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PERIODS OF CONTINUOUS MAPS
ON SOME COMPACT SPACES

JUAN LUIS GARCÍA GUIRAO1 AND JAUME LLIBRE2

Abstract. The objective of this paper is to provide information on the set
of periodic points of a continuous self–map defined in the following compact
spaces: Sn (the n–dimensional sphere), Sn × Sm (the product space of the
n–dimensional with the m–dimensional spheres), CPn (the n–dimensional
complex projective space) and HPn (the n–dimensional quaternion pro-
jective space). We use as main tool the action of the map on the homology
groups of these compact spaces.

1. Introduction

Let f : X→ X be a continuous map on a compact space X. A point x ∈ X
is periodic of period n if fn(x) = x and fk(x) 6= x for k = 1, . . . , n − 1. We
denote by Per(f) the set of periods of all periodic points of f . The aim of
the present paper is to provide some information on Per(f) for some compact
spaces. More precisely, we shall present results for the spaces X ∈ ∆, where ∆
is the set formed by the spaces: Sn (the n–dimensional sphere), Sn × Sm (the
product space of the n–dimensional with the m–dimensional spheres), CPn

(the n–dimensional complex projective space) and HPn (the n–dimensional
quaternion projective space).

The statement of our main results are the following ones.

Theorem 1. Let f be a continuous self–map on Sn of degree D. Then the
following statements hold.

(a) If n is even and D = −1, then Per(f) ∩ {1, 2} 6= ∅.
(b) If n is odd and D 6= 1, then Per(f) ∩ {1} 6= ∅.

Theorem 2. Let f be a continuous self–map on Sn × Sn of degree D, and let

f∗n =

(
a b

c d

)
with a, b, c, d ∈ Z, the action of f on the n–th homology group

Hn(Sn × Sn,Q) ≈ Q⊕Q. Then the following statements hold.
(a) Assume n is even.

(a.1) If 1 + a− d + D 6= 0, then Per(f) ∩ {1} 6= ∅.
(a.2) If 1 + a − d + D = 0 and 1 + a2 + 2bc + d2 + D2 6= 0, then

Per(f) ∩ {1, 2} 6= ∅.
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(a.3) If 1 + a− d+D = 1 + a2 + 2bc+ d2 +D2 = 0 and 1 + a3 + 3abc+
3bcd + d3 + D3 6= 0 then Per(f) ∩ {1, 3} 6= ∅.

(a.4) If D 6= −1, then Per(f) ∩ {1, 2, 3} 6= ∅.
(a.5) If D = −1, then Per(f) ∩ {1, 2, 3, 4} 6= ∅.

(b) Assume n is odd.
(b.1) If 1− a− d + D 6= 0, then Per(f) ∩ {1} 6= ∅.
(b.2) If 1 − a − d + D = 0 and 1 − a2 − 2bc − d2 + D2 6= 0, then

Per(f) ∩ {1, 2} 6= ∅.

Theorem 3. Let f : Sn × Sm → Sn × Sm with n 6= m be a continuous map
of degree D, f∗n = (a), f∗m = (b) with a, b ∈ Z. Here for k = n,m, f∗k
denotes the action on the k–th homology group Hk(Sn×Sm,Q) ≈ Q. Then the
following statements hold.

(a) Assume that n and m are even.
(a.1) If (a, b) 6= (−1,−1), then Per(f) ∩ {1} 6= ∅.
(a.2) If (a, b) = (−1,−1), then Per(f) ∩ {1, 2} 6= ∅.

(b) Assume that n and m are odd. Then (a, b) = (1, 1), then Per(f)∩{1} 6=
∅.

(c) Assume that n is odd and m is even. Then (a, b) = (1,−1), then
Per(f) ∩ {1} 6= ∅.

Theorem 4. Let f : X→ X be a continuous map and let X be either CPn or
HPn. If f∗k denotes the action on the k–th homology group Hk(X,Q) ≈ Q, with
k = 2n if X = CPn, and k = 4n if X = HPn the actions f∗2n = f∗4n = (an).

(a) If n is odd and a = −1, then Per(f) ∩ {1, 2} 6= ∅.
(b) If the assumptions of statement (a) do not hold, then Per(f)∩{1} 6= ∅.

These four theorems are proved in the next section.
Similar results on the spaces of ∆ for C1 self-maps where stated in [5], for

transversal self-maps in [10] and [6] except for the case of the n–dimensional
sphere which is monographically studied in [8]. Also results of the same kind
for continuous–self maps on compact surfaces where obtained in [7].

2. Proofs of Theorems 1, 2, 3 and 4

Assume that X ∈ ∆ with dimension n and let f : X → X be a continuous
map, there exist n + 1 induced linear maps f∗k : Hk(X,Q) → Hk(X,Q) for
k = 0, 1, . . . , n by f . Every linear map f∗k is given by an nk × nk matrix with
integer entries, where nk is the dimension of Hk(X,Q).

