here f" means the composition of n
times f with itself. To study the dynamics of the map f is to study all the different kind of orbits of f. Of course if x is a
periodic point of f of period k, then its orbit is {x, f(x), f2(x),..., f*"1(x)}, and it is called a periodic orbit.

The periodic orbits play an important role in the general dynamics of the system, for studying them we can use topo-
logical information. Perhaps the best known example in this direction are the results contained in the seminal paper entitle
Period three implies chaos for continuous self-maps on the interval, see [15].

Let M be a connected compact manifold. Our aim would be characterize classes of continuous self-maps f on M which
are periodic point free, i.e. for which Per(f) = @.

There are only two 1-dimensional connected compact manifolds, the interval and the circle. It is well known that any
continuous self-map on the interval has fixed points, so there are no periodic point free maps on the interval. The circle
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