In this setting is defined the Lefschetz number L(f) as

L(f) =
n∑

k=0

(−1)ktrace(f∗k).

The importance of this notion is given by the existence of a result connecting
the algebraic topology with the fixed point theory called the Lefschetz Fixed
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Point Theorem which establishes the existence of a fixed point if L(f) 6= 0, see
for instance [1].

Since our aim is to obtain information on the set of periods of f for contin-
uous self–maps of ∆, it is useful to have information on the whole sequence
{L(fm)}∞m=0 of the Lefschetz numbers of all iterates of f . Thus we define the
Lefschetz zeta function of f as

(1) Zf (t) = exp

( ∞∑
k=1

L(fk)

k
tk

)
.

This function generates the whole sequence of Lefschetz numbers, and it may
be independently computed through

(2) Zf (t) =

n∏
k=0

det(Ink
− tf∗k)(−1)

k+1
,

where Ink
is the nk × nk identity matrix, and we take det(Ink

− tf∗k) = 1
if nk = 0. Note that the expression (2) is a rational function in t. So the
information on the infinite sequence of integers {L(fk)}∞k=0 is contained in two
polynomials with integer coefficients, for more details see [3].

In short the Lefschetz zeta function is a good tool for studying the existence
of periodic points and we shall see here, and also for studying the non existence
of such points as was shown in [4, 9].

Proof of Theorem 1. For n ≥ 1 let f : Sn → Sn be a continuous map. The
homological groups of Sn over Q and the induced linear maps are of the form

Hq(Sn,Q) =

{
Q if q ∈ {0, n},
0 otherwise,

where f∗0 = (1), f∗i = (0) for i = 1, ..., n − 1 and f∗n = (D) where D is the
degree of the map f , see for more details [2].

From (2) we have that

Zf (t) =
(1−Dt)(−1)

n+1

1− t
.

If n is even, then
∞∑
k=1

L(fk)

k
tk =

∞∑
k=1

1 + Dk

k
tk,

so from (1) we get L(fk) = 1 + Dk. Hence if D = −1, L(fk) = 0 if k is odd
and L(fk) = 2 if k is even. Consequently, by the Lefschetz fixed point theorem
we have Per(f) ∩ {1, 2} 6= ∅. This proves statement (a).

If n is odd, then
∞∑
k=1

L(fk)

k
tk =

∞∑
k=1

1−Dk

k
tk,
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so from (1) we get L(fk) = 1−Dk. Hence, if D = 1 then L(fk) = 0 for k ≥ 1,
if D = −1 then L(fk) = 0 if k is even and L(fk) = 2 if k is odd, if D 6= ±1
then L(fk) 6= 0 for k ≥ 1. Consequently, by the Lefschetz fixed point theorem
we have Per(f) ∩ {1} 6= ∅. This proves statement (b). �

Proof of Theorem 2. Let f be a continuous self–map of Sn×Sn. We know that

the induced linear maps are f∗0 = (1), f∗n =

(
a b

c d

)
with a, b, c, d ∈ Z ,

f∗2n = (D), whereD is the degree of the map f and f∗i = (0) for i ∈ {0, ..., 2n},
i 6= 0, n, 2n (see for more details [2]). From (2) the Lefschetz zeta function of
f is

(3) Zf (t) =
p(t)(−1)

n+1

(1− t)(1−Dt)
.

where p(t) = 1− (a + d)t + (ad− bc)t2.
If n even from the definition of the Lefschetz zeta function in (1) in (3) we

have that
∞∑
k=1

L(fk)

k
tk = log

(
1

(1− (a + d)t + (ad− bc)t2)(1− t)(1−Dt)

)
= (1 + a + d + D)t +

1

2
(1 + a2 + 2bc + d2 + D2)t2

+
1

3
(1 + a3 + 3abc + 3bcd + d3 + D3)t3

+
1

4
(1 + a4 + 4a2bc + 2b2c2 + 4abcd + 4bcd2 + d4 + D4)t4 + . . .

If L(f) = 1 + a + d + D 6= 0, then Per(f) ∩ {1} 6= ∅, and statement (a.1)
is proved. If L(f) = 0 and L(f2) = 1 + a2 + 2bc + d2 + D2 6= 0, then
Per(f) ∩ {1, 2} 6= ∅, and it follows statement (a.2). If L(f) = L(f2) = 0 and
L(f3) = 1 + a3 + 3abc+ 3bcd+ d3 +D3 6= 0, then Per(f)∩ {1, 3} 6= ∅, proving
statement (a.3). If L(f) = L(f2) = L(f3) = 0, then D = −1 consequently
statement (a.4) is proved. If D = −1, the system L(f) = L(f2) = L(f3) =
L(f4) = 0 has no solutions in the variables a, b, c, d and statement (a.5) is
proved.

If n is odd, from (1) and (3) we have that
∞∑
k=1

L(fk)

k
tk = log

(
1− (a + d)t + (ad− bc)t2

(1− t)(1−Dt)

)
= (1− a− d + D)t +

1

2
(1− a2 − 2bc− d2 + D2)t2

+
1

3
(1− a3 − 3abc− 3bcd− d3 + D3)t3 . . .

We note that if L(f) = 1−a−d+D = 0 and L(f2) = 1−a2−2bc−d2+D2 = 0,
then Zf (t) = 0 and in this case we do not have information on the periods of
the map f .
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If L(f) 6= 0, then statement (b.1) follows. If L(f) = 0 and L(f2) 6= 0, then
Per(f)∩{1, 2} 6= ∅ and statement (b.2) is proved. This completes the proof of
the theorem. �

Proof of Theorem 3. Let f be a continuous self–map of Sn × Sm with n 6= m.
It is known that the induced linear maps are f∗0 = (1), f∗n = (a), f∗m = (b)
with a, b ∈ Z, f∗n+m = (D), where D ∈ Z is the degree of the map f and
f∗i = (0) for i ∈ {0, ..., n + m}, i 6= 0, n,m, n + m (see for more details [2]).

By Poincaré duality, or again by a direct consideration with the cup-product,
we have deg(f) = D = ab, see [11].

From (2) the Lefschetz zeta function of f is of the form

(4) Zf (t) =
(1− at)(−1)

n+1
(1− bt)(−1)

m+1
(1− abt)(−1)

n+m+1

1− t
.

Let f be an orientation preserving homeomorphism, n and m even. There-
fore the degree D of f is 1. By (1) and (4) we have that

∞∑
k=1

L(fk)

k
tk = log

(
1

(1− t)(1− at)(1− bt)(1− abt)

)
=

∞∑
k=1

1 + ak + bk + akbk

k
tk

Therefore, L(fk) = 1 + ak + bk + akbk. If (a, b) 6= (−1,−1), then L(f) 6= 0
and this proves statement (a.1). If (a, b) = (−1,−1), then L(f2) = 2 and
Per(f) ∩ {1, 3} 6= ∅ proving statement (a.2).

Assume that n and m even. Therefore, from the definition of the Lefschetz
zeta function (1) and (4) we have that

∞∑
k=1

L(fk)

k
tk = log

(
(1− at)(1− bt)

(1− t)(1− abt)

)
=

∞∑
k=1

1− ak − bk + akbk

k
tk

Therefore, L(fk) = 1 − ak − bk + akbk. If (a, b) 6= (1, 1), then L(f) 6= 0 and
this shows statement (b). If (a, b) = (1, 1), then L(fk) = 0 for k ≥ 1.

Assume that n odd and m even. Therefore, from the definition of the Lef-
schetz zeta function (1) and (4) we have that

∞∑
k=1

L(fk)

k
tk = log

(
(1− at)(1− abt)

(1− t)(1− bt)

)
=

∞∑
k=1

1− ak + bk − akbk

k
tk

Therefore, L(fk) = 1− ak + bk − akbk. If (a, b) 6= (1,−1), then L(f) 6= 0 and
this shows statement (c). If (a, b) = (1,−1), then L(fk) = 0 for k ≥ 1, ending
the proof of the theorem. �
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Proof of Theorem 4. Let f be a continuous self–map of CPn with n ≥ 1. We
know that the induced linear maps are f∗q = (a

q
2 ) for q ∈ {0, 2, 4, ..., 2n} with

a ∈ Z, and f∗q = (0) otherwise (see for more details [12, Corollary 5.28]).
From (2) the Lefschetz zeta function of f has the form

(5) Zf (t) =

(∏
q

(1− aq/2t)

)−1
,

where q runs over {0, 2, 4, ..., 2n}.
Let f be a continuous self–map of HPn with n ≥ 1. We know that the

induced linear maps are f∗q = (a
q
4 ) for q ∈ {0, 4, 8, ..., 4n} with a ∈ Z, and

f∗q = (0) otherwise (see for more details [12, Corollary 5.33]).
From (2) the Lefschetz zeta function of f has the form

(6) Zf (t) =

(∏
q

(1− aq/4t)

)−1
,

where q runs over {0, 4, 8, ..., 4n}.
By (1), (5) and (6) we have that

∞∑
k=1

L(fk)

k
tk =

∞∑
k=1

ak(n+1)−1

ak − 1
tk

Therefore L(fk) =
ak(n+1)−1

ak − 1
. Hence it is easy to check first that L(f) = 0 if

and only if n is odd and a = −1, and second that L(f2) = 1+a2+. . .+a2n 6= 0.
From these two facts the statements (a) and (b) follow. �
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